ap ch 16-teacher

Upload: jerin123

Post on 07-Apr-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 AP Ch 16-Teacher

    1/63

    AP Physics Chapter 16

    Electric Potential, Energy, andCapacitance

  • 8/6/2019 AP Ch 16-Teacher

    2/63

    Chapter 16: Electric Potential, Energy,

    and Capacitance16.1 Electric Potential and Potential

    Difference

    16.2 Equipotential Surfaces and theElectric Field

    16.3 Capacitance

    16.4 Omitted16.5 Capacitors in Series and in Parallel

  • 8/6/2019 AP Ch 16-Teacher

    3/63

    Homework for Chapter 16

    Read Chapter 16

    HW 16.A: p.537-539: 4,8-13, 16,17, 20-23, 47,48, 51-53, 55-57.

    HW 16.B: p.540-541: 64-70, 84-87, 89, 90.

  • 8/6/2019 AP Ch 16-Teacher

    4/63

    B L A C K H O L E S A R E WH ERE GO

    D D I V I D E D B Y ZE R O

  • 8/6/2019 AP Ch 16-Teacher

    5/63

    If your car is traveling at the speed of light and

    you turn your headlights on, what happens?

    -StevenWright

  • 8/6/2019 AP Ch 16-Teacher

    6/63

    16.1: Electric Potential andPotential Difference

  • 8/6/2019 AP Ch 16-Teacher

    7/63

    Electric Potential Energy Difference

    a) Movinga positive charge qo againsttheelectric fieldrequires positive workand

    increasestheelectric potentialenergy.

    Theforce requiredto movethe chargeisequaltotheelectric force:Fe = qo E

    Thework done bythe force: Fe d= qo E d Theincreaseinthe chargeselectric potentialenergyisequaltothe workdone

    onthe charge:Ue = UB UA = qo E d

    The SI unitofelectric potentialenergyisthe joule (J).

    b) Movinga mass m againstthegravitational fieldrequires positive workand

    increasesthegravitational potentialenergy: Ug = UB UA = mgh

  • 8/6/2019 AP Ch 16-Teacher

    8/63

    Electric Potential Difference

    ** This is not the same as Electric Potential Energy Difference**

    Theelectric potential difference (voltage) betweentwo pointsisthe work per

    unit positive chargedone byanexternal forcein moving charge betweenthese

    two points,

    OR

    the changeinelectric potentialenergy perunit positive charge.

    V = W = Ue where qo isthe positivetest charge

    qo qo

    The SI Unitofelectric potentialdifferenceis: joule/coulomb (J/C)orvolt (V).

    Electric potentialdifferenceis commonlyshorted fromV to just V.

    Potentialdifferenceisdefined perunit charge,soitdoesnotdependonthe

    amountof charge moved (potentialenergydifferencedoes).

  • 8/6/2019 AP Ch 16-Teacher

    9/63

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    10/63

    Potential Difference for a Uniform Field Between Two Parallel Plates

    Assume we wouldliketo movea positivetest charge, qo,from thenegativeto

    the positive plate. This move would beagainsttheelectric field, wouldrequirework,and wouldincreasethe charges potentialenergy. The potentialdifference

    betweenthe platesis:

    V = W = Ue where qo isthe positivetest chargeand

    qo qo Ueisthe potentialenergygained

    Ina uniform electric fieldE,the potentialdifferencein movingthe chargethrough

    astraightlinedistanced is:

    V = Ue = qoE d = E d Potential Difference

    qo qo Parallel Plates

    Whentalkingaboutelectric potential, wealways mustdefinethereference

    value. Only changesinelectric potential (voltage)are meaningful.

    ex: Thenegative plateis commonlyassignedavalueof zero,sovoltage

    will be positive.

  • 8/6/2019 AP Ch 16-Teacher

    11/63

    Positive charges, when released, tend to move toward regions of low potential,

    and negative charges tend to move toward regions of high potential.

    Acceleratinga Charge

    a) Movinga proton from thenegativetothe positive plateincreasesthe

    protons potentialenergy.

    b) Whenitisreleased from the positive plate,the protonaccelerates back

    towardthenegative plate,gainingkinetic energyandlosingelectric potentialenergy.

    c) The workdoneto movea proton betweenanytwo pointsintheelectric field

    is INDEPENDENT OF PATH.

  • 8/6/2019 AP Ch 16-Teacher

    12/63

    Example 16.1: Anelectroninitiallyatrest,isacceleratedthrough anelectric

    potentialdifferenceof 50.0 V.

    a) Whatisthekinetic energyoftheelectron?

    b) Whatisthespeedoftheelectron?

  • 8/6/2019 AP Ch 16-Teacher

    13/63

    Example 16.2:A 12-V battery maintainstheelectric potentialdifference between

    tow parallel metal platesseparated by 0.10 m. Whatistheelectric field between

    the plates?

  • 8/6/2019 AP Ch 16-Teacher

    14/63

    A positive point charge createsanelectric field.

    Theelectric potential

    increasesasyou move closer

    tothe positive charge.

    SincerB < rA, B isata higher

    potentialthan A,andthe

    potentialdifferenceis positive.

    Electric potential increases (+V) as we get closer to positive charges or fartheraway from negative charges.

    Electric potential decreases (-V) as we get farther away from positive charges

    or nearer to negative charges.

    Potential Difference Due to Point Charges

  • 8/6/2019 AP Ch 16-Teacher

    15/63

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    16/63

    Electric Potential

    V =kq electric potentialduetoa point charge

    r ( V = 0 atr=g)

    Unlikeelectric field,electric potentialisascalarquantity. Whenadding

    potentialsdueto point charges, justaddthem algebraically (includingthe + or

    signs).

    V =k i qi

    ri

    Note:onthegoldsheet, Coulombslaw constantis writtenas 1/4TIo.

    Anotherdifference betweenelectric fieldandelectric potentialisnotable:

    electric fieldis proportionalto 1/r2

    electric potentialis proportionalto 1/r

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    17/63

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    18/63

    Electric Potential Energy of Various Charge Configurations

    a) A positive point charge q1 is fixedinspaceandasecond positive charge q2 is

    pushedtowardit from averylargedistance (r=g

    )toadistancer12.

    Thereisanincreasein potentialenergy because positive work must bedone

    to bringthe mutuallyrepelling charges closertogether.

  • 8/6/2019 AP Ch 16-Teacher

    19/63

    Electric Potential Energy of Various Charge Configurations

    Formorethantwo charges,thesystemselectric potentialenergyisthesum ofthe

    energiesofeach pair.

    Electric Potential Energy followsthe Law

    of Conservationof Energy. Forexample,

    considertwo protonsthatare heldneareach otheratrest. Work wasdoneto

    bringthem close,andstoredinthe form

    ofelectric potentialenergy. If werelease

    them,they will flyapart. Theelectric

    potentialenergy will be convertedto

    kinetic energy. Thisisverysimilartotwomasses connected bya compressed

    spring.

  • 8/6/2019 AP Ch 16-Teacher

    20/63

    Example 16.3: A chargeof 5.0 nC isat (0,0)andasecond chargeof -2.0 nC isat

    (3.0m, 0m). Ifthe potentialistakento be zeroatinfinity,

    a) whatistheelectric potentialat point P (0,4.0) m?b) whatisthe potentialenergyofa 1.0 nC chargeat point P?

    c) whatisthe workrequiredto bringa chargeof 1.0 nC charge from infinityto

    point P?

    d) whatisthetotal potentialenergyofthethree chargesystem?

  • 8/6/2019 AP Ch 16-Teacher

    21/63

  • 8/6/2019 AP Ch 16-Teacher

    22/63

    Summary:

    Theelectric potentialdifference betweentwo pointsisthe work perunit positive

    chargedone byanexternal forcein moving charge betweenthosetwo points.

    Electric potentialdifferenceisthe changeinelectric potentialenergy perunit

    positive charge.

    Voltageissynonymous with electric potentialdifference.

    V = W = Ue electric potentialdifference (voltage)definitionqo qo

    V = Ed electric potentialdifference between parallel plates

    V =kq electric potentialduetoa point charge (V = 0 atr=g)r

    U = U12 + U23 + U13 + electric potentialenergyofa configurationof point

    charges

  • 8/6/2019 AP Ch 16-Teacher

    23/63

    2. Whatisthedifference betweenelectrostatic potentialenergyandelectrostatic

    potential?

    Answer: Potentialisthe potentialenergy perunit charge: V = Ue / qo

    3. Whatisthedifference betweenelectric potentialdifferenceandvoltage?

    Answer:nodifference.

    Check forUnderstanding:

    1.The SI unitofelectric potentialdifferenceisthe

    a) jouleb)newton

    c)newton-meter

    d) joule percoulomb

    Answer:d

  • 8/6/2019 AP Ch 16-Teacher

    24/63

    Check forUnderstanding:

    4. Theelectrostatic potentialenergyoftwo point charges

    a)isinversely proportionaltotheirseparationdistance

    b)isavectorquantity

    c)isalways positive

    d) has unitsofnewton percoulomb

    Answer: a,since potentialenergyisinversely proportionaltothedistance betweenthe charges.

    5. Anelectronisreleasedinaregion wherethereisavaryingelectric

    potential. Theelectron will

    a) movetowardthelowerpotentialregion

    b) movetowardthe higherpotentialregion

    c)remainatrest

    Answer: b, becausetheelectron hasanegative charge

  • 8/6/2019 AP Ch 16-Teacher

    25/63

  • 8/6/2019 AP Ch 16-Teacher

    26/63

  • 8/6/2019 AP Ch 16-Teacher

    27/63

    I lived in a house that ran on static electricity...

    If you wanted to run the blender, you had to

    rub balloons on your head. If you wanted to

    cook, you had to pull off a sweater real quick.

    -StevenWright

  • 8/6/2019 AP Ch 16-Teacher

    28/63

    16.2: Equipotential Surfaces andthe Electric Field

  • 8/6/2019 AP Ch 16-Teacher

    29/63

    Construction of Equipotential Surfaces Between Parallel Plates

    Considera positive charge moving from A to A

    perpendiculartoanelectric field.

    Sincetheelectric fieldis perpendiculartothe

    displacement,no workisdone bythe field.

    Ifno work wasdone,thentheelectric potential

    energyofthe charge mustnot have changed.

    We can concludeall pointson path I havethe

    sameelectric potentialenergy,andthereforethe

    same potential.

    We canextendthistoall pointsonthe planeparalleltothe plates containing path I.

    Such a plane,is calledanequipotential surface,

    orsimply anequipotential.

    Since path II startsandstopsonthesameequipotential,no work wasdone.

  • 8/6/2019 AP Ch 16-Teacher

    30/63

    Equipotential Surfaces Between Parallel Plates

    Onceyou movetoa higherpotential (A to B),you can

    stayonthatnew equipotential by movingperpendicularlytotheelectric field. (B to B).

    The changein potentialisindependentof path,since

    thesame changeoccursvia path I asvia path II.

    Since no work is required to move a charge along an equipotential surface,then it must be generally true that equipotential surfaces are always at rightangles to the electric field.

  • 8/6/2019 AP Ch 16-Teacher

    31/63

    Gravitational Potential Energy as an Analogy

    Raisinganobjectaway from theearth resultsinanincreaseintheobjects

    potentialenergy.

    Atagiven height,its potentialenergyis constantaslongasitremainsonthat

    equipotentialsurface.

  • 8/6/2019 AP Ch 16-Teacher

    32/63

    Topographic Maps: A Gravitational Analogy for Equipotential Surfaces

    Considerasymmetrical hill with slicesatdifferentelevations. Each sliceisa planeof constantgravitational potential.

    Hereisanoverheadview,ortopographic

    map,ofthe hill.

    The contours, wherethe planesintersectthe

    surface,representgravitationalequipotentials.

  • 8/6/2019 AP Ch 16-Teacher

    33/63

    Topographic Maps: A Gravitational Analogy for Equipotential Surfaces

    The potential V arounda

    point charge formsasymmetrical hill.

    V is constantat fixed

    distances from q.

    Electricalequipotentialsarounda point chargearespherical,orintwodimensions, circular

    slices.

  • 8/6/2019 AP Ch 16-Teacher

    34/63

    Equipotentials of an Electric Dipole

    Equipotentialsare perpendicularto

    electric fieldlines.

    Noticethat V1 > V2,sinceequipotential

    surface 1 is closertothe positive charge

    thanissurface 2.

    Activity: Learn by Drawing, p. 522.

    Animation:

    http://regentsprep.org/Regents/physics/phy

    s03/aequilines/default.htm

  • 8/6/2019 AP Ch 16-Teacher

    35/63

    Electric Field From Potential

    Ina uniform electric field,such asone

    betweentwo parallel plates,the potential

    difference betweenanytwoequipotentialplanes,separated byadistance xis

    V = E x

    Foragiventraveldistance x, movement

    perpendiculartotheequipotentialsvieldsmaximum potentialgain.

    By findingthedirectionof maximum

    potential change, weare findingthedirection

    oppositethatofthe E field.

    E = - V electric field

    x max from potentialOn Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    36/63

    Electric Field from Potential

    E = - V electric fieldx max from potential

    The minussignindicatesthat E isinthedirectionoppositethatin which V

    increases mostrapidly,orinthedirection V decreases mostrapidly.

    The unitsofelectric fieldarevolts permeter(V/m). Thisisdimensionallyequivalentto N/C, which welearnedaboutin Chapter15. (Proveit!)

    Answer: V = J/C = J = Nm = N

    m m Cm Cm C

  • 8/6/2019 AP Ch 16-Teacher

    37/63

    Example 16.4: Two parallel plates,separated by 0.10 m,are connectedtoa 6.0 V

    battery. Anelectronisreleased from restatthenegative plate.

  • 8/6/2019 AP Ch 16-Teacher

    38/63

    The Electron Volt

    electronvolt (eV) - thekinetic energyacquired byanelectron

    acceleratedthrough a potentialdifferenceofexactly 1 V.

    1 eV = 1.60 x 10-19 J

    Theelectronvoltisa convenient waytoexpresstypicalenergiesontheatomic

    scale.

    Theelectronvoltisa unitofenergy,notvoltage: e V = q V = Ue

    You mayalsoencounter keV: kiloelectron volts, meaning1000 eV

    MeV: megaelectron volts, meaning106 eV

    GeV: gigaelectron volts, meaning109

    eV

    ** Warning electronvoltisnotan SI unit. You must convert backto joules before

    you can usethenumberina formula**

  • 8/6/2019 AP Ch 16-Teacher

    39/63

    Summary

    Equipotential surfaces (equipotentials)aresurfaceson which a charge hasa

    constantelectric potential (V),and constantelectric potentialenergy (Ue).

    Equipotentials are perpendiculartotheelectric fieldatall points.

    Ittakesno workto movea chargealonganequipotential.

    E isinthedirectionoppositethatin which V increases mostrapidly,orinthe

    directionin which V decreases mostrapidly.

    Anelectronvolt (eV)isthekinetic energygained byanelectronaccelerated

    from restthrough a potentialdifferenceof 1 V.

    1 eV = 1.60 x 10-19 J

    E = - V relationship between potentialandelectric field

    x max

  • 8/6/2019 AP Ch 16-Teacher

    40/63

    Check forUnderstanding

    1) Equipotential surfacesarethosesurfaceson which

    a) the potentialis constant

    b) theelectric fieldis zero

    c) the potentialis zero

    Answer:a

    2) Equipotential Surfacesare

    a) paralleltotheelectric field

    b) perpendiculartotheelectric field

    c)atanyangle with respecttotheelectric field

    Answer: b

  • 8/6/2019 AP Ch 16-Teacher

    41/63

    Check forUnderstanding

    3) Between charged parallel plates, which equipotentials havea higherpotential:

    a)theonesnearthe positive plate

    b)theonesnearthenegative plate

    c)theonesnearthe middle?

    Answer:a

    4) Atagiven pointonanequipotentialsurface,theelectric field pointsdirectly

    tothe

    a)next highestequipotential

    b)thenextlowestequipotential

    c) paralleltotheequipotentialsurface

    Answer: b

    HW 16.A: p.537-539:4,8-13, 16,17, 20-23,47,48, 51-53, 55-57.

  • 8/6/2019 AP Ch 16-Teacher

    42/63

    I heard that in relativity theory space and time

    are the same thing.

    Einstein discovered this when he kept showing

    up three miles late for his meetings.

    -StevenWright

  • 8/6/2019 AP Ch 16-Teacher

    43/63

    16.3: Capacitance

  • 8/6/2019 AP Ch 16-Teacher

    44/63

    Capacitance

    A capacitorconsistsoftwo conductors.

    Capacitorsstore charge,andthereforeelectric energy,inthe form ofanelectric field.

    capacitance (C) - a quantitative measureof how effectivea capacitor

    isinstoring charge.

    C = Q definitionof capacitance

    V

    where Q isthe magnitudeofthe chargeoneitherplate (the plates haveequal butopposite charge),and V isthe potentialdifferenceacrossthe plates

    Note, from this pointon we will use V forV; it means potentialdifference.

    assorted capacitors

  • 8/6/2019 AP Ch 16-Teacher

    45/63

    Metal plates

    +Q

    Capacitor and Circuit Diagram

    Two metal platesare charged bya batterytoa charge Q = CV, where C isthe

    capacitance.

    Workisdonein chargingthe capacitor,andenergyisstoredintheelectric field.

    Noticethesymbols used fora battery (V)anda capacitor(C).

    parallel linesare equal inlength

    the longer line of the batterysymbol is the positive terminal

  • 8/6/2019 AP Ch 16-Teacher

    46/63

    Capacitance

    The battery worksasa pump toremoveelectrons from the positive plateand

    transferthem through the wiretothenegative plate.

    The battery chargesthe capacitoruntilthe potentialdifference betweenthe

    platesisequaltothevoltageofthe battery.

    Whenthe batteryisdisconnected from the capacitor,theelectric potential

    energyisstoredintheelectric field. Thisstoredenergy canthen be usedtodo

    work.

    The SI unitof capacitanceis coulomb pervolt (C/V),or farad (F).

    Itis more commontoseethe microfarad ( 1 QF = 10-6 F)

    orthe picofarad (1 pF = 10-12 F)

    The farad wasnamed forthe English scientistMichael Faraday (1791-1867),anearlyinvestigatorofelectrical phenomena who firstintroducedthe conceptofthe

    electric field.

  • 8/6/2019 AP Ch 16-Teacher

    47/63

    Capacitance

    Capacitancedependsonlyonthesize,shapeandspacingofthe plate

    arrangement,as wellatthe material betweenthe plates (dielectric).

    A common capacitoristhe parallel plate capacitor. It consistsoftwo metal plates

    ofarea A andseparated byadistanced. The formulais:

    C =IoA capacitanceofa parallel-plate

    d capacitor(inair) Ioisthepermittivityof freespace.Itisa fundamental constant which describes

    theelectrical propertiesofavacuum. Itsvalueinairisessentiallythesame.

    Io =8.85 x 10-12 C2/(Nm2)

    IoisrelatedtoCoulombs constantby:

    k= 1 = 9.00 x 109 Nm2/C2

    4TIo

    On Blue Sheet

    On Blue Sheet

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    48/63

    Capacitance

    A plotof chargevs.voltage fora charging capacitorisastraightline with slope C.

    Q = CV( y= mx + b)

    The workdone bythe batteryisstoredinthe capacitoras potentialenergy, Uc.

    This workisthearea underthe curve. Therefore, Uc = Q V.

    Theequivalent formsofthisequationare:

    Uc = QV = Q2 = CV2 energystorage2C ina capacitor

    The form CV2 is usuallythe most practical,sincethe capacitanceandthe

    appliedvoltageareoftenknownorcan be measured mosteasily.

    Voltage

    Q

    (charge)

    slope=

    CapacitanceOn Gold Sheet

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    49/63

    Example 16.5:A parallel-plate capacitorconsistsof platesofarea 1.5 x 10-4 m2

    andseparated by 2.0 mm. The capacitoris connectedtoa 12 volt battery.

    a) Whatisthe capacitance?b) Whatisthe chargeonthe plates?

    c) How much energyisstoredinthe capacitor?

    d) Whatistheelectric field betweenthe plates?

  • 8/6/2019 AP Ch 16-Teacher

    50/63

    If youre not part of the solution, youre part

    of the precipitate.

    -StevenWright

  • 8/6/2019 AP Ch 16-Teacher

    51/63

    16.5: Capacitors in Series and inParallel

    Capacitors can be connectedintwo basic ways:inseriesorin parallel.

    Inseries capacitorsare connected headtotail.

    In parallel capacitors havealltheirheads hookedtogether,andall

    theirtails hookedtogether.

  • 8/6/2019 AP Ch 16-Teacher

    52/63

    Capacitors in Series

    All capacitorsinseries havethesame charge.

    Thesum ofthevoltagedropsisequaltothevoltageofthe battery.

    Thetotal capacitanceisequivalentto Cs,ortheequivalentseries capacitance.

    Cs isalwayslessthanthatofthesmallest capacitorinthe combination.

  • 8/6/2019 AP Ch 16-Teacher

    53/63

    Capacitors in Series

    When capacitorsare wiredinseriesthe chargeisthesameonallthe plates.

    Q = Q1 = Q2 = Q3 =

    Thevoltagedrop acrossallthe capacitors must beequaltothevoltageacrossthebattery.

    Therefore,thesum oftheindividualvoltagedropsacrossthe capacitorsisequalto

    thevoltageofthe battery. V =V1 + V2 + V3 +

    Theindividualvoltagesarerelatedtotheindividual charges byV1 =Q, V2 =Q, V3 =Q, andV =Q

    C1 C2 C3 Cs

    Substituting Q/C forV: Q = Q + Q + Q +

    Cs C1 C2 C3

    Dividing both sidesoftheequation by Q: 1 = 1 + 1 + 1 +...

    equivalent series capacitance Cs C1 C2 C3

  • 8/6/2019 AP Ch 16-Teacher

    54/63

    Capacitors in Parallel

    Whenthe capacitorsarein parallel,thevoltagesacrossthe capacitorsare

    thesame.

    Thetotal chargeisequaltothesum ofthe chargesontheindividual

    capacitors.

    Thetotal capacitanceisequivalentto Cp.

    Cp isalwayslargerthanthatofthelargest capacitorinthe combination.

  • 8/6/2019 AP Ch 16-Teacher

    55/63

    Capacitors in Parallel

    When capacitorsare wiredin parallelthevoltagesacrossthe capacitorsarethe

    same,each equaltothevoltageofthe battery

    V = V1 = V2 = V3 =

    Thetotalstored chargeisequaltothesum ofthe chargesoftheindividual

    capacitors.

    Qtotal = Q1 + Q2 + Q3 +

    Theindividual chargesaregiven by Q1 = C1V, Q2 = C2V, and Qtotal = CpV

    Substituting CV forQ: CpV = C1V + C2V + C3V +

    Divide both sidesoftheequation by V:

    equivalent parallel capacitance Cp = C1 + C2 + C3 +

  • 8/6/2019 AP Ch 16-Teacher

    56/63

    On Gold Sheet

  • 8/6/2019 AP Ch 16-Teacher

    57/63

    Example 16.7: Capacitors C1 and C2 arein parallel. This combinationisinseries

    with C3. The positiveterminalofa 12.0 V batteryis connectedto C3.

    C1 = 6.00 QF, C2 =8.00 QF, C3 = 14.0 QF

    a) Whatistheequivalent capacitance?b) Whatisthe chargeofeach capacitor?

    c) Whatisthevoltageacrosseach capacitor?

  • 8/6/2019 AP Ch 16-Teacher

    58/63

  • 8/6/2019 AP Ch 16-Teacher

    59/63

    Summary

    A capacitorstores charge,andthereforeelectric energy,inthe form ofanelectric

    field.

    Capacitanceisa quantitative measureof how effectivea capacitorisinstoring

    charge.

    Theequivalentseries capacitanceisalwayslessthanthatofthesmallest

    capacitoroftheseries combination.

    Theequivalent parallel capacitanceisalwayslargerthanthatofthelargest

    capacitorinthe parallel combination.

  • 8/6/2019 AP Ch 16-Teacher

    60/63

    Summaryof Equations

    C = Q definitionof capacitance

    V

    C =IoA capacitanceofa parallel-plate

    d capacitor(inair)

    Uc = QV = Q2 = CV2 energyina2C charged capacitor

    1 = 1 + 1 + 1 +... equivalent series capacitance

    Cs C1 C2 C3

    Cp = C1 + C2 + C3 + equivalent parallel capacitance

  • 8/6/2019 AP Ch 16-Teacher

    61/63

    Check forUnderstanding

    1. Capacitance has unitsof

    a. farads

    b. joules

    c. coulombs pervolt

    d. both a.and c.

    Answer:d.

    2. Toincreasethe capacitanceandtheenergy-storage capabilityofa parallel-plate

    capacitor, we can

    a.increasethe plateseparationdistance

    b.increasethe platearea

    c.evacuatethespace betweenthe plates

    d.noneoftheabove

    Answer: b,asthe capacitanceisdirectly proportionaltothe platearea,

    C =IoA

    d

  • 8/6/2019 AP Ch 16-Teacher

    62/63

    Check forUnderstanding

    3. Capacitorsinseries havethesame

    a. voltage

    b. charge

    c. energystorage

    Answer: b

    4. Capacitorsin parallel havethesamea.voltage

    b. charge

    c.energystorage

    Answer:a

  • 8/6/2019 AP Ch 16-Teacher

    63/63

    Check forUnderstanding

    5. Underwhat conditions wouldtwo capacitorsinseries havethesamevoltage?

    Answer: Whentheyareequalin capacitance.

    HW 16.B: p.540-541: 64-70,84-87,89,90.