anumsld01 - chapter 1

12
Pemodelan Matematik dan Pemecahan Masalah Enjiniring

Upload: x-sins-hsand-iceberg-wolf

Post on 15-Jan-2016

227 views

Category:

Documents


0 download

DESCRIPTION

analisis numerik

TRANSCRIPT

Page 1: AnumSld01 - Chapter 1

Pemodelan Matematik dan Pemecahan Masalah Enjiniring

Page 2: AnumSld01 - Chapter 1

Pengantar• Pengetahuan dan pemahaman merupakan syarat

mutlak agar dapat menggunakan peralatan dengan efektif

• Terutama bagi pengguna komputer untuk memecahkan masalah enjiniring. Walaupun memiliki potensi yang bagus sebaga alat bantu, komputer menjadi tak berguna tanpa pemahaman dasar mengenai bagaimana sistem enjiniring bekerja

• Pemecahan masalah enjiniring umumnya menggunakan dua pendekatan: analisis empiris dan analisis teoretis

• Sasaran bab ini: pengenalan pemodelan matematik serta perannya dalam pemecahan masalah enjiniring

Page 3: AnumSld01 - Chapter 1

Model Matematik

Model matematik secara umum didefinisikan sebagai formulasi atau persamaan yang mengekspresikan ciri-ciri dasar dari suatu sistem fisik atau proses dalam istilah matematik.

Page 4: AnumSld01 - Chapter 1

The mathematical expression, or model, of the second law is the well-known equation:

where a = the dependent variable reflecting the system’s behavior, F = the forcing function,and m = a parameter representing a property of the system.

1. It describes natural process or system in mathematical terms.

2. It represent an idealization and simplification of reality.3. It yields reproducible results thus can be used for predictive

purpose.

Page 5: AnumSld01 - Chapter 1

The net force is composed of twoopposing forces: the downward pull of gravity FD and the upward force of air resistance FU:

where c = a proportionality constant called the drag coefficient (kg/s).

Page 6: AnumSld01 - Chapter 1

where v(t) = the dependent variable, t = the independent variable, c and m = parameters, and g = the forcing function.

For example, if the parachutist is initially at rest (v = 0 at t = 0), calculus can be used to solve the equation for:

Example 1.1: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient is equal to 12.5 kg/s.

Analytical or Exact solution

Page 7: AnumSld01 - Chapter 1
Page 8: AnumSld01 - Chapter 1

• Unfortunately, there are many mathematical models that cannot be solved exactly.

• In many of these cases, the only alternative is to develop a numerical solution that approximates the exact solution.

• Numerical methods are those in which the mathematical problem is reformulated so it can be solved by arithmetic operations.

Page 9: AnumSld01 - Chapter 1

Example 1.2: Perform the same computation as in Example 1.1 but use Eq. (1.12) to compute the velocity. Employ a step size of 2 s for the calculation.

Metode Euler

Watch the difference

Exact solution

Page 10: AnumSld01 - Chapter 1
Page 11: AnumSld01 - Chapter 1

Remark on Numerical Methods

• The difference is affected by step size.• A computational price must be paid for a more

accurate numerical result.• Each halving of the step size to attain more

accuracy leads to a doubling of the number of computations.

• Thus, we see that there is a trade-off between accuracy and computational effort.

Page 12: AnumSld01 - Chapter 1

0 2 4 6 8 10 12 14 160.00

10.00

20.00

30.00

40.00

50.00

60.00

exact solutiondt = 2dt = 0.2

Step Size Effect