analysis of 741-op-amp-ic by muhammad irfan yousuf [peon of holy prophet (p.b.u.h)] volume 2

156
Muhammad Irfan Yousuf [Peon of Holy Prophet (P.B.U.H)] 2000-E-41 387 Cell: 0300-8454295; Tel: 042- 5421893 1 1 0 R 1 R 2 -1 0 R 1 0 a 36 a 11 a 12 a 51 a 52 1 1 -1 R 1 R 2 R 2 0 0 0 a 41 a 11 a 13 a 51 a 53 1 1 -1 R 1 R 2 R 1 0 0 0 a 42 a 11 a 14 a 51 a 54

Upload: sohail-yousaf

Post on 31-Oct-2015

43 views

Category:

Documents


5 download

TRANSCRIPT

Muhammad Irfan Yousuf [Peon of Holy Prophet (P.B.U.H)] 2000-E-41 510 Cell: 0300-8454295; Tel: 042-5421893

1 1

0

R1 R2

-1

0

R1

0a36a11a12

a51a52

1 1

-1

R1 R2 R2

0 0

0a41a11a13

a51a53

1 1

-1

R1 R2 R1

0 0

0a42a11a14

a51a54

1 1

0

R1 R2

A

0

Rout

1 1 A

a43 R1 R2 Routa11a15

a51a55

1 1

0

R1 R2

1

0

Rout

1 1 1

a44 R1 R2 Routa11a16

a51a56

1 1

0

R1 R2

-1

0

R3

1 1 -1

a45 R1 R2 R3a11a17

a51a57

1 1

0

R1 R2

AV2 0

Rout

1 1 AV2

a46 R1 R2 Routa11a12

a61a62

1 1

-1

R1 R2 R2

0 0

0

a51a11a13

a61a63

1 1

-1

R1 R2 R1

0 0

0

a52a11a14

a61a64

1 1

0

R1 R2

0 0

0

a53a11a15

a61a65

1 1

0

R1 R2

-1

0

R3

1 1 -1

a54 R1 R2 R3a11a16

a61a66

1 1

0

R1 R2

11

0

R3 R4

1 1 1 1

a55 R1 R2 R3 R4a11a17

a61a67

1 1

0

R1 R2

0 0

0

a56a11a12

a71a72

1 1

-1

R1 R2 R2

0 0

0

a61a11a13

a71a73

1 1

-1

R1 R2 R1

A

0

Rout

1 1 A

a62 R1 R2 Routa11a14

a71a74

1 1

0

R1 R2

0 0

0

a63a11a15

a71a75

1 1

0

R1 R2

0 0

0

a64a11a16

a71a76

1 1

0

R1 R2

-A

0

Rout

1 1 -A

a65 R1 R2 Routa11a17

a71a77

1 1

0

R1 R2

0 0

0

a66

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36 (A( a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

a11 a12 a11 a13 a11 a14 a11 a15 a11 a16

a21 a22 a21 a23 a21 a24 a21 a25 a21 a26

a11 a12 a11 a13 a11 a14 a11 a15 a11 a16

a31 a32 a31 a33 a31 a34 a31 a35 a31 a36

a11 a12 a11 a13 a11 a14 a11 a15 a11 a16

n - 2

1

a41 a42 a41 a43 a41 a44 a41 a45 a41 a46

a11

a11 a12 a11 a13 a11 a14 a11 a15 a11 a16

a51 a52 a51 a53 a51 a54 a51 a55 a51 a56

a11 a12 a11 a13 a11 a14 a11 a15 a11 a16

a61 a62 a61 a63 a61 a64 a61 a65 a61 a66

a11a12

a21a22= a11a22 a21a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1

R1 R2 R3 Rout R1

a11

a11a13

a21a23= a11a23 a21a13

= 0

a12a11a14

a21a24= a11a24 a21a14

= 0

a13a11a15

a21a25= a11a25 a21a15

= 0

a14a11a16

a21a26= a11a26 a21a16

11 -1 1

1 AV1

a15 R1 R2 R3 R1 R2 Routa11a12

a31a32= a11a32 a31a12

1 1

1 A 1 -1 -1

R1 R2 Rout Rout R2 R12 R1R2

a21 11 -1A1

R1 R2 R3 Rout R1a11a13

a31a33= a11a33 a31a13

2

1 1

1 A 1 1 1

a22 R1 R2 Rout Rout R2 R1 R2

a11a14

a31a34= a11a34 a31a14

1 1

1 A 1 1 1 -1

a23 R1 R2 Rout Rout R2 R1 R2 R2

a11a15

a31a35= a11a35 a31a15

0

a24a11a16

a31a36= a11a36 a31a16

1 11 AV1

a25R1R2 R1 R2 Routa11a12

a41a42= a11a42 a41a12

0

a31a11a13

a41a43= a11a43 a41a13

1 1

1 A 1 1 1 A

a32 R1 R2 Rout Rout R2 R1 R2 Rout

a11a14

a41a44= a11a44 a41a14

1 1

1 A 1 1 1 1

a33 R1 R2 Rout Rout R2 R1 R2 Rout

a11a15

a41a45= a11a45 a41a15

1 1

1 A 1 1 1 -1

a34 R1 R2 Rout Rout R2 R1 R2 R3

a11a16

a41a46= a11a46 a41a16

1 1

1 A 1 1 1 AV2

a35 R1 R2 Rout Rout R2 R1 R2 Rout

a11a12

a51a52= a11a52 a51a12

0

a41a11a13

a51a53= a11a53 a51a13

0

a42a11a14

a51a54= a11a54 a51a14

1 1

1 A 1 1 1 -1

a43 R1 R2 Rout Rout R2 R1 R2 R3

a11a15

a51a55= a11a55 a51a15

1 1

1 A 1 1 11 1

a44 R1 R2 Rout Rout R2 R1 R2 R3 R4 a11a16

a51a56= a11a56 a51a16

0

a45

1 1

1 A 1 1 1 A

a51 R1 R2 Rout Rout R2 R1 R2 Rout

a11a13

a61a63= a11a63 a61a13

0

a52a11a14

a61a64= a11a64 a61a14

0

a53a11a15

a61a65= a11a65 a61a15

1 1

1 A 1 1 1 -A

a54 R1 R2 Rout Rout R2 R1 R2 Rout

a11a16

a61a66= a11a66 a61a16 0

a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25 (A( a31 a32 a33 a34 a35 a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a11 a13 a11 a14 a11 a15

a21 a22 a21 a23 a21 a24 a21 a25

a11 a12 a11 a13 a11 a14 a11 a15

n - 2

1

a31 a32 a31 a33 a31 a34 a31 a35

a11

a11 a12 a11 a13 a11 a14 a11 a15

a41 a42 a41 a43 a41 a44 a41 a45

a11 a12 a11 a13 a11 a14 a11 a15

a51 a52 a51 a53 a51 a54 a51 a55

a11a12

a21a22= a11a22 a21a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2a11a11a13

a21a23= a11a23 a21a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R2a12 a11a14

a21a24= a11a24 a21a14

0

a13

a11a15

a21a25= a11a25 a21a15

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1111 AV1

R1 R2 R3 Rout R1R1R2 R1 R2Rout

1 1

1 A 1 -1 -1

R1 R2 Rout Rout R2 R12 R1R2

11 -1A11 1-11

1AV1

R1 R2 R3 Rout R1 R1R2 R3 R1 R2 Routa14

a11a12

a31a32= a11a32 a31a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Routa21

a11a13

a31a33= a11a33 a31a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1

Routa22

a11a14

a31a34= a11a34 a31a14

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3a23

a11a15

a31a35= a11a35 a31a15

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1

R1 R2 R3 Rout R1

1 1

1 A 1 1 1 AV2

a24 R1 R2 Rout Rout R2 R1 R2 Rout

a11a12

a41a42= a11a42 a41a12

0

a31

a11a13

a41a43= a11a43 a41a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3a32

a11a14

a41a44= a11a44 a41a14

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

11

R3 R4a33

a11a15

a41a45= a11a45 a41a15

0

a34

a11a12

a51a52= a11a52 a51a12

0

a41

a11a13

a51a53= a11a53 a51a13

0

a42

a11a14

a51a54= a11a54 a51a14

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-A

Routa43a11a15

a51a55

= a11a55 a51a15

1 1

1 A 1 1 1 A

R1 R2 Rout Rout R2 R1 R2 Rout

11 -1 1

1 AV1

a44 R1 R2 R3 R1 R2 Rout

a11 a12 a13 a14

a21 a22 a23 a24 (A(

a31 a32 a33 a34 a41 a42 a43 a44

a11 a12 a11 a13 a11 a14

a21 a22 a21 a23 a21 a24

n - 2

1

a11 a12 a11 a13 a11 a14

a11

a31 a32 a31 a33 a31 a34

a11 a12 a11 a13 a11 a14

a41 a42 a41 a43 a41 a44

a11a12

a21a22= a11a22 a21a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R2a11

a11a13

a21a23= a11a23 a21a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3a12

a11a14

a21a24= a11a24 a21a14

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1

R1 R2 R3 Rout R1

1 1

1 A 1 1 1 AV2

R1 R2 Rout Rout R2 R1 R2 Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1111 AV1

R1 R2 R3 Rout R1R1R2 R1 R2Rout

1 1

1 A 1 -1 -1

R1 R2 Rout Rout R2 R12 R1R2

11 -1A11 1-11

1 AV1

a13 R1 R2 R3 Rout R1 R1R2 R3 R1 R2 Routa11a12

a31a32= a11a32 a31a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3a21

a11a13

a31a33= a11a33 a31a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

11

R3 R4a22

a11a14

a31a34= a11a34 a31a14

0

a23

a11a12

a41a42= a11a42 a41a12

0a31a11a13

a41a43= a11a43 a41a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-A

Routa32a11a14

a41a44= a11a44 a41a14

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 1 A

R1 R2 Rout Rout R2 R1 R2 Rout

11 -1 1

1 AV1

a33 R1 R2 R3 R1 R2 Rout

a11 a12 a13 (A( a21 a22 a23

a31 a32 a33

a11 a12 a11 a13

n - 2

1

a21 a22 a21 a23

a11

a11 a12 a11 a13

a31 a32 a31 a33

a11a12

a21a22= a11a22 a21a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

11

R3 R4

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R3a11

a11a13

a21a23= a11a23 a21a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1

R1 R2 R3 Rout R1

1 1

1 A 1 1 1 AV2

R1 R2 Rout Rout R2 R1 R2 Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1111 AV1

R1 R2 R3 Rout R1R1R2 R1 R2Rout

1 1

1 A 1 -1 -1

R1 R2 Rout Rout R2 R12 R1R2

11 -1A11 1-11

1 AV1

a12 R1 R2 R3 Rout R1 R1R2 R3 R1 R2 Routa11a12

a31a32= a11a32 a31a12

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-A

Rout

a21a11a13

a31a33= a11a33 a31a13

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

A

Rout

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

-1

R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

2

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 1

1 A 1 1 11 1 1 1-1

R1 R2 Rout Rout R2 R1 R2 R3 R4 R1 R2 R3

11 -1A1 1 11A1 1 1

R1 R2 R3 Rout R1 R1 R2 Rout Rout R2 R1 R2

1 111A 111A

Rout R1 R2 Rout Rout R2 R1 R2 Rout

1 1

1 A 1 1 1 -1

a22

R1 R2 Rout Rout R2 R1 R2 R4

n - 2 n 2 n - 2

n - 2 n 2 n - 2

1

11111 a11

a12(A( a11 a11 a11 a11 a11 a11 a21

a22

7 - 2 6 2 5 - 2

4 - 2 3 2 2 - 2

1

11111 a11

a12(A( a11 a11 a11 a11 a11 a11 a21

a22Q#4.40: The electronic ammeter in Example 4.9 has been modified and is shown in Fig. P4.40. The selector switch allows the user to change the range of the meter. Using values for R1 and R2 from Example 4.9, find the values of RA and RB that will yield a 10-V output when the current being measured is 100 mA and 10 mA, respectively.

Solution:

Unknown current

I+

RA RB RC= 1 k( R2 = 9 k(

V0

R1 = 1 k(

-

fig. (a)

Unknown current

I+

RA = 1 k(

R2 = 9 k(

V0

R1 = 1 k(

-

fig. (a)

OP-AMP MODEL

I

V0 Rin Rout

AVe R2

RA

R1

Fig. (b)

I V1 V2 V0

V+ Rin V- R2

Rout

RAR1

AVe

Using Nodal AnalysisFig. (c)

Applying KCL at node labeled V1

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V1 V2 V1 I

Rin RAV1 V2 V1 0.1

Rin Rin RAHere

Rin = 108 (Rout = 10 (A = 105

We to bring about a result that

1 1 1 1 11 1

>> & > &( 0

R0 RF RinHere R0 = Rout; Ri = Rin

V1 0.1

RA

V1 = 0.1 RA (i)

Applying KCL at node labeled V2

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V2 V1 V2 V2 V0 0

Rin R1R2V2 V1 V2 V2 V0 0

Rin Rin R1 R2 R2V2 V2 V0 0

R1 R2 R2

11-1

V2 V0 0 (ii)R1 R2 R2Applying KCL at node labeled V0

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V0 V2 V0 - AVe 0

R2RoutHere

Ve = V+ - V-

Ve = V1 V2

V0 V2 V0 A(V1 V2)

0

R2RoutV0 V2 V0 AV1 AV2

0

R2 R2 Rout Rout Rout

-A A11 1

V1 V2 V0 0

Rout Rout R2 Rout R2

-A A

1

V1 V2 V0 0 (iii)

Rout Rout Rout Writing equations (i), (ii) & (iii) in matrix form

1 0

0

V1 0.1 RA 1 1 -1

0

R1 R2 R2 V2 0

-AA

1

V0 0

RoutRout RoutA

X B

1 0

0

11

-1

(A( 0 R1 R2 R2

-AA1

Rout RoutRout

111A1

R1 R2 RoutRout R2

1 0

0.1 RA

11

0 R1 R2 0

-AA

0

Rout Rout

V0

(A(

A11

0.1 RA Rout R1R2

111A1

R1 R2 RoutRout R2Substituting the corresponding values

105 1 1

0.1 RA 10 1000 9000

1

1

1 105 1

1000 9000 10 10 9000

0.1 RA (10000) (0.001 + 1.111 ( 10-4)

10

(0.001 + 1.111 ( 10-4) (0.1) + (10000) (1.111 ( 10-4)

1.111 RA

10

1.111

1.111 RA = 11.11

RA = 10 (

Unknown current

I+

RB = 1 k(

R2 = 9 k(

V0

R1 = 1 k(

-

fig. (a)

OP-AMP MODEL

I

V0 Rin Rout

AVe R2

RB

R1

Fig. (b)

I V1 V2 V0

V+ Rin V- R2

Rout

RBR1

AVe

Using Nodal AnalysisFig. (c)

Applying KCL at node labeled V1

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V1 V2 V1 I

Rin RBV1 V2 V1 0.01

Rin Rin RBHere

Rin = 108 (Rout = 10 (A = 105

We to bring about a result that

1 1 1 1 11 1

>> & > &( 0

R0 RF RinHere R0 = Rout; Ri = Rin

V1 0.01

RB

V1 = 0.01 RB (i)

Applying KCL at node labeled V2

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V2 V1 V2 V2 V0 0

Rin R1R2V2 V1 V2 V2 V0 0

Rin Rin R1 R2 R2V2 V2 V0 0

R1 R2 R2

11-1

V2 V0 0 (ii)R1 R2 R2Applying KCL at node labeled V0

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V0 V2 V0 - AVe 0

R2RoutHere

Ve = V+ - V-

Ve = V1 V2

V0 V2 V0 A(V1 V2)

0

R2RoutV0 V2 V0 AV1 AV2

0

R2 R2 Rout Rout Rout

-A A11 1

V1 V2 V0 0

Rout Rout R2 Rout R2

-A A

1

V1 V2 V0 0 (iii)

Rout Rout Rout Writing equations (i), (ii) & (iii) in matrix form

1 0

0

V1 0.01 RB 1 1 -1

0

R1 R2 R2 V2 0

-AA

1

V0 0

RoutRout RoutA

X B

1 0

0

11

-1

(A( 0 R1 R2 R2

-AA1

Rout RoutRout

111A1

R1 R2 RoutRout R2

1 0

0.01 RB

11

0 R1 R2 0

-AA

0

Rout Rout

V0

(A( A 11

0.01 RB Rout R1 R2

111A1

R1 R2 RoutRout R2Substituting the corresponding values

105 1 1

0.01 RB 10 1000 9000

1

1

1 105 1

1000 9000 10 10 9000

0.01 RB (10000) (0.001 + 1.111 ( 10-4)

10

(0.001 + 1.111 ( 10-4) (0.1) + (10000) (1.111 ( 10-4)

0.111 RB

10

1.111

0.111 RB = 11.11

RB = 100.09 (Q#4.41: Given a box of 10-k( resistors and an op-amp, design a circuit that will have an output voltage of V0 = -2V1 4V2.

Solution:

Circuit diagram:

R1R

R2

+

V1 V2

V0

-

fig. (a)

R1

R

OP-AMP MODEL

R2

+

Rin Rout

V1 V2 AVe

V0 -

fig. (b)

V3RV0

V- R1 R2 RinRout

V+

V1 V2AVe

fig. (c)

Applying KCL at node labeled V3

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V3 V1 V3 V2 V3 V3 V0

0

R1R2 RinR

V3 V1 V3 V2 V3 V3 V0

0

R1 R1 R2 R2 Rin R R

Here

Rin = 108 (Rout = 10 (A = 105

We to bring about a result that

1 1 1 1 11 1

>> & > &( 0

R0 RF RinHere R0 = Rout; Ri = Rin

111 -1

V1 V2 V3 V0 (i) R1 R2 R R R1 R2Applying KCL at node labeled V0

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V0 V3 V0 - AVe 0

RRoutVe = V+ - V-

Ve = 0 V3

Ve = -V3

V0 V3 V0 A(-V3)

0

RRoutV0 V3 V0 + AV3 0

RRoutV0 V3 V0 AV3

0

R R Rout Rout

A111

V3 V0 0

Rout R Rout R

A 1

V3 V0 0

(ii) Rout Rout Writing equations (i) & (ii) in matrix form

111 -1 V1 V2

V3 R1 R2 RR R1 R2

A 1

V0 0

Rout Rout

A X B

11 1 -1

R1R2R R

(A(

A 1

Rout Rout

1 111A1

R1 R2 R RoutRout R

11 1 V1 V2

R1R2R R1 R2

A

0

Rout

V0

(A(

-A V1 V2

Rout R1 R2

1 111A1

R1 R2 R RoutRout R

-A R2V1 + R1V2

Rout R1R2

RR2 + RR1 + R1R2 A

RR1R2RoutRRout

-A R2V1 + R1V2

Rout R1R2

RR2 + RR1 + R1R2 + AR1R2

RR1R2Rout

-AR (R2V1 + R1V2)

RR2 + RR1 + R1R2 + AR1R2

-AR (R2V1 + R1V2) Hint: A = 105; R, R1 & R2 are in kilo ohms

AR1R2

-RR

V0 V1 V2 (iii) R1 R2V0 = -2V1 4V2 (iv)Comparing equations (iii) & (iv)

R

2

R120 k( 2

10 k(

R

4

R220 k( 4

5 k(

R1 = 10 kR = 20 k

R2 = 5 k10 k 10 k

10 k+

V0 10 k

V1 V2-

fig. (d)

Since signs on gains associated with V1 & V2 are both negative, a simple summer will suffice.

Q#4.42: Design an op-amp circuit that has a gain of 50 using resistors no smaller than 1 k(.

Solution:

Circuit diagram:

Since sign is negative, use inverting configuration.

R2

VS

R1

V0

Fig. (a)

R2OP-AMP MODEL

V0 Rin Rout

R1AVe

VS

Fig. (b)

V1 V0

R1

R2

V-

Rout

VS

Rin

V+

AVe

Fig. (c)

Using nodal analysis:

Applying KCL at node Labeled V1

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V1 - VS V1V1 V0

+ + 0R1 Rin

R2V1 VS V1 V1 V0

+ +0R1 R1 Rin R2 R2

1 11-1 VS + +V1 + V0

R1 Rin R2 R2 R1

1 1 -1 VS V1 V0

(i)R1 R2 R2 R1Applying KCL at node Labeled V0

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V0 V1 V0 - AVe

+ 0

R2Rout

V0 V1 V0 AVe

+ 0

R2 R2 Rout Rout Here

Ve = V+ - V-

Ve = 0 V V1

Ve = -V1

V0 V1 V0 A(-V1)

+ 0

R2 R2 Rout Rout V0 V1 V0 AV1

+ + 0

R2 R2 Rout Rout A11

1

V1 V0 0

Rout R2 Rout R2

A

1

V1 V0 0 (ii)Rout Rout Writing equations (i) & (ii) in matrix form

11 -1VS V1 R1 R2 R2 R1

A1

V0 0

Rout Rout A X B

11-1

R1 R2 R2

(A(

A1

RoutRout

1 11 A

1

R1 R2 Rout Rout R2 11VS

R1 R2 R1

A

0

Rout

V0 1 1 1 A 1

R1 R2 Rout Rout R2

-A VS

Rout R1

R2 + R1A

R1R2RoutR2Rout

-A VS

Rout R1

R2 + R1 + AR1

R1R2Rout

-AR2VS

R2 + R1 + AR1

-AR2VS Hint: A = 105 and R1, R2 are in kilo ohm

AR1

-R2VS

R1

V0 -R2 -100 k

-50

VS R1 2 kR1 = 2 k(; R2 = 100 k(

R2 = 100 k

VS

R1 = 2 k

V0

Fig. (d)

Q#4.43: Design a two-stage op-amp network that has a gain of 50,000 while drawing no current into its input terminal. Use no resistors smaller than 1 k(.

Solution:

Circuit diagram:

VS

VX

R2

R1

fig. (a)OP-AMP MODEL

VX Rin Rout

AVe

R2

VS

R1

fig. (b)

V1 VX

V+ Rin V- R2

Rout

VS

R1

AVe

Using Nodal Analysisfig. (c)Applying KCL at node V1

According to KCL

The algebraic Sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V1 - VS V1 V1 - VX

0

Rin R1R2V1 VS V1 V1 VX 0

Rin Rin R1 R2 R2

1 1 -1

V1 VX 0

(i)R1 R2 R2 Applying KCL at node Labeled V0

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

VX V1 VX - AVe

0

R2

Rout

Here

Ve = V+ - V-

Ve = VS V1

VX V1 VX A (VS V1)

0

R2

Rout

VX V1 VX AVS AV1

0

R2 R2 Rout RoutRout

A111 AVS V1 VX Rout R2Rout R2 Rout

A

1

AVS V1 VX (ii)Rout Rout RoutWriting equations (i) & (ii) in matrix form

11 -1

V1 0

R1 R2 R2

A1 AVS VX

Rout Rout Rout A X B 11-1

R1 R2 R2

(A(

A1

RoutRout

1 11 A

1

R1 R2 Rout Rout R2 11

0

R1 R2

A AVS

Rout Rout V0 1 1 1 A 1

R1 R2 Rout Rout R2

1 1 AVS

R1 R2 Rout

R2 + R1A

R1R2RoutR2Rout

R2 + R1 AVS

R1R2Rout

R2 + R1 + AR1

R1R2Rout

AVS (R2 + R1)

R2 + R1 + AR1

AVS (R2 + R1)

Hint: A = 105 and R1, R2 are in kilo ohm

AR1

VS (R2 + R1)

R1

VX R2 1 +

VS R1

Here R2 = 498 k( and R2 = 2 k(

VX 250 = A1

VS

R2

VX

R1

V0

Fig. (a)

R2OP-AMP MODEL

V0 Rin Rout

R1AVe

VX

Fig. (b)

V1 V0

R1

R2

V-

Rout

VX

Rin

V+

AVe

Fig. (c)

Using nodal analysis:

Applying KCL at node Labeled V1

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V1 VX V1 V1 V0

+ + 0R1 Rin

R2V1 VX V1 V1 V0

+ +0R1 R1 Rin R2 R2

1 11-1 VX + +V1 + V0

R1 Rin R2 R2 R1

1 1 -1 VX V1 V0

(i)R1 R2 R2 R1Applying KCL at node Labeled V0

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V0 V1 V0 - AVe

+ 0

R2Rout

V0 V1 V0 AVe

+ 0

R2 R2 Rout Rout Here

Ve = V+ - V-

Ve = 0 V V1

Ve = -V1

V0 V1 V0 A(-V1)

+ 0

R2 R2 Rout Rout V0 V1 V0 AV1

+ + 0

R2 R2 Rout Rout A11

1

V1 V0 0

Rout R2 Rout R2

A

1

V1 V0 0 (ii)Rout Rout Writing equations (i) & (ii) in matrix form

11 -1VX V1 R1 R2 R2 R1

A1

V0 0

Rout Rout A X B

11-1

R1 R2 R2

(A(

A1

RoutRout

1 11 A

1

R1 R2 Rout Rout R2 11VX

R1 R2 R1

A

0

Rout

V0 1 1 1 A 1

R1 R2 Rout Rout R2

-A VX

Rout R1

R2 + R1A

R1R2RoutR2Rout

-A VX

Rout R1

R2 + R1 + AR1

R1R2Rout

-AR2VX

R2 + R1 + AR1

-AR2VX Hint: A = 105 and R1, R2 are in kilo ohm

AR1

-R2VX

R1

V0 -R2 -400 k

-200 A2VX R1 2 kR1 = 2 k(; R2 = 400 k(

R2 = 400 k

VX

R1 = 2 k

V0

Fig. (d)

A1A2

A = A1A2

A = (250)(-200)

A = -50,000

Q#4.44: Design an op-amp circuit that has the following input/output relationship:

V0 = -5 V1 + 0.5 V2.

Solution:

Circuit diagram:

RF V1

V0 R1

V2

R2

RI

Fig. (a)

RFOP-AMP MODEL

V0 Rin Rout

R1AVe

R2

RI

V1

V2

Fig. (b)

V3 V0

R1

RF

V-

Rout

V1

Rin

V+

AVe

V4

RI R2

V2

Fig. (c)

Using Nodal Analysis

Applying KCL at node labeled V3

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V3 V1 V3 V4 V3 V0

0

R1RinRFV3 V1 V3 V4V3 V0 0

R1 R1 Rin Rin RF RF

111-1 -1 V1 V3 V4 V0 (i) R1 Rin RF Rin RF R1Applying KCL at node labeled V4

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V4 V2 V4 V4 V3

0

R2 RI

RinV4 V2 V4 V4 V3 0

R2 R2 RI Rin Rin

-1111 V2 V3 V4 (ii) Rin Rin RI R2 R2Applying KCL at node labeled V0

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V0 V3 V0 - AVe 0

RFRout

Here Ve = V+ - V-Ve = V4 - V3

V0 V3 V0 A(V4 V3)

0

RFRout

V0 V3 V0 AV4 + AV3

0

RFRout

V0 V3 V0 AV4 AV3

0

RF RF Rout Rout Rout

A1 -A1 1

V3V4 V0 0 (iii)

Rout RF Rout Rout RFWriting equations (i), (ii) & (iii) in matrix form

11 1-1

-1 V1

V3 R1 Rin RF Rin RF R1

-1111V2 0 V4 RinRin RI R2R2

A 1

-A 11

V0 0

Rout RFRout Rout RF A X B

1 1 1 -1 -1

R1 Rin RF Rin RF

-1 1 1 1

(A( 0

Rin Rin RI R2

A1 -A

11

Rout RF RoutRout RF

1 1 1

0

111 Rin RI R2(A(

R1 Rin RF-A1 1

Rout Rout RF

-1 0

1Rin

RinA 11 1

Rout RFRout RF

-111 1

-1

Rin Rin RI R2 RF

A1-A

Rout RFRout

11 1 11 11 11

(A(

R1Rin RF Rin RI R2 Rout RFRin

-111-1 A

A1 1 1 1

Rin Rout RF RF RinRout Rout RF Rin RI R2 1 1 1 -1 V1

R1 Rin RF Rin R1

-1 1 1 1 V2

Rin Rin RI R2 R2

A 1 -A

0

Rout RF Rout

V0(A( 11 1 AV2 1 -V2 A 1 V1

R1 Rin RF R2Rout Rin R2 Rout RF R1

A A 11 1 1

RinRoutRout RF Rin RI R2

11 1 11 11 11

R1Rin RF Rin RI R2 Rout RFRin

-111-1 A

A1 1 1 1

Rin Rout RF RF RinRout Rout RF Rin RI R2Here

Rin = 108 (Rout = 10 (A = 105

We to bring about a result that

1 1 1 1 11 1

>> & > &( 0

R0 RF RinHere R0 = Rout; Ri = Rin

11AV2 V1 -A 1 1

R1 RF R2RoutR1 Rout RI R2

1 11 1 1-1-A1 1

R1 RF RI R2Rout RF Rout RI R2AV2 (RF + R1) AV1 (R2 + RI)

R1RFR2RoutRIR2R1Rout

(RF + R1)(R2 + RI) A (R2 + RI)

R1RFRIR2Rout RIR2RFRoutARIV2 (RF + R1) - ARFV1 (R2 + RI)

RIRFR1R2Rout

(RF + R1)(R2 + RI) + AR1 (R2 + RI)

R2RFRoutRIR1ARIV2 (RF + R1) - ARFV1 (R2 + RI)

(RF + R1)(R2 + RI) + AR1 (R2 + RI)

ARIV2 (RF + R1) - ARFV1 (R2 + RI)

R2RF + R1R2 + RIRF + R1RI + AR1R2 + AR1RIARIV2 (RF + R1) - ARFV1 (R2 + RI)

AR1R2 + AR1RI Hint: A = 105 and R1, R2, RI & RF are in kilo ohm

ARIV2 (RF + R1) - ARFV1 (R2 + RI)

AR1 (R2 + RI)

V2 (RF + R1) RF V1

(R2 + RI) R1By comparison, we get

RF = 5 k(R1 = 1 k(R2 = 11 k(RI = 1 k(

RF = 5 k

V1

V0 R1 = 1 k

V2

R2 = 11 k

RI = 1 k

Fig. (d)

Q#4.45: A voltage waveform with a maximum value of 200 mV must be amplified to a maximum of 10 V and inverted. However, the circuit that produces the waveform can provide no more than 100 (A. Design the required amplifier.

Solution:

Circuit diagram:

R2

VX

R1

V0

Fig. (a)

R2OP-AMP MODEL

V0 Rin Rout

R1AVe

VX

Fig. (b) V1 V0

R1

R2

V-

Rout

VX

Rin

V+

AVe

Fig. (c)

Using nodal analysis:

Applying KCL at node Labeled V1

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V1 VX V1 V1 V0

+ + 0R1 Rin

R2V1 VX V1 V1 V0

+ +0R1 R1 Rin R2 R2

1 11-1 VX + +V1 + V0

R1 Rin R2 R2 R1

1 1 -1 VX V1 V0

(i)R1 R2 R2 R1Applying KCL at node Labeled V0

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

V0 V1 V0 - AVe

+ 0

R2Rout

V0 V1 V0 AVe

+ 0

R2 R2 Rout Rout Here

Ve = V+ - V-

Ve = 0 V V1

Ve = -V1

V0 V1 V0 A(-V1)

+ 0

R2 R2 Rout Rout V0 V1 V0 AV1

+ + 0

R2 R2 Rout Rout A11

1

V1 V0 0

Rout R2 Rout R2

A

1

V1 V0 0 (ii)Rout Rout Writing equations (i) & (ii) in matrix form

11 -1VX V1 R1 R2 R2 R1

A1

V0 0

Rout Rout A X B

11-1

R1 R2 R2

(A(

A1

RoutRout

1 11 A

1

R1 R2 Rout Rout R2 11VX

R1 R2 R1

A

0

Rout

V0 1 1 1 A 1

R1 R2 Rout Rout R2

-A VX

Rout R1

R2 + R1A

R1R2RoutR2Rout

-A VX

Rout R1

R2 + R1 + AR1

R1R2Rout

-AR2VX

R2 + R1 + AR1

-AR2VX Hint: A = 105 and R1, R2 are in kilo ohm

AR1

-R2VX

R1

V0 -R2

VX R1

10 -R2 -50

0.2 R1

R1 = 1 k(; R2 = 50 k(

R2 = 50 k

VX

R1 = 1 k

V0

Fig. (d)

Q#4.46: An amplifier with a gain of ( ( 1( is needed. Using resistor values from table 2.1, design the amplifier. Use as few resistors as possible.

Solution:

Circuit diagram:

VS

VX

R2

R1

fig. (a)OP-AMP MODEL

VX Rin Rout

AVe

R2

VS

R1

fig. (b)

V1 VX

V+ Rin V- R2

Rout

VS

R1

AVe

Using Nodal Analysisfig. (c)Applying KCL at node V1

According to KCL

The algebraic Sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V1 - VS V1 V1 - VX

0

Rin R1R2V1 VS V1 V1 VX 0

Rin Rin R1 R2 R2

1 1 -1

V1 VX 0

(i)R1 R2 R2 Applying KCL at node Labeled V0

Assume that all the currents are going away from the junction

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the entering into the junction

VX V1 VX - AVe

0

R2

Rout

Here

Ve = V+ - V-

Ve = VS V1

VX V1 VX A (VS V1)

0

R2

Rout

VX V1 VX AVS AV1

0

R2 R2 Rout RoutRout

A111 AVS V1 VX Rout R2Rout R2 Rout

A

1

AVS V1 VX (ii)Rout Rout RoutWriting equations (i) & (ii) in matrix form

11 -1

V1 0

R1 R2 R2

A1 AVS VX

Rout Rout Rout A X B 11-1

R1 R2 R2

(A(

A1

RoutRout

1 11 A

1

R1 R2 Rout Rout R2 11

0

R1 R2

A AVS

Rout Rout V0 1 1 1 A 1

R1 R2 Rout Rout R2

1 1 AVS

R1 R2 Rout

R2 + R1A

R1R2RoutR2Rout

R2 + R1 AVS

R1R2Rout

R2 + R1 + AR1

R1R2Rout

AVS (R2 + R1)

R2 + R1 + AR1

AVS (R2 + R1)

Hint: A = 105 and R1, R2 are in kilo ohm

AR1

VS (R2 + R1)

R1

VX R2 1 +

VS R1

( = 3.143

( + 0.01 = 3.153

( - 0.01 = 3.133

R23.153 1 +

R1

R22.153

R1 R23.133 1 +

R1

R22.133

R1 R22.133 ( ( 2.153

R1

Here R1 = 20 k( and R2 = 43 k(Q#4.47: Design an op-amp based circuit to produce the function V0 = 5 V1 4 V2Solution:

Circuit diagram:

RF V2

V0 R1

V1

R2

RI

Fig. (a)

RFOP-AMP MODEL

V0 Rin Rout

R1AVe

R2

RI

V2

V1

Fig. (b)

V3 V0

R1

RF

V-

Rout

V2

Rin

V+

AVe

V4

RI R2

V1

Fig. (c)

Using Nodal Analysis

Applying KCL at node labeled V3

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V3 V2 V3 V4 V3 V0

0

R1RinRFV3 V2 V3 V4V3 V0 0

R1 R1 Rin Rin RF RF

111-1 -1 V2 V3 V4 V0 (i) R1 Rin RF Rin RF R1Applying KCL at node labeled V4

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V4 V1 V4 V4 V3

0

R2 RI

RinV4 V1 V4 V4 V3 0

R2 R2 RI Rin Rin

-1111 V1 V3 V4 (ii) Rin Rin RI R2 R2Applying KCL at node labeled V0

According to KCL

The algebraic sum of all the currents leaving that junction = the algebraic sum of all the currents entering into the junction

V0 V3 V0 - AVe 0

RFRout

Here Ve = V+ - V-Ve = V4 - V3

V0 V3 V0 A(V4 V3)

0

RFRout

V0 V3 V0 AV4 + AV3

0

RFRout

V0 V3 V0 AV4 AV3

0

RF RF Rout Rout Rout

A1 -A1 1

V3V4 V0 0 (iii)

Rout RF Rout Rout RFWriting equations (i), (ii) & (iii) in matrix form

11 1-1

-1 V2

V3 R1 Rin RF Rin RF R1

-1111V1 0 V4 RinRin RI R2R2

A 1

-A 11

V0 0

Rout RFRout Rout RF A X B

1 1 1 -1 -1

R1 Rin RF Rin RF

-1 1 1 1

(A( 0

Rin Rin RI R2

A1 -A

11

Rout RF RoutRout RF

1 1 1

0

111 Rin RI R2(A(

R1 Rin RF-A1 1

Rout Rout RF

-1 0

1Rin

RinA 11 1

Rout RFRout RF

-111 1

-1

Rin Rin RI R2 RF

A1-A

Rout RFRout

11 1 11 11 11

(A(

R1Rin RF Rin RI