analysis of free amino acids in microbially colonized sandstone by precolumn pitc

3
Vol. 57, No . 3 PPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1991, p . 879-881 0099-2240 /91/030879-03 02.00/0 Copyright © 1991, American Society f o r Microbiology Analysis o f Free Amino Acids i n Microbially Colonized Sandstone by Precolumn Phenyl Isothiocyanate Derivatization and High-Performance Liquid Chromatography JORG SIEBERT,* ROBERT J . PALMER, JR., A ND PETER HIRSCH Institut f ur Allgemeine Mikrobiologie, Christian-Albrechts-Universitat, D-2300 Kiel, Federal Republic o f Germany Received 2 7 August 1990/Accepted 1 3 December 1990 A fast, sensitive method for extraction a n d analysis o f soluble free amino acids from microbially colonized sandstone is described. After precolumn phenyl isothiocyanate (PITC) derivatization, the PITC-amino acids were identified and quantified by reversed-phase high-performance liquid chromatography. This kind o f analysis could beused t o elucidate the role a n d function o f amino acids i n t h e nutrition o f epi- a n d endolithic microorganisms active i n biological weathering processes. Amino acids play a n important role i n t h e nutrition o f microorganisms i n ecosystems ( 6, 7). I t i s well documented that algae a n d other microorganisms c a n excrete consider- able amounts of these compounds into t h e environment during growth i n culture a n d i n situ ( 1, 10). Other sources of these low-molecular-weight compounds a re autolysis o f cells a n d exoenzymatic degradation of complex substrates (12). T h e low-molecular-weight fraction o f dissolvedorganic mat- t e r i s easily used b y bacteria a n d algae because these substrates a r e recognized b y several uptakesystems a n d a n b e assimilated readily (11). Bacteriaincorporate about 80 t o 9 0 o f assimilated amino acid carbon predominantly into proteins; 1 0 to 2 0 i s respired (16, 26). I n t h e absence o f free amino acids, protein synthesis accounts f o r 6 0 o f the energy budget (18). Therefore, th e incorporation o f amino acids directly intoprotein should resultin substantial savings i n th e energy cost o f growth. This energy conservation m a b e important f o r microorganisms i n oligotrophic habitats. Data o n t h e role and dynamics o f amino acids i n nature have been collected primarily from marine a n d freshwater environments (e.g., s e e references 3 a n d 17). Dissolved free amino acids play a crucial role i n aqueous environments  6). This is probably true in terrestrial systems a s well, b ut evidence t o support this assumption is lacking. Microbial activity (e.g., excretion o f inorganic a n d organic acids) c a n contribute t o biological weathering processes (16a, 27). Microbial activity i s dependent n nutrition, a n d therefore nutritional conditions (concentrations a n d types o f sub- strates such a s amino acids) i n stone should b e investigated. T h e analytical determination of amino acids i s usually done b y precolumn derivatization with o-phthaldialdehyde (14, 15). h e derivatives ar e separated b y high-performance liquid chromatography (HPLC) a n d detected b y fluores- cence. T h e sensitivity provided b y o-phthaldialdehyde de - rivatization allows detection of dissolved free amino acids i n t h e concentrations present i n the free water column (30 t o 7 2 0 n M (13, 15). Disadvantages o f th e o-phthaldialdehyde method a re that th e derivatives a r e unstable a n d that sec- ondary aminesdo n o t derivatize. Thus, reaction times during derivatization must b e kept constant a n d t h e analysis must * Corresponding author. b e done without delay. Normally this h a s been guaranteed b y full automatization o f t h e analytical system. W e used a phenyl isothiocyanate (PITC) precolumn de rivatization procedure based o n t h e method described b y Heinrickson a n d Meredith (9). Th e derivatized amino acids ar e detected b y UV absorbance a t 2 4 5 n m . As little as 10 pmol o f amino acid c an b e detected; this sensitivity i s sufficient f or investigations i n oligotrophic media or colo- nized rock. T h e PITC derivatization procedure h a s t w o advantages over o-phthaldialdehyde: secondary amines such a s proline c a n b e detected a n d the derivatized amino acids ar e stable for weeks when stored frozen a t p H 6 . 8 (9). W e used the PITC method o n two types o f microbially colonized sandstone. T h e first wa s a weathered  crust from t h e Schleswig courthouse (Federal Republic o f Germany) (sample L i [16a]), an d t h e second wa s Antarctic Beacon sandstone containing a cryptoendolithic microbial commu- nity ( 4 ) (sample 845/239 from t h e McMurdo Dry Valleys o f South Victoria Land). T h e courthouse sample wa s proc- essed within 2 h o f sample collection; t h e Antarctic sample been stored a t -27°C since i t s sampling (1985). O e to 2 g of colonized stone wa s crushed i n a mortar. T h e soluble free amino acids (SFAA) were extracted with 0.15 M NaCl from 1 0 0 t o 20 0 m g o f crushed stone (1:1 [wt/vol]) a t 4 ° C f o r 3 0 m i n o n a rotary shaker. No significant increase i n the amino acid concentration wa s seen with a longer extrac- tion time ( 6 0 min). T h e samples were centrifuged, a n d 1 00 , u l of supernatant w a s dried and used for derivatization. A ll drying steps were done i n a Speed Vac concentrator (Sa- vant). Hydroxyproline (HPr) w a s used a s t h e internal stan- dard (2.5 , u l o f a1 0 mM solution). Prior to PITC derivatiza- tion, t h e dried samples were resuspended i n 10 , u l o f redrying solution (ethanol-water-triethylamine, 2:2:1 [vol/vol/vol]) a n d redried. PITC derivatization w a s accomplished b y t h e addition of 20 , u l o f coupling solution (ethanol-water-trieth- ylamine-PITC, 7:1:1:1 [vol/vol/vol/vol]), followed b y incuba- tio n f or 2 0 mi n a t room temperature. After a final drying step i n which a l l PITC w a s removed, t h e samples were resus- pended i n 2 0 0 , u l o f 12.5 mM phosphate buffer ( p H 6.4), vortexed, a n d centrifuged f o r 2 m i n a t high speed. A 5-pJl aliquot o f th e supernatant wa s used f o r HPLC analysis. Analyses were performed with a Pharmacia-LKB HPLC system o f a model 2156 solvent conditioner, a model 2248 HPLC pump, a model 2157 autosampler, a n d a 8 7 9

Upload: liska-ramdanawati

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

7/27/2019 Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

http://slidepdf.com/reader/full/analysis-of-free-amino-acids-in-microbially-colonized-sandstone-by-precolumn 1/3

V o l . 5 7 , N o . 3P P L I E D AND ENVIRONMENTAL M I C R O B I O L O G Y , M a r . 1 9 9 1 , p . 8 7 9 - 8 8 1

0 0 9 9 - 2 2 4 0 / 9 1 / 0 3 0 8 7 9 - 0 3 $ 0 2 . 0 0 / 0C o p y r i g h t © 1 9 9 1 , A m e r i c a n S o c i e t y f o r M i c r o b i o l o g y

A n a l y s i s o f F r e e Amino A c i d s i n M i c r o b i a l l y C o l o n i z e d S a n d s t o n e

b y P r e c o l u m n P h e n y l I s o t h i o c y a n a t e D e r i v a t i z a t i o n a n dH i g h - P e r f o r m a n c e L i q u i d C h r o m a t o g r a p h y

JORG S I E B E R T , * R O B E R T J . PAL M E R, J R . , A N D P E T E R HIRSCH

I n s t i t u t f u r A l l g e m e i n e M i k r o b i o l o g i e , C h r i s t i a n - A l b r e c h t s - U n i v e r s i t a t ,D - 2 3 0 0 K i e l , F e d e r a l R e p u b l i c o f G e r m a n y

R e c e i v e d 2 7 A u g u s t 1 9 9 0 / A c c e p t e d 1 3 D e c e m b e r 1 9 9 0

A f a s t , s e n s i t i v e m e t h o d f o r e x t r a c t i o n a n d a n a l y s i s o f s o l u b l e f r e e a m i n o a c i d s f r o m m i c ro b i al l y c o l on i z ed

s a n d s t o n e i s d e s c r i b e d . A f t e r p r e c o l u m n p h e n y l i s o t h i o c y a n a t e ( P I T C ) d e r i v a t i z a t i o n , t h e ' P I T C - a m i n o a c i d s

w e r e i d e n t i f i e d a n d ' q u a n t i f i e d b y r e v e r s e d - p h a s e h i g h - p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y . T h i s k i n d o f

a n a l y s i s c o u l d b e u s e d t o e l u c i d a t e t h e r o l e a n d f u n c t i o n o f a m i n o a c i d s i n t h e n u t r i t i o n o f e p i - a n d e n d o l i t h i cm i c r o o r g a n i s m s a c t i v e i n b i o l o g i c a l w e a t h e r i n g p r o c e s s e s .

Amino a c i d s p l a y a n i m p o r t a n t r o l e i n t h e n u t r i t i o n o f

m i c r o o r g a n i s m s i n e c o s y s t e m s ( 6 , 7 ) . I t i s w e l l d o c u m e n t e dt h a t a l g a e a n d o t h e r m i c r o o r g a n i s m s c a n e x c r e t e c o n s i d e r -a b l e a m o u n t s o f t h e s e c o m p o u n d s i n t o t h e e n v i r o n m e n td u r i n g g r o w t h i n c u l t u r e a n d i n s i t u ( 1 , 1 0 ) . O t h e r s o ur ce s o ft h e s e l o w - m o l e c u l a r - w e i g h t c o m p o u n d s a r e a u t o l y s i s o f c e l l sa n d e x o e n z y m a t i c d e g r a da t i o n o f c o m p l e x s u b s t r a t e s ( 1 2 ) .T h e l o w - m o l e c u l a r - w e i g h t f r a c t i o n o f d i s s ol v e d o r g an i c m a t -

t e r i s e a s i l y u s e d b y b a c t e r i a a n d a l g a e b e c a u s e t h e s es u b s t r a t e s a r e r e c o g n i z e d b y s e v e r a l u p t a k e s y s t em s a n d c a nb e a s s i m i l a t e d r e a d i l y ( 1 1 ) . B ac t e r i a i n c o rp o r at e a b o u t 8 0 t o90% o f a s s i m i l a t e d a m i n o a c i d c a r b o n p r e d o m i n a n t l y i n t op r o t e i n s ; 1 0 t o 20% i s r e s p i r e d ( 1 6 , 2 6 ) . I n t h e a b s e n c e o f f r e ea m i n o a c i d s , p r o t e i n s y n t h e s i s a c c o u n t s f o r 60% o f t h e

e n e r g y b u d g e t ( 1 8 ) . T h e r e f o r e , t h e i n c o r p o r a t i o n o f a m i n oa c i d s d i r e c t l y i n t o p r o t e i n s h o u l d r e s u l t i n s u b s t a n t i a l s a v i n g si n t h e e n e r g y c o s t o f g r o w t h . T h i s e ne rg y c o n s e r v a t i o n may

b e i m p o r t a n t f o r m i c r o o r g a n i s m s i n o l i g o t r o p h i c h a b i t a t s .D a t a o n t h e r o l e a n d d y n a m i c s o f a m i n o a c i d s i n n a t u r e

h a v e b e e n c o l l e c t e d p r i m a r i l y f r o m m a r i n e a n d f r e s h w a t e r

e n v i r o n m e n t s ( e . g . , s e e r e f e r e n c e s 3 a n d 1 7 ) . D i s s o l v e d f r e ea m i n o a c i d s p l a y a c r u c i a l r o l e i n a q u e o u s e n v i r o n m e n t s ( 6 ) .T h i s i s p r o b a b l y t r u e i n t e r r e s t r i a l s y s t e m s a s w e l l , b u te v i d e n c e t o s u p p o r t t h i s a s s u m p t i o n i s l a c k i n g . M i c r o b i a la c t i v i t y ( e . g . , e x c r e t i o n o f i n o r g a n i c a n d o r g a n i c a c i d s ) c a nc o n t r i b u t e t o b i o l o g i c a l w e a t h e r i n g p r o c e s s e s ( 1 6 a , 2 7 ) .M i c r o b i a l a c t i v i t y i s d e p e n d e n t o n n u t r i t i o n , a n d t h e r e f o r en u t r i t i o n a l c o n d i t i o n s ( c o n c e n t r a t i o n s a n d t y p e s o f s u b -s t r a t e s s u c h a s a m i n o a c i d s ) i n s t o n e s h o u l d b e i n v e s t i g a t e d .

T h e a n a l y t i c a l d e t e rm i na t i on o f a m i n o a c i d s i s u s u a l l yd o n e b y p r e c o l u m n d e r i v a t i z a t i o n w i t h o - p h t h a l d i a l d e h y d e( 1 4 , 1 5 ) . T h e d e r i v a t i v e s a r e s e p a r a t e d b y h i g h - p e r f o r m a n c e

l i q u i d c h r o m a t o g r a p h y ( H P L C ) a n d d e t e c t e d b y f l u o r e s -c e n c e . T h e s e n s i t i v i t y p r o v i d e d b y o - p h t h a l d i a l d e h y d e d e -r i v a t i z a t i o n a l l o w s d e t e c t i o n o f d i s s o l v e d f r e e a m i n o a c i d s i nt h e c o n c e n t r a t i o n s p r e s e n t i n t h e f r e e w a t e r c o l u m n ( 3 0 t o

7 2 0 nM) ( 1 3 , 1 5 ) . D i s a d v a n t a g e s o f t h e o - p h t h a l d i a l d e h y d em e t h o d a r e t h a t t h e d e r i v a t i v e s a r e u n s t a b l e a n d t h a t s e c -

o n d a r y a mi n es d o n o t d e r i v a t i z e . T h u s , r e a c t i o n t i m e s d u r i n gd e r i v a t i z a t i o n m u s t b e k e p t c o n s t a n t a n d t h e a n a l y s i s must

* C o r r e s p o n d i n g a u t h o r .

b e d o n e w i t h o u t d e l a y . N o r m a l l y t h i s h a s b e e n g u a r a n t e e d

b y f u l l a u t o m a t i z a t i o n o f t h e a n a l y t i c a l s y s t e m .We u s e d a p h e n y l i s o t h i o c y a n a t e ( P I T C ) p r e c o l u m n d e -

r i v a t i z a t i o n p r oc e d u re b a s e d o n t h e m e t h o d d e s c r i b e d b yH e i n r i c k s o n a n d M e r e d i t h ( 9 ) . T h e d e r i v a t i z e d a m i n o a c i d sa r e d e t e c t e d b y UV a b s o r b a n c e a t 2 4 5 n m . As l i t t l e a s ' 1 0

p m o l o f a m i n o a c i d c a n b e d e t e c t e d ; t h i s s e n s i t i v i t y i s

s u f f i c i e n t f o r i n v e s t i g a t i o n s i n o l i g o t r o p h i c m e d i a o r c o l o -n i z e d r o c k . T h e P I T C d e r i v a t i z a t i o n p r o c e d u r e h a s t w o

a d v a n t a g e s o v e r o - p h t h a l d i a l d e h y d e : s e c o n d a r y a m i n e s s u c h

a s p r o l i n e c a n b e d e t e c t e d a n d t h e d er i v at i z ed a m i n o a c i d sa r e s t a b l e f o r w e e k s when s t o r e d f r o z e n a t pH 6 . 8 ( 9 ) .We u s e d t h e P I T C m e t h o d o n t w o t y p e s o f m i c r o b i a l l y

c o l o n i z e d s a n d s t o n e . T h e f i r s t w a s a w e a t h e r e d ' c r u s t f r o mt h e S c h l e s w i g c o u r t h o u s e ( F e d e r a l R e p u b l i c o f G e r m a n y )( s a m p l e L i [ 1 6 a ] ) , a n d t h e s e c o n d w a s A n t a r c t i c B e a c o n

s a n d s t o n ec o n t a i n i n g

a

c r y p t o e n d o l i t h i cm i c r o b i a l commu-

n i t y ( 4 ) ( s a m p l e 8 4 5 / 2 3 9 f r o m t h e McMurdo D r y V a l l e y s o f

S o ut h ' V i c t o ri a L a n d ) . T h e c o u r t h o u s e s a m p l e was p r o c -e s s e d w i t h i n 2 h o f s a m p l e c o l l e c t i o n ; t h e A n t a r c t i c s a m p l eh a d b e e n s t o r e d a t - 2 7 ° C s i n c e i t s s a m p l i n g d a t e ( 1 9 8 5 ) .

One t o 2 g o f c o l o n i z e d s t o n e was c r u s h e d i n a m o r t a r . T h es o l u b l e f r e e a m i n o a c i d s ( S F A A ) w e r e e x t r a c t e d w i t h 0 . 1 5 MN a C l f r o m 1 0 0 t o 2 0 0 mg o f c r u s h e d s t o n e ( 1 : 1 [ w t / v o l ] ) a t4 ° C f o r 3 0 m i n o n a r o t a r y s h a k e r . N o s i g n i f i c a n t i n c r e a s e i nt h e a m i n o a c i d c o n c e n t r a t i o n was s e e n w i t h a l o n g e r e x t r a c -

t i o n t i m e ( 6 0 m i n ) . T h e s a m p l e s w e r e c e n t r i f u g e d , a n d 1 0 0 , u lo f s u p e r n a t a n t was d r i e d a n d u s ed f o r d e r i v a t i z a t i o n . A l ld r y i n g s t e p s w e r e d o n e i n a S p e e d Vac c o n c e n t r a t o r ( S a -v a n t ) . H y d r o x y p r o l i n e ( H P r ) was u s e d a s t h e i n t e r n a l s t a n -

d a r d ( 2 . 5 , u l o f a 1 0 mM s o l u t i o n ) . P r i o r t o P I T C d e r i v a t i z a -t i o n , t h e d r i e d s a m p l e s w e r e r e s u s p e n d e d i n 1 0 , u l o f r e d r y i n gs o l u t i o n ( e t h a n o l - w a t e r - t r i e t h y l a m i n e , 2 : 2 : 1 [ v o l / v o l / v o l ] )a n d r e d r i e d . P I T C d e r i v a t i z a t i o n was a c c o m p l i s h e d b y t h e

a d d i t i o n o f 2 0 , u l o f c o u p l i n g s o l u t i o n ( e t h a n o l - w a t e r - t r i e t h -y l a m i n e - P I T C , 7 : 1 : 1 : 1 [ v o l / v o l / v o l / v o l ] ) , f o l l o w e d b y i n c u b a -t i o ' n f o r 2 0 m i n a t room t e m p e r a t u r e . A f t e r a f i n a l d r y i n g s t e pi n w h i c h a l l PITC was r e m o v e d , t h e s a m p l e s were r e s u s -

p e n d e d i n 2 0 0 , u l o f 1 2 . 5 mM p h o s p h a t e b u f f e r ( p H 6 . 4 ) ,v o r t e x e d , a n d c e n t r i f u g e d f o r 2 m i n a t h i g h s p e e d . A 5 - p J la l i q u o t o f t h e s u p e r n a t a n t wa s u s e d f o r HPLC a n a l y s i s .

A n a l y s e s w e r e p e r f o r m e d w i t h a P h a r m a c i a - L K B HPLCs y s t e m c o n s i s t i n g o f a m o d e l 2 1 5 6 s o l v e n t c o n d i t i o n e r , ' a

m o d e l 2 2 4 8 HPLC p u m p , a m o d e l 2 1 5 7 a u t o s a m p l e r , a n d a

8 7 9

Page 2: Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

7/27/2019 Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

http://slidepdf.com/reader/full/analysis-of-free-amino-acids-in-microbially-colonized-sandstone-by-precolumn 2/3

A P P L . E N V I R O N . M I C R O B I O L .

,'~~~,

0.0 5.0 1 0 , 0 15.0 20.0 25,0 30.0 35.0 40.0

4

1~~~~~~~~110~~~~~~~2

0 .0 5 .0 1 0 , 0 1 5 , 0 2 0 . 0 2 5 . 0 3 0 . 0 3 5 . 0 4 0 . 0

Retention Time ( m i n )

FIG. 1. Comparison of the dissolved free amino acid content of

two colonized sandstones. PITC-amino acids were separated on a

SpherisorbODS I 5 - , u m column by HPLC. (A) Amino acid calibra-

tion standard AA-S-18 (Sigma), 250 pmol of each amino acid. (B)

Samples. 1, Asp; 2 , Glu; 3, Hpr (IS); 4, Ser; 5, Gly; 6, unknown; 7,

unknown; 8, Thr; 9 , Ala; 10, Pro; 11, His; 12, reagent peak; 13, Arg;

14, Tyr; 15, Val; 16, Met; 17, Cys; 18, Ile; 19 , Leu; 20, Phe; 21,

NH3/Try; 22, Lys.

model 2141 variable wavelength monitor. The column was a

Spherisorb octyldecylsilane I I C18 (5 , u m , 4.6 by 250 mm)

(Bischoff, Leonberg, Federal Republic of Germany) pre-

cededby a guardcolumn (5 p u . m , 4.6 by 20 mm). Thecolumns

were held at 3 6 ° C . The binary gradient was composed of

solvents A(12.5 mMphosphate buffer, pH 6.4) and B

(acetonitrile in phosphate buffer, 50:50). The gradient con-

ditions were 0 to 15%Bfor 15 m mn 15 to45%B for 20 m i n ,

45 to 8 0 % G B for 1 min, and80%Bfor 2 min. Washing was

done with 100%Bfor 9 m i n . Equilibration was accomplished

with 100%Afor 8 m i n . The flow rate was 1.0 m I / m m n .Detection was at 245nmand 0.02 absorption units full scale

(AUFS). Peaks were integrated with model 2600 chromatog-

r a p h y s o f t w a r e ( P e r k i n - E l m e r N e l s o n S y s t e m s ) . S a m p l e s

were n o r m a l i z e d t o HPr ( i n t e r n a l s t a n d a r d ) a n d q u a n t i f i e d o n

t h e b a s i s o f p e a k area a n d r e t e n t i o n t i m e o f e x t e r n a l amino

a c i d s t a n d a r d s . I n s i t u b i o m a s s o f t h e s a m p l e s w a s e s t i m a t e d

o n t h e b a s i s o f l i p i d - p h o s p h a t e c o n t e n t . L i p i d s were e x -

t r a c t e d b y t h e method o f W h i t e e t a l . ( 2 4 ) , and p h o s p h o l i p i d -

p h o s p h a t e ( P L P ) was a n a l y z e d b y t h e method o f va n V e l d -

h o v e n a n d M a n n a e r t s ( 1 9 ) . Biomass i n b o t h s a n d s t o n e s w a si n t h e same o r d e r o f m a g n i t u d e : t h e c o u r t h o u s e s a m p l e

c o n t a i n e d 4 9 nmol o f PL P g - 1 ( 1 6 a ) ; t h e A n t a r c t i c s a m p l e

c o n t a i n e d 2 9 nmol o f PL P g - ' . T he A n t a r c t i c b i o m a s s v a l u e

was i n t h e range r e p o r t e d f o r s i m i l a r s a n d s t o n e s a m p l e s ( 2 0 ) .T h e r e i s no s i m p l e c o r r e l a t i o n between b i o m a s s b a s e d on

PL P a n d t h a t b a s e d o n c e l l n u m b e r s . White ( 2 3 ) h a s c a l c u -

l a t e d t h a t a p p r o x i m a t e l y 1 nmol o f p h o s p h a t e r e p r e s e n t s

a b o u t 1 0 8 b a c t e r i a t h e s i z e o f E s c h e r i c h i a c o l i . The c r y p t o e n -

d o l i t h i c c o m m u n i t y a n a l y z e d i n t h e p r e s e n t s t u d y c o n s i s t s o f

l i c h e n s , a l g a e , a n d b a c t e r i a . T h u s , o u r PL P r e s u l t s c a n n o t b e

e x t r a p o l a t e d t o c e l l n u m b e r s .

A n a l y s i s o f t h e tw o s a n d s t o n e s a m p l e s showed c o n s i d e r -

a b l e d i f f e r e n c e s i n t h e t y p e s a n d q u a n t i t i e s o f SFAA ( F i g . 1 ) .T a b l e 1 s h o w s t h e c o n c e n t r a t i o n s o f i d e n t i f i e d a m i n o a c i d s

n o r m a l i z e d t o i n s i t u b i o m a s s ( n a n o m o l e s o f P L P ) . Thec o n c e n t r a t i o n s o f SFAA were 2 t o 4 6 t i m e s h i g h e r i n t h e

c o u r t h o u s e s a m p l e t h a n i n t h e A n t a r c t i c s a m p l e . A r g i n i n e ,

a l a n i n e , a n d g l y c i n e were t h e most a b u n d a n t amino a c i d s ( 4 8m o l % ) i n t h e c o ur t h o u s e s a mp l e , a n d a n u n i d e n t i f i e d amino

compound ( p e a k 7 ) was p r e s e n t i n l a r g e a m o u n t s . A s p a r t i c

a c i d , t h r e o n i n e , h i s t i d i n e , t y r o s i n e , v a l i n e , i s o l e u c i n e , l e u -

c i n e , a n d p h e n y l a l a n i n e were a b s e n t i n t h e A n t a r c t i c s a m p l e .

D i f f e r e n c e s b e t w e e n t h e A n t a r c t i c a n d t h e c o u r t h o u s e

s a m p l e s c o u l d b e r e l a t e d t o d i f f e r e n t m i c r o b i a l a c t i v i t i e s i n

t h e tw o e c o s y s t e m s . M i c r o o r g a n i s m s c o u l d u t i l i z e d i f f e r e n ta m i n o a c i d s t o d i f f e r e n t e x t e n t s ( 2 5 ) . F o r e x a m p l e , H a g s t r o me t a l . ( 8 ) h a v e d e mo n s t r at e d t h a t m a r i n e b a ct e r i a p r ef e re n -

t i a l l y u t i l i z e g l u t a m i n e a n d s e r i n e . A l s o , p r i m a r y p r o d u c e r s

c a n d i f f e r i n t h e i r a b i l i t y t o e x c r e t e ( 1 0 ) o r t a k e u p ( 2 2 ) a m i n o

a c i d s ; n o p h o t o t r o p h i c o r g a n i s m s were f o u n d i n t h e c o u r t -h o u s e s t o n e ( 1 6 a ) . F u r t h e r m o r e , a u t o l y s i s or e x o e n z y m a t i c

a c t i v i t i e s i n t h e c o m m u n i t i e s c o u l d d i f f e r ( 1 2 ) . S o r p t i o n

r e a c t i o n s i n t h e s t o n e a l s o p l a y a r o l e i n a m i n o a c i d a v a i l -a b i l i t y ( 2 1 ) , a n d i n m a r i n e s e d i m e n t s , t h e d i s s o l v e d f r e ea m i n o a c i d p o o l i s b a l a n c e d w i t h a n e x c h a n g e a b l e , a b s o r b e d

p o o l o f a m i n o a c i d s ( 2 ) .F r i e d m a n n e t a l . ( 5 ) h a v e c a l c u l a t e d t h a t a m axim um o f 2 9

d a y s o f m e t a b o l i c a c t i v i t y p er y ea r w o u l d b e p o s s i b l e f o r t h e

A nt a r ct i c c ry p t o e n do l i t h i c e c o s y s t e m . T h i s l o w t o t a l a c t i v i t yc o u l d e x p l a i n t h e l o w a m i n o a c i d c o n c e n t r a t i o n i n A n t a r c t i c

s a m p l e s . I n v e s t i g a t i o n s o n o t h e r c o l o n i z e d A n t a r c t i c s a n d -

s t o n e s a m p l e s y i e l d e d s i m i l a r r e s u l t s ( 4 t o 1 1 n m o l o f

SFAA/nmol o f PLP [ d a t a n o t s h o w n ] ) . T h u s , t h e l o w SFAAc o n c e n t r a t i o n was n o t t h e r e s u l t o f a n a t y p i c a l s a m p l e . A l s o ,

i t i s u n l i k e l y t h a t t h e a m i n o a c i d s i n t h e A n t a r c t i c s a m p l ewere d e g r a d e d d u r i n g t h e l o n g s t o r a g e p e r i o d b e c a u s e t h e

PLP ( k n o w n t o d e g r a d e r a p i d l y [ 2 4 ] ) c o n c e n t r a t i o n i n t h e

T A B L E 1 . C o n c e n t r a t i o n s o f f r e e a m i n o a c i d s i n t w o c o l o n i z e d s a n d s t o n e s a m p l e s

n m o l / n m o l o f PL PS a m p l e

A s p G l u S e r G l y T h r A l a P r o H i s A r g T y r V a l Met I l e L e u P h e L y s

C o u r t h o u s e 0 . 2 0 . 8 1 . 4 4 . 6 1 . 4 5 . 7 2 . 8 1 . 8 6 . 5 2 . 0 1 . 3 1 . 8 0 . 6 1 . 7 1 . 0 0 . 9A n t a r c t i c 8 4 5 / 2 3 9 0 . 3 0 . 2 0 . 1 1 . 2 0 . 1 1 . 2 0 . 5 0 . 4

8 8 0 N O T E S

Page 3: Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

7/27/2019 Analysis of Free Amino Acids in Microbially Colonized Sandstone by Precolumn PITC

http://slidepdf.com/reader/full/analysis-of-free-amino-acids-in-microbially-colonized-sandstone-by-precolumn 3/3

N O T E S 8 8 1

s t o r e d s a m p l e was s i m i l a r t o t h a t i n f r e s h l y c o l l e c t e d s a m p l e s

( 2 0 ) .W i t h t h e h e l p o f t h i s f a s t , s e n s i t i v e , a n d i n e x p e n s i v e

p r e c o l u m n PITC d e r i v a t i z a t i o n p r o c e d u r e , i t may b e p o s s i -

b l e t o c l a r i f y t h e r o l e o f a m i n o a c i d s i n t h e n u t r i t i o n o f

m i c r o o r g a n i s m s a c t i v e i n b i o l o g i c a l r o c k - w e a t h e r i n g p r o -

c e s s e s .

We t h a n k E . I . F r i e d m a n n ( F l o r i d a S t a t e U n i v e rs i t y , T al l a h as s e e)

f o r p r o v i d i n g t h e o p p o r t u n i t y t o c o l l e c t t h e A n t a r c t i c r o c k s a m p l e .

E . I . F r i e d m a n n w a s s u p p o r t e d b y N a t i o n a l S c i e n c e F o u n d a t i o n

g r a n t DPP 8 3 - 1 4 1 8 0 . T h i s r es e ar ch w a s s u p p o r t e d b y a g r a n t t o P . H .

f r o m t h e D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t . R . J . P . w a s s u p p o r t e d

b y a H u m b o l d t f e l l o w s h i p a n d a g r a n t f r o m t h e S c h l e s w i g - H o l s t e i n

K u l t u s m i n i s t e r i u m .

REFERENCES

1 . C a r l u c c i , A . F . , D . B . C r a v e n , a n d S . M. H e n r i c h s . 1 9 8 4 . D i e l

p r o d u c t i o n a n d m i c r o h e t e r o t r o p h i c u t i l i z a t i o n o f d i s s o l v e d f r e ea m i n o a c i d s i n w a t e r s o f f s o u t h e r n C a l i f o r n i a . A p p l . E n v i r o n .

M i c r o b i o l . 4 8 : 1 6 5 - 1 7 0 .

2 . C h r i s t e n s e n , D . , a n d T . H . B l a c k b u r n . 1 9 8 0 . T u r n o v e r o f 1 4 C -

a l a n i n e i n a n o x i c m a r i n e s e d i m e n t s . M a r . B i o l . 5 8 : 9 7 - 1 0 3 .3 . C o f f i n , R . B . 1 9 8 9 . B a c t e r i a l u p t a k e o f d i s s o l v e d f r e e a n d

c o m b i n e d a m i n o a c i d s i n e s t u a r i n e w a t e r s . L i m n o l . O c e a n o g r .3 4 : 5 3 1 - 5 4 2 .

4 . F r i e d m a n n , E . I . 1 9 8 2 . E n d o l i t h i c m i c r o o r g a n i s m s i n t h e A n t -

a r c t i c c o l d d e s e r t . S c i e n c e 2 1 5 : 1 0 4 5 - 1 0 5 3 .

5 . F r i e d m a n n , E . I . , C . P . McKay, a n d J . N i e n o w . 1 9 8 7 . T h ec r y p t o e n d o l i t h i c m i c r o b i a l e n v i r o n m e n t i n t h e R o s s D e s e r t o f

A n t a r c t i c a : c o n t i n u o u s n a n o c l i m a t e d a t a , 1 9 8 4 - 1 9 8 6 . P o l a r B i o l .7 : 2 7 3 - 2 8 7 .

6 . F u h r m a n , J . A . 1 9 8 7 . C l o s e c o u p l i n g b e t w e e n r e l e a s e a n d

u p t a k e o f d i s s o l v e d f r e e a m i n o a c i d s i n s e a w a t e r s t u d i e d b y a n

i s o t o p e d i l u t i o n a p p r o a c h . M a r . E c o l . P r o g . S e r . 3 7 : 4 5 - 5 2 .

7 . F u h r m a n , J . A . , a n d T . M. B e l l . 1 9 8 5 . B i o l o g i c a l c o n s i d e r a t i o n si n t h e m e a s u r e m e n t o f d i s s o l v e d f r e e a m i n o a c i d s i n s e a w a t e r

a n d i m p l i c a t i o n s f o r c h e m i c a l a n d m i c r o b i o l o g i c a l s t u d i e s . M a r .

E c o l . P r o g . S e r . 2 5 : 1 3 - 2 1 .

8 . H a g s t r o m , A . , J . W. Ammerman, S . H e n r i c h s , a n d F . A z a m .1 9 8 4 . B a c t e r i o p l a n k t o n g r o w t h i n s e a w a t e r : I I . O r g a n i c m a t t e r

u t i l i z a t i o n d u r i n g s t e a d y - s t a t e g r o w t h i n s e a w a t e r c u l t u r e s . M a r .

E c o l . P r o g . S e r . 1 8 : 4 1 - 4 8 .9 . H e i n r i c k s o n , R . L . , a n d S . C . M e r e d i t h . 1 9 8 4 . Amino a c i d

a n a l y s i s b y r e v e r s e - p h a s e h i g h - p e r f o r m a n c e l i q u i d c h r o m a t o g -

r a p h y : p r e c o l u m n d e r i v a t i z a t i o n w i t h p h e n y l i s o t h i o c y a n a t e .A n a l . B i o c h e m . 1 3 6 : 6 5 - 7 4 .

1 0 . H e l i e b u s t , J . A . 1 9 7 4 . E x t r a c e l l u l a r p r o d u c t s , p . 8 3 8 - 8 6 3 . I n

W. D . S t e w a r d ( e d . ) , A l g a l p h y s i o l o g y a n d b i o c h e m i s t r y . B o -

t a n i c a l M o n o g r a p h s , v o l . 1 0 . U n i v e r s i t y o f C a l i f o r n i a P r e s s ,B e r k e l e y .

1 1 . H o p p e , H . G . 1 9 7 8 . R e l a t i o n s b e t w e e n a c t i v e b a c t e r i a a n d

h e t e r o t r o p h i c p o t e n t i a l i n t h e s e a . N e t h . J . S e a R e s . 1 2 : 7 8 - 9 8 .1 2 . H o p p e , H . G . 1 9 8 3 . S i g n i f i c a n c e o f e x o e n z y m a t i c a c t i v i t i e s i n

t h e e c o l o g y o f b ra ck i s h w a t e r . M a r . E c o l . P r o g . S e r . 1 1 : 2 9 9 -

3 0 8 .1 3 . J 0 rg e ns e n, N . 0 . G . , a n d M. S 0 n d e r g a a r d . 1 9 8 4 . A r e d i s s o l v e d

f r e e a m i n o a c i d s f r e e ? M i c r o b . E c o l . 1 0 : 3 0 1 - 3 1 6 .

1 4 . L i n d r o t h , P . , a n d K . M o p p e r . 1 9 7 9 . H i g h p e r f o r m a n c e l i q u i dc h r o m a t o g r a p h i c d e t e r m i n a t i o n o f s u b p i c o m o l e a m o u n t s o f

a m i n o a c i d s b y p r e c o l u m n f l u o r e s c e n c e d e r i v a t i z a t i o n w i t h

o - p h th a l di a l de h y d e. A n al . C h e m . 5 1 : 1 6 6 7 - 1 6 7 4 .

1 5 . M o p p e r , K . , a n d P . L i n d r o t h . 1 9 8 2 . D i e l a n d d e p t h v a r i a t i o n s i nd i s s o l v e d f r e e a m i n o a c i d s a n d ammonium i n t h e B a l t i c S e a

d e t e r m i n e d b y s h i p b o a r d HPLC a n a l y s i s . L i m n o l . O c e a n o g r .

2 7 : 3 3 6 - 3 4 7 .

1 6 . P a l l u m b o , A . V . , a n d P . A . R ub l e e. 1 9 8 3 . E f f i c i e n t u t i l i z a t i o n o f

d i s s o l v e d f r e e a m i n o a c i d s b y s u s p e n d e d m a r i n e b a c t e r i a . J .E x p . M a r . B i o l . E co l . 6 9 : 2 5 7 -2 6 6 .

1 6 a . P a l m e r , R . , J r . , J . S i e b e r t , a n d P . H i r s c h . S u b m i t t e d f o rp u b l i c a t i o n .

1 7 . S i m o n , M. 1 9 8 5 . S p e c i f i c u p t a k e r a t e s o f a m i n o a c i d s b y

a t t a c h e d a n d f r e e - l i v i n g b a c t e r i a i n a m e s o t r o p h i c l a k e . A p p l .

E n v i r o n . M i c r o b i o l . 4 9 : 1 2 5 4 - 1 2 5 9 .

1 8 . S t o u t h a m m e r , A . H . 1 9 7 3 . A t h e o r e t i c a l s t u d y o f t h e a m o u n t o f

A TP r e q u i r e d f o r m i c r o b i a l c e l l m a t e r i a l . A n t o n i e v a n L e e u w e n -h o e k J . M i c r o b i o l . S e r o l . 3 9 : 5 4 5 - 5 6 5 .

1 9 . Van V e l d h o v e n , P . P . , a nd G . P . M a n n a e r t s . 1 9 8 7 . I n o r g a n i c a n d

o r g a n i c p h o s p h a t e m e a s u r e m e n t s i n t h e n a n o m o l a r r a n g e . A n a l .

B i o c h e m . 1 6 1 : 4 5 - 4 8 .2 0 . V e s t a l , J . R . 1 9 8 8 . B i o m a s s o f t h e c r y p t o e n d o l i t h i c m i c r o b i o t a

f r o m t h e A n t a r c t i c d e s e r t . A p p l . E n v i r o n . M i c r o b i o l . 5 4 : 9 5 7 -

9 5 9 .2 1 . W e i s s , A . 1 9 6 9 . O r g a n i c d e r i v a t i v e s o f c l a y m i n e r a l s , z e o l i t h e s ,

a n d r e l a t e d m i n e r a l s , p . 7 3 7 - 7 8 1 . I n G . E g l i n g t o n a n d M. I . J .M u r p h y ( e d . ) , O r g a n i c c h e m i s t r y . S p r i n g e r - V e r l a g KG, B e r l i n .

2 2 . W h e e l e r , P . A . , B . B . N o r t h , M. L i t t l e r , a n d G . C . S t e p h e n s .

1 9 7 7 . U p t a k e o f g l y c i n e b y n a t u r a l p h y t o p l a n k t o n c o m m u n i t i e s .

L i m n o l . O c e a n o g r . 2 2 : 9 0 0 - 9 1 0 .

2 3 . W h i t e , D . C . 1 9 8 3 . A n a l y s i s o f m i c r o o r g a n i s m s i n t e r m s o f

q u a n t i t y a n d a c t i v i t y i n n a t u r a l e n v i r o n m e n t s , p . 3 7 - 6 6 . I n J . H .

S l a t e r , R . W h i t t e n b u r y , a n d J . W. T . W i m p e n n y ( e d . ) , M i c r o b e s

i n t h e i r n a t u r a l e n v i r o n m e n t s . C a m b r i d g e U n i v e r s i t y P r e s s ,C a m b r i d g e .

2 4 . W h i t e , D . C . , W. M. D a v i s , J . S . N i c k e l s , J . D . K i n g , a n d R . J .B o b b i e . 1 9 7 9 . D e t e r m i n a t i o n o f t h e s e d i m e n t a r y m i c r o b i a l b i o -

m a s s b y e x t r a c t a b l e l i p i d p h o s p h a t e . O e c o l o g i a 4 0 : 5 1 - 6 2 .2 5 . W i l l i a m s , P . J . , T . B e r m a n , a n d 0 . H o l m - H a n s e n . 1 9 7 6 . Aminoa c i d u p t a k e a n d r e s p i r a t i o n b y m a r i n e h e t e r o t r o p h s . M a r . B i o l .3 5 : 4 1 - 4 7 .

2 6 . W i l l i a m s , P . J . , a n d C . S . Y e n t s c h . 1 9 7 6 . A n e x a m i n a t i o n o f

p h o t o s y n t h e t i c p r o d u c t i o n , e x c r e t i o n o f p h o t o s y n t h e t i c p r o d -u c t s , a n d h e t e r o t r o p h i c u t i l i z a t i o n o f d i s s ol v ed o r g a n i c com-

p o u n d s w i t h r ef e re n ce t o r e s u l t s f r o m a c o a s t a l s u b t r o p i c a l s e a .

M a r . B i o l . 3 5 : 3 1 - 4 0 .

2 7 . W o l t e r s , B . , W. S a n d , B . A h l e r s , F . S a m e l u c k , M. M e i n c k e , C .

M e y e r , T . K r a u s e - K u p s c h , a n d E . B oc k . 1 9 8 8 . N i t r i f i c a t i o n - t h e

m a i n s o u r c e f o r n i t r a t e d e p o s i t i o n i n b u i l d i n g s t o n e s , p . 2 4 - 3 1 .

I n P r o c e e d i n g s o f t h e V I t h I n t e r n a t i o n a l C o n g r e s s on D e t e r i o -

r a t i o n a n d C o n s e r v a t i o n o f S t o ne . N i c h o l a s C o p e r n i c u s U n i v e r -

s i t y P r e s s , T o r u n , P o l a n d .

VOL. 5 7 , 1 9 9 1