analisis en frecuenciaciecfie.epn.edu.ec/wss/virtualdirectories/80/ccontrolc/materias... · las...

20
SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN Lectura 2: Análisis en Frecuencia Página 1 ANALISIS EN FRECUENCIA Con el término respuesta en frecuencia, nos referimos a la respuesta de un sistema en estado estable a una entrada senoidal. En los métodos de la respuesta en frecuencia, la frecuencia de la señal de entrada se varía en un cierto rango, para estudiar la respuesta resultante. El criterio de estabilidad de Nyquist nos permite averiguar la estabilidad relativa y absoluta de los sistemas lineales en lazo cerrado a partir del conocimiento de sus características de frecuencia en lazo abierto. Una ventaja del enfoque de la respuesta en frecuencia es que las pruebas de la respuesta en frecuencia son, en general, sencillas y pueden ser muy precisas con el uso de generadores de señales senoidales que se obtienen con facilidad y un equipo de medición preciso. Por lo común las funciones de transferencia de los componentes complicados se determinan experimentalmente mediante pruebas de la respuesta en frecuencia. Además, este enfoque tiene la ventaja de que permite diseñar un sistema en el que se desprecian los efectos inconvenientes del ruido así como extender este análisis y diseño a ciertos sistemas de control no lineales. Aunque la respuesta en frecuencia de un sistema de control presenta una imagen cualitativa de la respuesta transitoria, la correlación entre las respuestas en frecuencia y transitoria es indirecta, excepto en el caso de los sistemas de segundo orden. Al diseñar un sistema en lazo cerrado, las características de la respuesta en frecuencia de la función de transferencia en lazo abierto se ajustan mediante varios criterios de diseño, a fin de obtener características aceptables de respuesta transitoria para el sistema. Salida en estado estable para una entrada senoidal. Considere el sistema lineal e invariante con el tiempo de la figura 8-1. Para este sistema La entrada x(t) es senoidal y se obtiene mediante si el sistema es estable, la salida y(t) se obtiene a partir de Un sistema estable, lineal e invariante con el tiempo, sujeto a una entrada senoidal, tendrá, en estado estable, una salida senoidal de la misma frecuencia que la entrada. Pero, en general, la amplitud y la fase de la salida serán diferentes de las de la entrada. De hecho, la amplitud de la salida se obtiene del producto de la amplitud de la entrada y en tanto que el ángulo de fase difiere del de la entrada en una cantidad . Un ejemplo de las señales senoidales de entrada y salida aparece en la figura. Observe que para las entradas senoidales:

Upload: lekhuong

Post on 20-Sep-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 1

ANALISIS EN FRECUENCIA

Con el término respuesta en frecuencia, nos referimos a la respuesta de un sistema en estado estable a una entrada senoidal. En los métodos de la respuesta en frecuencia, la frecuencia de la señal de entrada se varía en un cierto rango, para estudiar la respuesta resultante. El criterio de estabilidad de Nyquist nos permite averiguar la estabilidad relativa y absoluta de los sistemas lineales en lazo cerrado a partir del conocimiento de sus características de frecuencia en lazo abierto. Una ventaja del enfoque de la respuesta en frecuencia es que las pruebas de la respuesta en frecuencia son, en general, sencillas y pueden ser muy precisas con el uso de generadores de señales senoidales que se obtienen con facilidad y un equipo de medición preciso. Por lo común las funciones de transferencia de los componentes complicados se determinan experimentalmente mediante pruebas de la respuesta en frecuencia. Además, este enfoque tiene la ventaja de que permite diseñar un sistema en el que se desprecian los efectos inconvenientes del ruido así como extender este análisis y diseño a ciertos sistemas de control no lineales. Aunque la respuesta en frecuencia de un sistema de control presenta una imagen cualitativa de la respuesta transitoria, la correlación entre las respuestas en frecuencia y transitoria es indirecta, excepto en el caso de los sistemas de segundo orden. Al diseñar un sistema en lazo cerrado, las características de la respuesta en frecuencia de la función de transferencia en lazo abierto se ajustan mediante varios criterios de diseño, a fin de obtener características aceptables de respuesta transitoria para el sistema. Salida en estado estable para una entrada senoidal. Considere el sistema lineal e invariante con el tiempo de la figura 8-1. Para este sistema

La entrada x(t) es senoidal y se obtiene mediante

si el sistema es estable, la salida y(t) se obtiene a partir de

Un sistema estable, lineal e invariante con el tiempo, sujeto a una entrada senoidal, tendrá, en estado estable, una salida senoidal de la misma frecuencia que la entrada. Pero, en general, la amplitud y la fase de la salida serán diferentes de las de la entrada. De hecho, la amplitud de la

salida se obtiene del producto de la amplitud de la entrada y en tanto que el ángulo de

fase difiere del de la entrada en una cantidad . Un ejemplo de las señales senoidales de entrada y salida aparece en la figura. Observe que para las entradas senoidales:

Page 2: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 2

Por tanto:

La función de transferencia senoidal G(jw), cociente entre Y(jw) y X(jw), es una cantidad compleja y se representa mediante la magnitud y el ángulo de fase con la frecuencia como parámetro. (Un ángulo de fase negativo se denomina atraso de fase y un ángulo de fase positivo se llama adelanto de fase.) La función de transferencia senoidal de cualquier sistema lineal se obtiene sustituyendo s por jw en la función de transferencia del sistema. Presentación de las características de la respuesta en frecuencia en forma gráfica. La función de transferencia senoidal, función compleja de la frecuencia w, se caracteriza por su magnitud y ángulo de fase, con la frecuencia como parámetro. Por lo general se usan tres representaciones gráficas de las funciones de transferencia senoidales: 1. Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza de magnitud logarítmica contra la fase

DIBUJO DE LAS GRÁFICAS ASINTÓTICAS DE BODE

La ventaja principal de realizar un diagrama logarítmico, es la facilidad relativa de dibujar las

curvas de la respuesta en frecuencia.

FACTORES BÁSICOS:

GANANCIA K:

Un número mayor a 1 tiene un valor positivo en decibelios, mientras que un valor negativo

tiene un valor negativo. La curva de magnitud logarítmica para una ganancia constante K es

una recta horizontal cuya magnitud es 20 log K [dB].

El efecto de variar la ganancia K es subir o bajar la curva de magnitud, sin afectar la curva de

fase.

Page 3: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 3

][)

(d

Bj

20log(K)

20log(1/K)

w1 w2 w3

w1 w2 w3

0dB

0dB

)(

ωjG

Factores Integrales y derivativos (jw)±1: La magnitud logarítmica de 1/jw en dB es:

dB log201

log20 ωω

−=j

El ángulo de fase es constante e igual a -90º

La magnitud logarítmica es una recta de pendiente -20 dB por década y en punto w=1 es igual

a 0dB.

Si la función de transferencia es (jw)±n, la magnitud logarítmica se convierte en:

( )dB log20

1log20 ω

ωnx

j n−=

El ángulo de fase es constante e igual a -90n º

][)

(dB

jG

ω)

(ωj

G∠

][)

(dB

jG

ω)

(ωj

G∠

Page 4: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 4

Factores de primer orden (1+jwτ)±1: La magnitud logarítmica de un factor (1+jwτ) es:

dB 1log201

1log20 22τω

ωτ+−=

+ j y el ángulo de fase es ωτφ 1tan−−=

A bajas frecuencias ω<<τ, se aproxima mediante:

0dBdB 1log201

1log20 =−≈

+ ωτj y el ángulo de fase cuando ω= 0, φ=0º

A altas frecuencias ω>>τ, se aproxima mediante:

dB log20 1log20 22 ωττω −=+− y el ángulo de fase cuando ω= ∞, φ=-90

En la frecuencia de corte ωc = 1/τ el ángulo de fase es igual a -45º.

][)

(d

Bj

)(

ωjG

][)

(d

Bj

)(

ωjG

Factores (1+2ξ(jω/ωn)+(jω/ ωn)2)±1 Los sistemas suelen tener:

12

1)(

2

+

+

=

nn

j

jG

ωωξ

ωω

ω

La magnitud logarítmica de este factor es:

dB 21log20

21

1log20

22

2

2

2

+

−−=

+

nn

nn

jωωξ

ωω

ωω

ωωξ

Page 5: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 5

y el ángulo de fase es

2

21

1

2tan

n

n

ωω

ξωφ−

−= −

A bajas frecuencias ω<< ωn, se aproxima mediante:

0dBdB 1log20

21

1log20

2=−≈

+

nn

jωω

ωωξ

y el ángulo de fase cuando ω= 0, φ=0º

A altas frecuencias ω>>ωn, se aproxima mediante:

dBlog40 log202

2

nnωω

ωω −=− y el ángulo de fase cuando ω= ∞, φ=-180º

En la frecuencia de corte ω = ωn, el ángulo de fase es igual a -90º.

Valor Pico de Resonancia (Mr): valor pico de la Magnitud de una función cuadrática en una frecuencia wr este valor se obtiene cuando la función del denominador alcance un mínimo. El valor del Pico de resonancia se calcula:

212

1log20

ξξ −=rM

Mr=1 para ξ ≥ 0,707 Mr=∞ para ξ->0

Frecuencia de Resonancia (wr ): es la frecuencia donde ocurre el máximo valor de la magnitud. Este valor de frecuencia se obtiene:

221 ξωω −= nr para 0<ξ<0,707

Para ξ > 0,707 no existe un pico de resonancia, y conforme ξ tiende a cero la frecuencia de

resonancia tiende a wn

−−=°∠

ξξ

ω221

)( arctgjGH r Fase a la frecuencia de resonancia rω

Análisis de error a partir del Diagrama de Bode de GH(s) Para identificar el tipo del sistema a partir de la Respuesta Frecuencial, basta con verificar la pendiente del diagrama logarítmico de magnitud bajas frecuencias: •Si la pendiente es 0dB/dec el sistema es tipo 0 •Si la pendiente es 20dB/dec el sistema es tipo 1 •Si la pendiente es 40dB/dec el sistema es tipo 2 Luego, para determinar los errores estáticos, será necesario determinar la ganancia del sistema a lazo abierto (como ya se discutió anteriormente).

Page 6: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 6

Para ello utilizando el Diagrama de Bode de lazo abierto, realizaremos el análisis del error.

Determinación de Kp: Se determina la magnitud del sistema a bajas frecuencias, cuando la

pendiente es 0dB/dec

Determinación de las Constantes de error estático de velocidad Kv:

A bajas frecuencias el término que tiene efecto es el polo en el origen. •Método 1: Leer el corte de la recta de (1/s) o su proyección con la frecuencia w = 1. •Método 2: Leer la frecuencia donde ocurre el corte de la recta de (1/s) o su proyección con la la magnitud 0 dB.

Page 7: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 7

Determinación de las Constantes de error estático de aceleración Ka:

A bajas frecuencias el doble polo en el origen es el que tiene efecto. •Método 1: Leer el corte de la recta de (1/s) o su proyección con la frecuencia w = 1. •Método 2: Leer la frecuencia donde ocurre el corte de la recta de (1/s) o su proyección con la magnitud 0 dB.

Ancho de Banda (BW) y Frecuencia de Corte (wb ):

Page 8: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 8

En el dominio de Frecuencia es común utilizar otras especificaciones de desempeño: ANCHO DE BANDA (BW): Es el rango de frecuencias (desde w= 0 hasta w = wb para el cual la Magnitud [dB] de la respuesta frecuencia de de la función de transferencia en lazo cerrado no desciende de - 3dB. El BW indica la frecuencia a la cual la ganancia empieza a rebasar su valor de baja frecuencia. EL ancho de banda se determina mediante los siguientes factores:

2421 242 +−+−= ξξξωnAB Ancho de Banda

1. La capacidad de reproducir la señal de entrada. Un ancho de banda grada corresponde a un tiempo de subida pequeño, o respuesta rápida

2. Características de filtrado necesarias para el ruido de alta frecuencia. FRECUENCIA DE CORTE (wb): Es la frecuencia en la cual la Magnitud [dB] de la respuesta frecuencia de función de transferencia en lazo cerrado está 3 dB debajo del valor en la frecuencia w = 0 RAZÓN DE CORTE: Es la pendiente de la curva de magnitud logarítmica cercana a la frecuencia de corte. La razón de corte indica la capacidad de un sistema para distinguir la señal del ruido.

Sistemas de Fase Mínima y No Mínima • Sistemas de Fase Mínima: Este tipo de sistemas tienen todos los polos y ceros de parte real negativa, es decir que todos se encuentran en el semiplano izquierdo. •Sistemas de Fase No Mínima: En este caso existen factores con parte real positiva, es decir que se encuentren en el semiplano derecho. Estos factores modifican el comportamiento del diagrama de ángulo de fase de la RF del sistema, sin modificar el diagrama de magnitud del mismo. De allí que por simple inspección del diagrama de fase se puede concluir sobre la existencia o no de factores de fase NO Mínima. El factor de retardo se considera un factor de fase no mínima.

Page 9: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 9

Margen de Fase: Es la cantidad de retardo de fase adicional en la frecuencia de la ganancia de cruce que se requiere para llevar el sistema de fase mínima a la frontera de la inestabilidad. La frecuencia de Ganancia de cruce es la frecuencia en la cual la magnitud de la función de transferencia en lazo abierto es 0 dB. Margen de Ganancia: Es el recíproco de la Magnitud en la frecuencia de cruce de la fase . Esta

frecuencia es donde el ángulo de fase φ = 180°, entonces:

Sistemas de Fase Mínima y No Mínima • Sistemas de Fase Mínima: Este tipo de sistemas tienen todos los polos y ceros de parte real negativa, es decir que todos se encuentran en el semiplano izquierdo. •Sistemas de Fase No Mínima: En este caso existen factores con parte real positiva, es decir que se encuentren en el semiplano derecho. Estos factores modifican el comportamiento del diagrama de ángulo de fase de la RF del sistema, sin modificar el diagrama de magnitud del mismo. De allí que por simple inspección del diagrama de fase se puede concluir sobre la existencia o no de factores de fase NO Mínima. El factor de retardo se considera un factor de fase no mínima. Margen de Fase: Es la cantidad de retardo de fase adicional en la frecuencia de la ganancia de cruce que se requiere para llevar el sistema de fase mínima a la frontera de la inestabilidad. La frecuencia de Ganancia de cruce es la frecuencia en la cual la magnitud de la función de transferencia en lazo abierto es 0 dB.

Page 10: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 10

Margen de Ganancia: Es el recíproco de la Magnitud en la frecuencia de cruce de la fase . Esta

frecuencia es donde el ángulo de fase φ = 180°, entonces:

TRAZAS POLARES La traza polar de una función de transferencia senoidal G(jw) es una gráfica de la magnitud de G(jw) contra el ángulo de fase de G(jw)en coordenadas polares, conforme w varía de cero a infinito. Por tanto, la traza polar es el lugar geométrico de los vectores G(jw)∟G(jw) conforme o varía de cero a infinito. Observe que, en las gráficas polares, los ángulos de fase son positivos (negativos) si se miden en el sentido contrario de las manecillas del reloj (en el sentido de las manecillas) a partir del eje real positivo. La traza polar se denomina, con frecuencia, traza de Nyquist. La figura contiene un ejemplo de dicha traza. Todos los puntos de la traza polar de G(jw) representan el punto terminal de un vector en un valor determinado de w. En la traza polar, es importante mostrar la graduación de la frecuencia del lugar geométrico. Las proyecciones de G(jw) en los ejes real e imaginario son sus componentes real e imaginaria. La magnitud G(jw) y el ángulo de fase ∟G(jw) deben calcularse directamente para cada frecuencia w con el propósito de construir trazas polares. Sin embargo, dado que es fácil construir trazas logarítmicas, los datos necesarios para graficar la traza polar deben obtenerse directamente de la traza logarítmica si ésta se traza primero y los decibeles se convierten a una magnitud ordinaria. O bien, por supuesto puede usarse MATLAB para obtener una traza polar G(jw) o para obtener G(jw)∟G(jw) con precisión para diversos valores de w en el rango de frecuencia que interesa. Una ventaja de usar una traza polar es que representa, en una sola gráfica, las características de la respuesta en frecuencia de un sistema en el rango de frecuencia completo.

Page 11: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 11

Una desventaja es que la traza no indica en forma clara la contribución de todos los factores individuales de la función de transferencia en lazo abierto.

Factores de integral y de derivada . La traza polar de es el eje imaginario negativo dado que

La traza polar de G(jw) = jw es el eje imaginario positivo

Page 12: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 12

Factores de primer orden Para la función de transferencia senoidal

los valores de G(jw) en w = 0 y w = 1/T son, respectivamente,

Si w tiende a infinito, la magnitud de G(iw) tiende a cero y el ángulo de fase tiende a -90º. La traza polar de esta función de transferencia es un semicírculo conforme la frecuencia w varía de cero a infinito, como se aprecia en la. El centro se ubica en 0.5 sobre el eje real y el radio es igual a 0.5.

Page 13: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 13

La traza polar de la función de transferencia 1 + jwT es simplemente la mitad superior de la recta que pasa por el punto (1,0) en el plano complejo y paralelo al eje imaginario, como se observa en la. La traza polar de 1 + jwT tiene un aspecto completamente diferente del de l/(1 + jwT).

Factores cuadráticos Las partes de frecuencia baja y alta de la traza polar de la función de transferencia senoidal

se obtienen, respectivamente, mediante

y

La traza polar de esta función de transferencia senoidal empieza en 1∟0º y termina en 0∟-180” conforme w aumenta de cero a infinito. Por tanto, la parte de frecuencia alta de G(jw) es tangente al eje real negativo. Los valores de G(jw) en el rango de frecuencia que interesa se calculan directamente, mediante las trazas de Bode o MATLAB. La figura contiene ejemplos de las trazas polares de la función de transferencia que se acaba de considerar. La forma exacta de una traza polar depende del valor del factor de amortiguamiento relativo ξ pero la forma

Page 14: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 14

general de la traza es igual tanto para el caso subamortiguado (1 > ξ > 0) como para el caso sobreamortiguado (ξ > 1).

Para el caso subamortiguado en w=wn tenemos que y el ángulo de fase en w = wn es de -90”. Por tanto, se observa que la frecuencia en la que el lugar geométrico G(jw) interseca el eje imaginario es la frecuencia natural no amortiguada un. En la traza polar, el punto de frecuencia cuya distancia al origen es la máxima, corresponde a la frecuencia de resonancia wr. El valor pico de G(jw) se obtiene como el cociente entre la magnitud del vector en la frecuencia de resonancia w y la magnitud del vector en w = 0. La frecuencia de resonancia wr, se señala en la traza polar de la figura.

Para el caso sobreamortiguado, conforme 5 aumenta mucho más allá de la unidad, el lugar geométrico G(jw) tiende a un semicírculo. Esto se observa pues, para un sistema muy amortiguado, las raíces características son reales y una es mucho más pequeña que la otra. Dado que para un ξ suficientemente grande el efecto de la raíz mayor (mayor en su valor absoluto) sobre la respuesta se vuelve muy pequeño, el sistema se comporta como uno de primer orden. A continuación, considere la siguiente función de transferencia senoidal:

La parte de frecuencia baja de la curva es

y la parte de frecuencia alta es

Dado que la parte imaginaria de G(jw) es positiva para w > 0 y aumenta en forma monotónica, además de que la parte real de G(jw) se decrementa en forma monotónica a partir de la

Page 15: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 15

unidad, la forma general de la traza polar de G&) es la que aparece en la figura. El ángulo de fase está entre 0º y 180º

Considere la siguiente función de transferencia de segundo orden:.

Dado que la función de transferencia senoidal se escribe como

la parte de frecuencia baja de la traza polar se convierte en

y la parte de frecuencia alta se vuelve

La forma general de la traza polar de G(jw) aparece en la figura. La traza de G(jw) es asintótica para la línea vertical que pasa por el punto (-T, 0). Dado que esta función de transferencia contiene un integrador (1/s), la forma general de la traza polar difiere sustancialmente de las funciones de transferencia de segundo orden que no poseen un integrador.

1. Para sistemas de tipo 0: el punto inicial de la traza polar (que corresponde a w=0) es finito y está sobre el eje real positivo. La tangente para la traza polar en o w=0 es perpendicular al eje

real. El punto terminal, que corresponde a w = ∞, está en el origen y la curva es tangente a uno de los ejes. 2. Para sistemas de tipo 1: el término (jw) del denominador contribuye -90” al ángulo de fase

total de G(jw) para 0<w<∞. En w = 0, la magnitud de (jw) es infinita y el ángulo de fase se convierte en -90”. En frecuencias bajas, la traza polar es asintótica para una línea paralela al

eje imaginario negativo. En w = ∞, la magnitud se vuelve cero y la curva converge hacia el origen y es tangente a uno de los ejes. 3. Para sistemas de tipo 2: el término (jw) del denominador contribuye -180º al ángulo de fase

total de G(jw) para 0<w<∞. En w = 0, la magnitud de G(jw) es infinita y el ángulo de fase es

Page 16: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 16

igual a -180”. En frecuencias bajas, la traza polar es asintótica para una línea paralela al eje real

negativo. En w=∞, la magnitud se vuelve cero y la curva es tangente a uno de los ejes. Las formas generales de las partes de frecuencia baja de las trazas polares de los sistemas de tipo 0, tipo 1 y tipo 2 aparecen en la figura. Se observa que, si el grado del polinomio del denominador de G(jw) es mayor que el del denominador, entonces los lugares geométricos G@) convergen al origen en el sentido de las manecillas del reloj

Page 17: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 17

CRITERIO DE ESTABILIDAD DE NYQUIST

Diagrama para el análisis de estabilidad de un sistema en lazo cerrado.

Entonces: 01)( =+= GHsP ⇒ )(

)(18011

sD

sNKGH =°−∠=−=

NYQUIST evalúa GH alrededor de una trayectoria o contorno cerrado Ω , en el plano ""s ,

que genera un segundo contorno cerrado Γ , en el plano ""GH , para luego utilizar el

contorno cerrado Γ para localizar en el plano ""s los CEROS de: GH+1 para ganancia

variable.

Este proceso se basa en el TEOREMA DE LA PROYECCIÓN CONFORME DE CAUCHY que dice:

* Si una trayectoria en el plano ""s es cerrada ( Ω ), entonces le corresponde otra trayectoria

en el plano ""GH también cerrada ( Γ ).

* Si una trayectoria en el plano ""s encierra singularidades (POLOS y CEROS) de GH , se

cumple que:

PZN −=

Donde: N = # de circunvalaciones (en sentido horario) de la trayectoria Γ alrededor

de una ORIGEN.

Z = # de CEROS de GH dentro de la trayectoria Ω .

P = # de POLOS de GH dentro de la trayectoria Ω .

Plano ""s : ωσ js += Plano ""GH : GHmjGHeGH ℑ+ℜ=

σ

ωjΩ

XX X

O

• 1S

2S

••

Γ

)( 1SGH)( 2SGH

GHeℜ

GHmℑ

)(

Pr

mappingconformal

conformeoyección

2;1 == PZ ⇒ 121 −=−=−= PZN (rotación de Γ en dirección

opuesta a la rotación de Ω ).

CRITERIO DE NYQUIST

NYQUIST elige un contorno Ω que contenga la mitad derecha del plano ""s en sentido

horario. En este contorno no debe haber POLOS o CEROS de GH .

Page 18: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 18

Entonces, los CEROS de GH+1 son la solución de la Ecuación característica, pero a su vez son

los POLOS de la Función de Transferencia.

Por lo tanto, lo que se requiere es evaluar GH a lo largo de Ω y agregar "1" al resultado, por

lo que cualquier circunvalación al origen del plano GH+1 es una circunvalación al valor 1−

en el plano GH .

Todo esto es compatible con las gráficas de magnitud y fase de BODE.

ωj

σ

Ω+∞→ω

−∞→ω

+=0ω

−=0ω

∞→

R

0•

1−GHeℜ

GHmℑ

NYQUISTdeContornoΓ

)(

Pr

mappingconformal

conformeoyección

ωj

∞→

R

0σX

1−

+∞

−∞

• )( ωjGHeℜ

)( ωjGHmℑ

+=0ω+∞→ω1−

•°∠0K

°−∠ 4571.0 K

°−∠ 792.0 K

°−∠ 841.0 K °−∠ 900

0=P 00 =⇒= ZN

Si existe un singularidad (polo o cero en el origen), entonces el contorno debe ser modificado,

mediante una semicircunferencia de radio infinitesimal )(ρ se proyecta como

semicircunferencia de radio infinito (R).

Page 19: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 19

ωj

σX1−

+∞

−∞

X )( ωjGHeℜ

)( ωjGHmℑ

−∞→ω

+∞→ω

+→0ω

−→ 0ω

1−)0(0 →→ sρ

∞→R

P = 0 N = 0 ⇒ Z = 0

Sistemas condicionalmente estables. La figura muestra un ejemplo de un lugar geométrico G(jw)H(jw) para el cual el sistema en lazo cerrado se vuelve inestable cuando se varía la ganancia en lazo abierto. Si el incremento de la ganancia en lazo abierto es suficiente, el lugar geométrico G(jw)H(jw) encierra el punto - 1+j0 dos veces, y el sistema se vuelve inestable. Si la ganancia en lazo abierto disminuye lo suficiente, una vez más el lugar geométrico G(jw)H(jw) encierra el punto -1 + j0 dos veces. Para una operación estable del sistema considerado aquí, el punto crítico -1+j0 no debe aparecer en las regiones comprendidas entre OA y BC en la figura. Un sistema que solo es estable para rangos limitados del valor de la ganancia en lazo abierto tales que el punto -1 + j0 está completamente fuera del lugar geométrico G(jw)H(jw)es condicionalmente estable. Un sistema condicionalmente estable es estable para el valor de la ganancia en lazo abierto que se encuentra entre valores críticos, y es inestable si la ganancia en lazo abierto se incrementa o decrementa en forma suficiente. Un sistema semejante se vuelve inestable

MARGEN DE FASE:

El margen de fase se define como el ángulo a través del cual la traza de Nyquist debe girar para que el punto de magnitud unitaria pase a través del punto -1 en el eje real.

En el diagrama de Nyquist se puede dibujar una línea desde el origen al punto en el que el

circulo unidad atraviesa al lugar . El ángulo que va desde el eje real negativo a esta línea es el margen de fase

Page 20: ANALISIS EN FRECUENCIAciecfie.epn.edu.ec/wss/VirtualDirectories/80/CControlC/materias... · Las trazas de Bode o trazas logarítmicas 2. La traza de Nyquist o traza polar 3. La traza

SISTEMAS DE CONTROL AUTOMÁTICO DACI-EPN

Lectura 2: Análisis en Frecuencia Página 20

MARGEN DE GANANCIA:

El margen de ganancia es el reciproco de en la frecuencia donde el ángulo de fase es -180º.

Se define como frecuencia de oscilación como la frecuencia en la cual el ángulo de fase de la función en lazo abierto es igual a -180 º.

El margen de ganancia , se expresa como :

En términos de decibelios será:

Para un sistema estable de fase mínima, el margen de ganancia indica cuanta ganancia se puede aumentar antes de que se haga inestable el sistema.

Para un sistema inestable, el margen de ganancia es indicativo de cuánta ganancia se debe disminuir para hacer estable el sistema.

gK

1

φγ

Referencias Bibliográficas:

Katsuhiko Ogatha, Ingeniería de Control Moderna, cuarta edición, Prentice Hall, España 2003

Ing. Oscar Cerón, Sistemas de Control Automático, Escuela Politécnica Nacional

Prof. Elimer Mata, Departamento de Procesos y Sistemas, Universidad Simón Bolívar