an introduction to x-analysis integration (xai) part 2: multi-representation architecture (mra)...

87
X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact: Russell S. Peak Revision: March 15, 2001 Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved. Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

Upload: ginger-jackson

Post on 04-Jan-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

An Introduction toX-Analysis Integration (XAI)

Part 2: Multi-Representation Architecture (MRA) Primer

Georgia Tech

Engineering Information Systems Lab

eislab.gatech.edu

Contact: Russell S. Peak

Revision: March 15, 2001

Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

Page 2: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

2Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis » Circuit Board Thermomechanical Analysis» Chip Package Thermal Analysis

– Summary

Part 4: Advanced Topics & Current Research

Page 3: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

3Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Integration Objectives for Simulation-based Design

Environments,Mfg. CAD/CAM,Measurements,

etc.

Conditions

Analysis Results

Ansys

Abaqus

CAE

ImprovedDesign / Process

SelectedAnalysis Module (CBAM)

AutomatedIdealization/

Defeaturization

MCAD

ECAD

DesignProduct Model

CBAM= context-based analysis model

• Highly automated• Reusable, modular, extensible• Product-specific• Leveraging generic solvers

Analysis Results

Ansys

Abaqus

CAE

IterativeImprovements

Analysis Module Catalogs

Analysis Results

Ansys

Abaqus

CAE

Ubiquitous Analysis Models

Page 4: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

4Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

X-Analysis Integration(X=Design, Mfg., etc.)

Goal:Improve product engineering processes by integrating

analysis models with other life cycle models Challenges:

– Heterogeneous Transformations– Diversity: Information, Behaviors, Disciplines, Fidelity, Feature Levels,

CAD/CAE Tools, etc.– Multidirectional Associativity:

DesignAnalysis, Analysis Analysis One Approach:

The Multi-Representation Architecture (MRA) Initial Focus:

Automation of ubiquitous analysis for design

Page 5: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

5Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Integration Challenges: Heterogeneous Transformations

Heterogeneous Transformation

Homogeneous Transformation

Mentor Graphics Cadence

STEPAP210

Mentor Graphics Ansys

STEPAP210

STEPAP209??

DesignModel A

DesignModel B

DesignModel A

AnalysisModel A

Page 6: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

6Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Integration Challenges:

Information Diversity

EnvironmentalConditions Specification

Semantics

Idealizations

“Manufacturable”Description

“Analyzable”Description

“PWB shouldhave low bow & twist”

“Warpage < 7.5% whenboard is cooled from lamination to 25oC”

laminationtemperature =

200oC

B

STEPAP220

STEPAP210

Page 7: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

7Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Diverse Analysis Disciplines

Thermal

Thermomechanical

Fatigue

Vibration

Electromagnetic

Electrical

PWA 95145

U101

L101 T102

Q105

T101

Q104

R101

CR102

C102

C203 CR154 CR152

R163 CR151 CR101

C104

C103

R109 R110

Q101 Q102 C120

CR133

C153

C146 C147 C106

C111

C112

R230 R232 R233

R102 Q103

U107

U108

U103

U104

U109

U110

U105

U106

C123

R106 R107 R108

R111 R112 R113 R114 R115

R231

C118

x y

PWB 96510

J101

U102

N

Page 8: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

8Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-fidelity ModelsExample: Supporting age in a people information model

How old are you? In years:

– fidelity 1: age = current year - year of birth ...– fidelity 2: also consider: is today before/after

birthday? In days:

– fidelity 3: do not consider leap years– fidelity 4: consider leap years

In hours:– fidelity 5: consider time zone– fidelity 6: consider planetary orbit adjusments

In seconds:– fidelity 6: is sufficiently accurate data

available?

Model content depends on:a) questions to answer

b) accuracy needed

Page 9: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

9Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Same Object ...

Multiple/Different Forms of Geometry Capture

1D Line (Curve)

3D Solid (Volume)

2D Surface (Shell)

Geometric Idealization: Dimensional ReductionBeam Example: 1D, 2D, 3D

Adapted from [Gordon, 2001]

Page 10: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

10Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Dimensional Reduction

1D Line (Curve)

3D Solid (Volume)

2D Surface (Shell)

Geometric Idealization: Dimensional ReductionBeam Example: 1D, 2D, 3D (Exploded View)

Adapted from [Gordon, 2001]

Page 11: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

11Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Mid-Surfaces (2D)

Trimmed and Adjusted Mid-Surfaces

Adapted from [Gordon, 2001]

Category II

Design - Solids (3D)

Geometric Idealization: Dimensional Reduction Computer-Aided Mid-Surfacing (Solids-to-Shells)

Issue: Matching seams in multi-part assemblies

(capturing problem-dependentidealization decisions)

Page 12: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

12Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Fidelity IdealizationsBehavior-dependent Idealized Geometries; Same Dimension

Thermal Resistance

Thermal Stress

FEA ModelIdealized Geometry (3D)

Common Design ModelCu(0.15)BT-Resin (0.135)

0.56

(Air)

(0.135)

Al Fin (1.5)Adhesive(0.05)

FEA ModelIdealized Geometry (3D)

Page 13: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

13Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Fidelity IdealizationsSame Behavior; Idealized Geometries of Varying Dimension

inboard beam

Design Model (MCAD) Analysis Models (MCAE)

1D Beam/Stick Model

3D Continuum/Brick Model

flap support assembly

Behavior = Deformation

Page 14: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

14Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Reusable Multi-Fidelity Geometric Idealizations: Bounding Shapes

Design Model

Multi-FidelityIdealizations

2-D bounding box

3-D bounding box

Multiple Uses

SolderJointDeformation

Analysis Models

PWACooling

SolderJointDeformation

PWACooling

Multiple Uses

Page 15: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

15Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Dimensions of Idealization Fidelity

Also: results idealization– How to “summarize” detailed analysis results back to product level value

» Ex. Getting max. (or avg.) temperature on a surface to compute thermal resistance

– Effectively a “results BC”

See [Gordon, 2001] regarding categories of analysis wrt geometric idealizations and directionality

– S. Gordon (Jan. 16-18, 2001) An Analyst’s View: STEP-Enabled CAD-CAE Integration.NASA STEP for Aerospace Workshop, Pasadena, http://step.nasa.gov

Idealization Dimensions Examples (Multiple Fidelities)Analytical bodies* basic extensional rod (1D): )(xfxx solid continuum (3D): ),,( zyxfxxMaterial models linear elastic bilinear plasticGeometric simplifications total thickness; effective length bounding boxBoundary conditions uniform temperature, T; ),,,( tzyxfT avgTT on top surface (heuristics)

*An analytical body = a combination of particular assumptions regarding kinematics (field dimensions),types of loads, and material models.

Page 16: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

16Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Categories of Geometric Idealization for CAD-CAE Integration

Category I - The CAD Geometry and the Simulation-Specific Geometry are the same (identical). This is the truly “seamless” case; there is no change in detail, no de-featuring, and no geometry gender changing required. Analysts and designers use the same (or duplicate copies of the same) geometry.

Category II - Existing (available) CAD geometry has the wrong content; it is too detailed and/or of the wrong type to support the scale, scope, and purpose of the required or most appropriate type of analysis. Changes are required to add features or remove unnecessary detail from, and/or modify the gender of, the CAD geometry to create Simulation-Specific Geometry amenable to analysis. Automated and semi-automated procedures are required.

Category III - Engineering analyses are performed first to define and refine a design concept using idealized geometry prior to establishment of the enterprise (CAD) product model. Simulation-Specific Geometry employed for analysis models will require modification and the addition of details and features to support drawings and manufacturing. Automated and semi-automated procedures are desirable.

CA

D-C

entr

ic P

roce

ss

CA

E-C

entr

ic P

roce

ss

Adapted from [Gordon, 2001]

Page 17: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

17Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

“Three-Dimensional CAD Design and Analyzing with Shell Elements - A Soluble Contradiction?”, by M. W. Zehn, H. M. Baumgarten, & P. Wehner, NAFEMS 7th Int’l. Conf., Newport, RI, April 1999

“Don’t Change the Model Till the Simulation Finishes”, by Paul Kurowski, Machine Design, August 19, 1999

“Rookie Mistakes - Over Reliance on CAD Geometry”, by Vince Adams, NAFEMS Benchmark, October 1999

“Common Misconceptions About FEA”, by Vince Adams, ANSYS Solutions, Fall 2000

“Eight Tips for Improving Integration Between CAD and CFD”, by Scott Gilmore, Desktop Engineering, May 2000

Adapted from [Gordon, 2001]

Recent Articles ShowingEnlightened Views

Page 18: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

18Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COTS Vendor Report Card

Category I A Mature, MCAD for solids good

Category II B-,C+ Improving, recent mid-surfacing attention

Category III D,F Very little for CAE-centric ‘leading design’, need shell ‘thickening’ tools, or ‘solids-on-demand’

Overall:Still too CAD-CentricContinued role for traditional FEA pre- and post-processorsAP209 is ready to support / enable more CAD-CAE integrationAP209 is more appropriate for CAE than AP203Need more vendor support for AP209

Vendor Status for CAD-CAE Integration Geometric Idealization

Adapted from [Gordon, 2001]

Page 19: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

19Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis at Diverse Levels ofProduct Structure

Design Model (MCAD) Analysis Models (MCAE)

Part Feature Level Model

Assembly Level Model

Page 20: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

20Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

Channel Fitting Analysis

Design Geometry - Analysis Geometry Mismatch

Analysis Model (with Idealized Features)

Detailed Design Model

Idealizations

1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/2

“It is no secret that CAD models are driving more of today’s product development processes ... With the growing number of design tools on the market, however, the interoperability gap with downstream applications, such as finite element analysis, is a very real problem. As a result, CAD models are being recreated at unprecedented levels.” Ansys/ITI press Release, July 6 1999

http://www.ansys.com/webdocs/VisitAnsys/CorpInfo/PR/pr-060799.html

No explicit

fine-grained

CAD-CAE

associativity

Page 21: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

21Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Missing Today:Explicit Design-Analysis Associativity

CAD Modelbulkhead assembly attach point

CAE Model channel fitting analysis

materialproperties

idealizedanalysis

geometry

analysisresults

detaileddesigngeometry

No explicit

fine-grained

CAD-CAE

associativity

inconsisten

cy littleautomationlittleknowledge capture

Page 22: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

22Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-directional Relations“The Big Switch”

Sizing/synthesis during early design stages– Input: Desired results - Ex. fatigue life, margin of safety– Output: Idealized design parameters– Outputs then used as targets to guide detailed design

Analysis/req. checking during later design stages– Input: Detailed design parameters– Intermediate results: Idealized design parameters – Output: Analysis results - Ex. fatigue life, margin of

safety– Outputs then compared with requirements

Id1=6.66

AAc=3.33 =30.00

width=20

thick=0.25 P=100

I

width=20

thick=0.25

d1=7.5

Ac=3.125

AP=100

=32.00

Page 23: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

23Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Inter-Analysis Associativity

Flap Assembly FEA Model Flap Support Assembly FEA Model

Inboard BeamBulkhead Channel Fitting

Static Strength Model

boundary conditions

boundary conditions

Page 24: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

24Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis » Circuit Board Thermomechanical Analysis» Chip Package Thermal Analysis

– Summary

Part 4: Advanced Topics & Current Research

Page 25: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

25Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

X-Analysis Integration Techniquesa. Multi-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

b. Explicit Design-Analysis Associativity

c. Analysis Module Creation Methodology

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n e d O b j e c t - b a s e d A n a l y s i s M o d u l eC o n s t r a i n t S c h e m a t i c V i e w

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a l

t o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3

T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e l

c o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B 4 C B A M

F i n e - G r a i n e d A s s o c i a t i v i t y

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 26: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

26Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Components of the MRAAnalysis Integration Technique Conceptual architecture: MRA Methodology General purpose MRA toolkit: XaiTools

– Toolkit architecture– Users guide– Tutorials (work-in-process)

Product/company-specific applications– PWA/Bs (ProAM)– Aerospace structural analysis (Boeing PSI)– Chip packaging/mounting (Shinko)

See http://eislab.gatech.edu/ for references

Page 27: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

27Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

Composed of four representations (information models) Provides flexible, modular mapping between design & analysis models Creates automated, product-specific analysis modules (CBAMs) Represents design-analysis associativity explicitly

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 28: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

28Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Ubiquitous Analysis: Opportunity for Automation

Potential Ubiquitous AnalysesPerformanceEMI - Trace Spacing Variation

ReliabilitySolder Joint Deformation - Thermomechanical [Engelmaier, 1989; Lau, et al., 1986; Kitano, et al. 1995]Solder Joint Fatigue - Component MisalignmentPlated Through-Hole Fatigue [Sizemore & Sitaraman,1995]

ManufacturabilityReflow Soldering - PWA/B Warpage [Stiteler & Ume, 1996]Bed-of-Nails Test - PWA Deflection [Iannuzzelli, 1990]Solder Wave - Component Shadowing

ConceptualDesign

CheckLayout

1

2

3

Modified Layout

Acceptable Layout

Unacceptable Layout

DevelopPWA

Layout

ModifyLayout

Typical PWA Design Process

The regular widespread use of an established analysis models.

Page 29: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

29Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design-Analysis IntegrationMethodology

Provides technique to bridge CAD-CAE gap Uses AI & info. technology: objects, constraint graphs, STEP, etc.

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 30: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

30Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

XaiTools FrameWorkX-Analysis Integration Toolkit

t e m p e r a t u r e c h a n g e , T

c t e ,

y o u n g s m o d u lu s , E

s t r e s s ,

s h e a r m o d u lu s , G

p o is s o n s r a t io ,

s h e a r s t r e s s , s h e a r s t r a in ,

t h e r m a l s t r a in , t

e la s t ic s t r a in , e

s t r a in ,

r 2

r 1)1(2

EG

r 3

r 4Tt

Ee

r 5

G

te

Multi-Representation Architecture (MRA)Reference Implementation

Analysis Modules & Building BlocksConstraint Schematics Implementations

deformation model

Thermal Bending System

L

b

T

Treference

t

T

total diagonalpwb

total thickness

coefficient of thermal bending

warpage

al1

al2

mv1

al3

soldersolder joint

pwb

component

1.25

deformation model

total height

detailed shape

rectangle

[1.2]

[1.1]

average

[2.2]

[2.1]

cTc

Ts

inter-solder joint distanceapproximate maximum

sj

L s

primary structural material

total thickness

linear-elastic model

Plane Strain

geometry model 3

a

stress-strainmodel 1

stress-strainmodel 2

stress-strainmodel 3

Bodies System

xy, extreme, 3

T2

L1

T1

T0

L2

h1

h2

T3

Tsj

hs

hc

L c

xy, extreme, sjbilinear-elastoplastic model

linear-elastic model

primary structural material linear-elastic model

componentoccurrence

solder jointshear strainrange

[1.2]

[1.1]length 2 +

3 APM 2 ABB2

1

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

TM

CAD/E Integration Framework

Product-Specific Applications Airframe structural analysis PWA-B thermomechanical analysis & design

XaiTools PWA-B™

Electronic package thermal & stress analysis

XaiTools ChipPackage™

Leveraging commercial CAD & CAE tools

I d e a l i z a t i o n T o o l s *

L i b r a r i e s

S y n t h e s i s T o o l s *

I C A D , . . .

S A , M C A D , . . .

O D B M S * , P D M *

M C A D : C A T I AI - D E A S * , P r o / E * , U G * , A u t o C A D * , . . .

E C A D : M e n t o r G r a p h i c s ( S T E P A P 2 1 0 )P W B L a y u p A D T , C h i p P a c k a g e A D T

A c c e l ( P D I F , G e n C A M ) * , . . .

F E A : A n s y s , E l f i n i * , A b a q u s * , . . .M a t h : M a t h e m a t i c a , M a t h C A D * , M a t l a b * , . . .

O p t i m i z e r s : C o n M i n , i S I G H T * , M o d e l C e n t e r * , . . . I n - H o u s e C o d e s

C o n s t r a i n tS o l v e r

C O B S c h e m a s

o b j e c t s , x . x m l *x . c o s , x . e x p

A n a l y s i s M o d u l e T o o l s( p r o d u c t - s p e c i f i c )

M a t h e m a t i c a

T e m p l a t e L i b r a r i e s : A n a l y s i s P a c k a g e s * , C B A M s , A B B s , A P M s , C o n d i t i o n s *I n s t a n c e s : U s a g e / a d a p t a t i o n o f t e m p l a t e s

S o l u t i o nT o o l s

C O B I n s t a n c e s

o b j e c t s , x . x m l *x . c o i , x . s t e p

T o o l F o r m s( p a r a m e t e r i z e d

t o o l m o d e l s / f u l l * S M M s )

O b j e c tR e p o s i t o r i e s

D e s i g n T o o l s

C O B / O b j e c t M a n a g e r

a s t e r i s k ( * ) =I n - p r o g r e s s / e n v i s i o n e d e x t e n s i o n s

S i m u l a t i o n M g t . T o o l s

C O B M g t . T o o l sN a v i g a t o r s

E d i t o r s ( t e x t & g r a p h i c a l * )

P u l l a b l e V i e w s * ,C o n d i t i o n M g r * , . . .

A P I / W r a p p e rC O R B A ,

S O A P * , J i n i *

C A D T o o l s

M a t e r i a lP r o p e r t i e s M g r .

M A T D B * , M v i s i o n * , . . .

S t d . P a r t sM a n a g e r

F A S T D B * , . . .

*

*

*

t e m p e r a t u r e c h a n g e , T

c t e ,

y o u n g s m o d u l u s , E

s t r e s s ,

s h e a r m o d u l u s , G

p o i s s o n s r a t i o ,

s h e a r s t r e s s , s h e a r s t r a i n ,

t h e r m a l s t r a i n , t

e l a s t i c s t r a i n , e

s t r a i n ,

r 2

r 1

)1(2

EG

r 3

r 4

Tt

Ee

r 5

G

te

Page 31: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

31Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Idealization Tools*

Libraries

Synthesis Tools*

ICAD, ...

SA, MCAD, ...

COB-Enhanced XAI Interoperability FrameworkCompany/Product-Independent ViewXaiTools with Envisioned Extensions

DBMS*, PDM*:Enovia, Metaphase ...

MCAD: CATIAI-DEAS*, Pro/E*, UG *, AutoCAD*, ...

ECAD: Mentor Graphics (STEP AP210)PWB Layup ADT, ChipPackage ADT

Accel (PDIF, GenCAM)*, ...

FEA: Ansys, Elfini*, Abaqus*, ...Math: Mathematica, MathCAD*, Matlab*, ...

Optimizers: ConMin, iSIGHT*, ModelCenter*, ... In-House Codes

ConstraintSolver

COB Schemas

objects, x.xml*x.cos, x.exp

Analysis Module Tools(product-specific)

Mathematica

Template Libraries: Analysis Packages*, CBAMs, ABBs, APMs, Conditions*Instances: Usage/adaptation of templates

SolutionTools

COB Instances

objects, x.xml*x.coi, x.step

Tool Forms(parameterized

tool models/full* SMMs)

ObjectRepositories

Design Tools

COB/Object Manager

asterisk (*) =In-progress/envisioned extensions

Simulation Mgt. Tools

COB Mgt. ToolsNavigators

Editors (text & graphical*)

Pullable Views*,Condition Mgr*, ...

API / WrapperCORBA,

SOAP*, Jini*

CAD Tools

MaterialProperties Mgr.

MATDB*,Mvision*, ...

Std. PartsManager

FASTDB*, ...

*

*

*

t e m p e r a t u r e c h a n g e , T

c t e ,

y o u n g s m o d u lu s , E

s t r e s s ,

s h e a r m o d u lu s , G

p o is s o n s r a t io ,

s h e a r s t r e s s , s h e a r s t r a in ,

t h e r m a l s t r a in , t

e la s t ic s t r a in , e

s t r a in ,

r 2

r 1)1(2

EG

r 3

r 4Tt

Ee

r 5

G

te

J2EE App. Server Accelis … + XaiTools

Page 32: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

32Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Using Internet/Intranet-based Analysis SolversThick Client Architecture

Client PCs

XaiTools

Thick Client

Users

Internet

June’99-Present:EIS Lab - Regular internal use

U-Engineer.com - Demo usage: - US - Japan

Nov.’00-Present:Electronics Co. - Began production usage (dept. Intranet)

Future:Company Intranet and/or

U-Engineer.com(commercial) - Other solvers

Iona orbixdj

Mathematica

Ansys

Internet/Intranet

XaiTools AnsysSolver Server

XaiTools AnsysSolver Server

XaiTools Math.Solver Server

CORBA Daemon

XaiTools AnsysSolver Server

FEA Solvers

Math Solvers

CORBA Servers

CO

RB

A IIO

P..

.

Engineering Service BureauHost Machines

Page 33: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

33Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

XaiTools CORBA ServersInstallation at GIT EIS Lab as of March, 2000

Client PCs

XaiTools

Thick Client

Internet

Iona orbixdj

Mathematica

Internet/Intranet

XaiTools Math.Solver Server

CORBA Daemon

Math Solvers

CORBA Servers

CO

RB

A IIO

P

golden.marc.gatech.edu Sun UltraSPARC 1

Regular Users• EIS Lab

Pilot Users• Phoenix AZ• Huntsville AL• Japan• etc.

Host Machines

Iona orbixdj

Mathematica

Ansys

XaiTools AnsysSolver Server

CORBA Daemon

XaiTools AnsysSolver Server

FEA Solvers

Math Solvers

CORBA Servers

hoogly.marc.gatech.edu Sun UltraSPARC 10

Page 34: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

34Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

“XAI Panorama”Flexible High Diversity Design-Analysis Integration

Tutorial Examples: Flap Link (Mechanical/Structural Analysis)

A n a ly s is M o d u le s o f D iv e r s e B e h a v io r & F id e l i t y

( C B A M s )

y

xPP

E , A

LL e f f

,

L

A n a ly z a b le P r o d u c t M o d e l

( A P M )

X a i T o o l s

X a i T o o l s

E x t e n s io n

T o r s io n

1 D

1 D

T e m p la t e L ib r a r ie s( A B B s , C B A M s , … )

tem pera ture change,T

m aterial m ode l

tem pera ture, T

reference tem pera ture , T o

cte,

youngs m odu lus, E

fo rce, F

area, A stress,

undeform ed length, L o

stra in ,

to ta l elongation ,L

length , L

start, x 1

end, x 2

m v6

m v5

sm v1

m v1m v4

E

O ne D L inearE lastic M ode l

(no shear)

T

e

t

therm al strain , t

elastic s train, e

m v3

m v2

x

FF

E , A ,

LL o

T , ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r ia l

e f f e c t iv e le n g t h , L e f f

d e f o r m a t io n m o d e l

l in e a r e la s t ic m o d e l

L o

T o r s io n a l R o d

G

J

r

2

1

s h e a r m o d u lu s , G

c r o s s s e c t io n :e f f e c t iv e r in g p o la r m o m e n t o f in e r t ia , J

a l1

a l3

a l2 a

l in k a g e

m o d e : s h a f t t o r s io n

c o n d it io n r e a c t io n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d iu s , r o a l2 b

s t r e s s m o s m o d e l

a l lo w a b le s t r e s s

t w is t m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l lo w a b let w is t

A n a ly s is T o o ls( v ia S M M s )

* = I t e m n o t y e t a v a i l a b le in to o lk i t ( a l l o th e r s h a v e w o r k in g e x a m p le s )

2 D ,3 D *

t s 1

B

s le e v e 1

B t s 2

d s 2

d s 1

s le e v e 2

L

s h a f t

L e f f

s

r ib 1 r ib 2

x

TT

G , r , , ,J

L o

y

F la p L in kE x te n s io n a l M o d e l

F la p L in kP la n e S t r a in M o d e l

F la p L in kT o r s io n a l M o d e l

M C A D T o o lsC A T I A , I - D E A S * P r o / E * , U G * , . . .

D e s ig n T o o ls

F E A A n s y s

A b a q u s *

C A T I A E l f i n i *

M S C N a s t r a n *

M S C P a t r a n *

. . .

G e n e r a l M a t hM a t h e m a t i c a

M a t l a b *

M a t h C A D *

. . .

M a t e r ia ls L ib r a r ie sI n - H o u s e , . . .

P a r t s L ib r a r ie sI n - H o u s e * , . . .

Page 35: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

35Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 36: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

36Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Building Blocks (ABBs)

Analysis Primitives

Beam

q(x)

Distributed Load

RigidSupport

Cantilever Beam System

Analysis Systems- Primitive building blocks - Containers of ABB "assemblies"

Material Models

Specialized

General

- Predefined templates

- User-defined systemsAnalysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-Elastic

BilinearPlastic Plate

Low CycleFatigue

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

RigidSupport

No-Slipbody 1

body 2

Temperature,

Stress,

Strain,

T

Geometry

Object representation of product-independent analytical engineering concepts

Page 37: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

37Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Libraries ofAnalysis Building Blocks (ABBs)

Material Model ABB

Continuum ABBs

modularre-usage

E

O n e D L in e a rE la s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o la r m o m e n t o f i n e r t i a , J

r a d iu s , r

u n d e f o r m e d l e n g t h , L o

t w i s t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0L

r

J

rT r

t o r q u e , T r

x

TT

G , r , , ,J

L o

y

m ateria l m odel

tem perature, T

reference tem perature, T o

force, F

area, A

undeform ed length, L o

to ta l e longation,L

length, L

start, x1

end, x2

E

O ne D LinearE lastic M odel

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E , A ,

LL o

T , ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, telastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Page 38: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

38Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Extensional Rod Constraint Graph

T To

F A Lo

L

L

x1 x2

r1

12 xxL r2 oLLL r4A

F

edb.r1 oTTT

r3L

L

T

E

t

e

mat.r1)1(2

EG

Tt

Ee

mat.r5

G

te

G

mat.r2

mat.r3

mat.r4

0

Mat_sc.r1

1D Linear Elastic Model(COB re-usage)

x

FF

E, A,

LLo

T, ,

yL

Page 39: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

39Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 40: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

40Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analyzable Product Models (APMs)

SolidModeler

MaterialsDatabase

FastenersDatabase

Design Applications Analysis Applications

FEA-BasedAnalysis

Formula-BasedAnalysis

Combineinformation

Add reusablemultifidelityidealizations

Analyzable Product Model(APM)

...Provide advanced access to design data needed by diverse analyses.

Support multidirectionality

Page 41: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

41Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Link Geometric Model

(with idealizations)

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

shaft

Leff

s

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

rib1

Detailed Design

rib2

red = idealized parameter

28b

Page 42: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

42Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage ExampleManufacturable Product Model (MPM) = Design

Description

Product Attribute

Ri Product Relation

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

flap_link

sleeve_1

rib_2

w

t

r

x

name

R3

R2

t2f

wf

tw

t1f

cross_section

w

t

r

x

R1

COB flap_link SUBTYPE_OF part; part_number : STRING; inter_axis_length, L : REAL; sleeve1 : sleeve; sleeve2 : sleeve; shaft : tapered_beam; rib1 : rib; rib2 : rib;RELATIONS PRODUCT_RELATIONS pr2 : "<inter_axis_length> == <sleeve2.origin.y> -

<sleeve1.origin.y>"; pr3 : "<rib1.height> == (<sleeve1.width> -

<shaft.cross_section.design.web_thickness>)/2"; pr4 : "<rib2.height> == (<sleeve2.width> -

<shaft.cross_section.design.web_thickness>)/2";...

END_COB;

Extended Constraint Graph

COB Structure (COS)

Page 43: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

43Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage ExampleAnalyzable Product Model (APM) = MPM Subset +

Idealizations

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Extended Constraint Graph

Partial COB Structure (COS)

effective_length, Leff == inter_axis_length -

(sleeve1.hole.cross_section.radius + sleeve2.hole.cross_section.radius)

Page 44: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

44Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Concurrent Multi-FidelityCross-Section Representations

MULTI_LEVEL_COB cross_section; design : filleted_tapered_I_section; tapered : tapered_I_section; basic : basic_I_section;RELATIONS PRODUCT_IDEALIZATION_RELATIONS pir8 : "<basic.total_height> == <design.total_height>"; pir9 : "<basic.flange_width> == <design.flange_width>"; pir10 : "<basic.flange_thickness> == <design.flange_base_thickness>"; pir11 : "<basic.web_thickness> == <design.web_thickness>";

pir12 : "<tapered.total_height> == <design.total_height>"; pir13 : "<tapered.flange_width> == <design.flange_width>"; pir14 : "<tapered.flange_base_thickness> == <design.flange_base_thickness>"; pir15 : "<tapered.flange_taper_thickness> == <design.flange_taper_thickness>"; pir16 : "<tapered.flange_taper_angle> == <design.flange_taper_angle>"; pir17 : "<tapered.web_thickness> == <design.web_thickness>";END_MULTI_LEVEL_COB;

Detailed Design Cross-SectionIdealized Cross-Sections

Associativity Relations betweenCross-Section Fidelities

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

Detailed Design

Page 45: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

45Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

APM Interface with Tagged CAD Models (in CATIA v4)

APMCOB Tool

7) Solve idealizations8) Use in analysis

part_number : “9162”; hole1.radius : ?;hole2.radius : ?;length1 : ?;

tk/tclCATGEOwrapper

CATIA v4(CAD tool)

part_number : “9162”; hole1.radius : 2.5;hole2.radius : 4.0;length1 : 20.0;

1) 2) request

4)

5)

6) response

GITInterfaceprogram

0) Designer - Creates design geometry - Defines APM-compatible parameters/tags

3)

3 and 4 similar to other CAD APIs

COB instance format

Page 46: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

46Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Link TaggingDimension Entity Approach - CATIA v4

inter_axis_length

sleeve2.width

sleeve2.inner_diameter

Page 47: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

47Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Link TaggingParametric Entity Approach - CATIA v4

inter_axis_length

sleeve2.width

sleeve2.inner_diameter

Page 48: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

48Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Idealizations

A

B

D =

h =

2D

h/2

(PI^0.5)0.5*D

Design Model - Idealized Model Assoc. inside CATIA v5(work in process)

Page 49: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

49Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Target Situation:CAD Model w/ associated idealized features

Idealized Features (to scale in CATIA v5)

Idealized bulkhead attach point fitting

Design Model (in CATIA v5)

Idealized rear spar attach point fitting

Idealized diagonal brace lug joint

R

c

b

= f( c , b , R )W = f( R , D , )

axial direction

e

D

Page 50: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

50Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 51: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

51Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 52: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

52Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

(1) Extension Analysisa. 1D Extensional Rod

1. Behavior: Shaft Tension

2. Conditions:

Flaps down : F =

3. Part Features: (idealized)

4. Analysis Calculations:

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Conclusion:

A = 1.125 in2

allowable 18000 psi

1

allowableMS 1.025

(2) Torsion Analysis

Flap Link Analysis Documentation

b. 2D Plane Stress FEA...

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

(1a) Analysis Template: Flap Link Extensional Model

APMABB

ABB

CBAM

SMM

Tutorial Example:Flap Link Analysis Template (CBAM)

* Boundary condition objects & pullable views are WIP concepts*

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)*

CAD-CAEAssociativity (idealization usage)

Material Models

PullableViews*

Geometry

Page 53: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

53Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Case Flap Linkage: Analysis Template Reuse of APM

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

Linkage Extensional Model (CBAM)

Flap link (APM)

reusable idealizations

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

stress mos model

Margin of Safety(> case)

allowableactual

MS

x

FF

E, A,

LLo

T, ,

L

Page 54: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

54Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Case Flap Linkage: Analysis Template Reuse of ABBs

modular reusage

Extensional Rod (generic ABB)

Linkage Extensional Model (CBAM)

E

One D Linear

(no shear)

T

e

t

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

Elastic Model

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

stress mos model

Margin of Safety(> case)

allowableactual

MS

x

FF

E, A,

LLo

T, ,

L

Page 55: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

55Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage Extensional Model:

Lexical COB StructureCOB link_extensional_model SUBTYPE_OF link_analysis_model; DESCRIPTION Represents 1D formula-based extensional model.; ANALYSIS_CONTEXT PART_FEATURE link : flap_link BOUNDARY_CONDITION_OBJECTS associated_condition : condition; MODE tension; OBJECTIVES stress_mos_model : margin_of_safety_model; ANALYSIS_SUBSYSTEMS deformation_model : extensional_rod_isothermal; RELATIONS PART_FEATURE_ASSOCIATIVITIES al1 : "<deformation_model.undeformed_length> == <link.effective_length>"; al2 : "<deformation_model.area> == <link.shaft.critical_cross_section.basic.area>"; al3 : "<deformation_model.material_model.youngs_modulus> ==

<link.material.stress_strain_model.linear_elastic.youngs_modulus>"; al4 : "<deformation_model.material_model.name> == <link.material.name>"; BOUNDARY_CONDITION_ASSOCIATIVITIES al5 : "<deformation_model.force> == <associated_condition.reaction>"; OBJECTIVE_ASSOCIATIVITIES al6 : "<stress_mos_model.allowable> == <link.material.yield_stress>"; al7 : "<stress_mos_model.determined> == <deformation_model.material_model.stress>";END_COB;

Desired categorization of attributes is shown above (as manually inserted) to support pullable views. Categorization capabilities is a planned XaiTools extension.

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

Page 56: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

56Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, Abasic

example 1, state 1

steel

10000 lbs

flaps mid position

1.125 in2

18000 psi

30e6 psi

1.025

5.0 in

8888 psi

1.43e-3 inFlap Link #3

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, AbasicX

3.00e-3 in

1.125 in2

5.0 inFlap Link #3

0.0

steel10000 lbs

flaps mid position

18000psi

example 1, state 3

30e6 psi18000 psi

0.555 in2

Flap Linkage Instancewith Multi-Directional I/O States

Design Verification- Input: design details- Output: i) idealized design parameters ii) physical response criteria

Design Synthesis- Input: desired physical response criteria- Output: i) idealized design parameters (e.g., for sizing), or ii) detailed design parameters

Page 57: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

57Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 58: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

58Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

FEA-based Analysis Subsystem Used in Linkage Plane Stress Model (2D Analysis

Problem)

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ABBSMM SMM Template

Page 59: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

59Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 60: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

60Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flap Linkage Torsional Model

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t

Diverse Mode (Behavior) vs. Linkage Extensional Model

Page 61: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

61Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

3,9,11 3,9,113,9,11 3,9,11

(3,9,11)(3,9,11)

(1,11,10)(1,11,10)

(5,25,36)(5,25,36)

flaplinkflaplink APM APM

lib\lib\apmapm

(4,11,3)(4,11,3)

lib\geometrylib\geometry

lib\materiallib\material

lib\lib\abbsabbs

(12,34,22)(12,34,22)(108,68,30)(108,68,30)

(#of entities, #of attribute, # of relations)(#of entities, #of attribute, # of relations)

Product specific Product specific COBsCOBsGeneral General COBsCOBs

Modular Reusable COBsModular Reusable COBsFlap Link Tutorial APM ExampleFlap Link Tutorial APM Example

Page 62: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

62Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 63: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

63Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Typical Solution Tool Processes

Preprocessor Model

Preprocessor Control

Solved Mesh Model

Postprocessor Control

Processed Results

Preprocessor Solver Postprocessor

Unsolved Mesh Model

A

3

11 10 9 8

4 3 2

7

5 6 1

A

A 2

1

C L

extrema, graphics

Model Data

Tool ControlResultsSolution Tool

Page 64: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

64Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ABB-SMM- Solution Tool Interaction

1 Solution Method Model

2 Analysis Building Block Solution Tool

inputs & control

outputs

A 1 3

2

A A

11 10 9 8 4 3

2

7 5 6

1

preprocessor model

mesh model

4 body

ABB SMM

results extrema

u

1 body 3 body 2 body

ABBSMM

1 Solution Method Model Solution Tools

preprocessor model

mesh model

results extrema

u

A 3

11 10 9 8 4 3

2

7 5 6

1

A A 2

1

C L Files

Operating System Object Environment

Tool Agent

inputs & control

outputs

FEA Tools

Page 65: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

65Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ABB Mappings to Diverse Tool-Specific SMMsPlane Strain Model Example

ABBPlane Strain Bodies System

Ansys SMM

Cadas SMM

Cadas

Ansys

Vendor Variation Challenges• Feature set of modeling language • Region decomposition• Numbering & composition of entities• Element type designations

body3

body2

body1

body4

T0

La

h1

h3

h2

Lb

L3

A1

3

2

A

A

1

2

34

6

7

8

9

11

10

13

5

CL

11 12 10

98

4 3

2

7

56

1 2body 2T2material, ,

3body Tmaterial, ,3 3

1body Tmaterial, ,1 1

= key point nn= line nn= area nAn

A25

A23

A21

3

7

109

4

11

14

12

19

13

15

8

12 18 14

1110

7 8

4

9

65

1

body 3

body 1

body 2

13

A24

5

2

6

3

A20 A22

21

16

17

La

Lb

L3

h1

h3

h2

L5 L4

Page 66: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

66Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

La

h1

h3

h2

Lb

L3

A1

3

2

A

A

1

2

34

6

7

8

9

11

10

13

5

CL

11 12 10

98

4 3

2

7

56

1 2body 2T2material, ,

3body Tmaterial, ,3 3

1body Tmaterial, ,1 1

= key point nn= line nn= area nAn

Parameterized FEA Preprocessor ModelFixed Topology - Ansys

/PREP7 ! body1 Material PropertiesMP,EX,1,@EX1@ ! Young's modulusMP,ALPX,@ALPX1@ ! CTEMP,NUXY,1,@NUXY1@ ! Poisson's ratio (minor)

...LA = @LA@ ! Geometric ParametersLB = @LB@L3 = @L3@T0 = @T0@ ! Load ParametersT1 = @T1@T2 = @T2@T3 = @T3@

...K,1, 0.0, 0.0 ! Key PointsK,3, LB, H2K,5, (LA-L3), H2

...NLB = 10 ! Mesh Density ParametersNH2 = 4NH3 = 4

...L,1,2,NLB ! 1 ! Lines <kp1,kp2,divisions,size ratio>L,2,3,NH2,0.5 ! 2L,3,4,NLB/2 ! 3

...AL, 10, 8, 11, 12, 13 ! 1 - body 1 ! AreasAL, 1, 2, 3, 4, 5, 6 ! 2 - body 2AL, 4, 7, 8, 9 ! 3 - body 3

...! Assign materials, Assign loads, Automesh, etc.

ANSYS Prep7 Template@EX1@ = Parameters populated by context ABB

Preprocessor Model Figure

rectangular body 3

Page 67: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

67Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Ansys SMM Implementation Plane Strain Model - Example Instance

solder joint deformation w/ detailed sj: case 3

Page 68: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

68Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

A25

A23

A21

3

7

109

4

11

14

12

19

13

15

8

12 18 14

1110

7 8

4

9

65

1

body 3

body 1

body 2

13

A24

5

2

6

3

A20 A22

21

16

17

La

Lb

L3

h1

h3

h2

L5 L4

Parameterized FEA Preprocessor ModelFixed Topology - Cadas

addbasp 0.0 0.0 ! key points addbasp @L5@ 0.0addbasp @L3@ 0.0

...addlin2 1 2 ! linesaddlin2 2 3addlin2 3 15

...addsurfp 1 2 6 5 ! areasaddsurfp 2 3 7 6addsurfp 3 15 16 7

... ! materialsmatmger edit 21 @mat1_name@ -99 closematmger edit 102 @mat1_E@ -99 close

...atrsurf 30 31 group 1 ! groupsatrsurf 26 27 28 32 group 2atrsurf 29 33 34 group 3atrgrp 1 2 3 etype s 81 ! element typeatrgrp 1 material 1 ! assign materialsatrgrp 2 material 2atrgrp 3 material 3divset 2601 nodiv 3 1.0 ! line divisionsdivset 2603 nodiv 3 1.0

...mergnode all 1.000E-5 ! mergetempload group 1 v @T1@ ! temperaturestempload group 2 v @T2@tempload group 3 v @T3@fixsuprt node 40 v 23 ! fixed origin bcfixsuprt line 4 15 v 1 ! symmetry bcdbsave smm.pre

Cadas Preprocessor Model Template@EX1@ = Parameters populated by context ABB

Preprocessor Model Figure

rectangular body 3

Page 69: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

69Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Other ABB-SMM Mapping Considerations

Finite ElementSMM Cadas SMM

Ansys SMM

Nastran SMM

Vendor-Specific

ABB

Neutral

ABB Finite Element SMM

Symbolic SMM

Boundary Element SMM

Finite Difference SMM

ABB

Vendor-SpecificFinite Element SMMs

ABBSMM

ABBSMM

Cadas SMMAnsys SMM

Nastran SMM

ABBSMM

Solution MethodVariation

Vendor Variation

(e.g., STEP AP209)

Page 70: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

70Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

SMM Status

Template approach works well for fixed topology cases– Relatively simple– Leverages current parametrized FEA

models Further needs:

– Aid complex cases: Ex. variable toplogy multi-part/body

– Enable multi-vendor / vendor-neutral representations

See Advanced Topics

re: Current Work

Page 71: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

71Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

» MRA Summary– Ubiquitization Methodology

Part 3: Example Applications

Part 4: Advanced Topics & Current Research

Page 72: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

72Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Evaluation Test Case Statistics: COB Structure

Test Cases COB Libraries Used # of Entities, Attributes, Relations

To

tal

Ag

gre

ga

te

To

tal

On

ew

ay

Ag

gre

ga

te O

pe

ratio

n

Ag

gre

ga

te In

sta

nce

4 11 3

108 68 30

lib\geometry.cos 12 34 22

3 9 1lib\apm.coslib\materials.coslib\abbs.cosapm.cos

lib\abbs.cosapm.cos

abbs.cos lib\apm.cos 24 39 12 3lib\geometry.coslib\apm.cosairplane\lib\abbs.cos

fastener.cos 3 7materials.cos 1 38

lib\geometry.coslib\apm.cosairplane\lib\materials.cosairplane\lib\fastener.cosairplane\lib\cbams.cosairplane\bikeframe\apm.cos

lib pwb_board.cos 13 21 2 5lib\geometry.coscp\lib\pwb_board.coslib\abbs.coscp\bga\apm.coslib\geometry.coscp\lib\pwb_board.coslib\abbs.coscp\qft\apm.cos

344 753 25 376 8 12 59151 12 4 19

76 1

15

218

1 19412

25

53 177 6 103 3 22

2 20

4 23 20

2 7 16

1 11

ele

ctr

ica

l ch

ip p

acka

ge

(cp

)

Totals

p

rod

uct sp

ecific

a

irp

lan

e

apm.cos

cbams.cos

apm.cos

apm.cos

cbams.cos

cbams.cos

bga (ball grid array)

qfp(quad flat pack)

apm.cos

bikeframe cbams.cos

cbams.cos

fla

plin

k

cbams.cos

apm.cos

lib

77

5 25 36

19152 8 9

53

Relations

5 21 23

10

2

COB Libraries Used En

titie

s

Attributes

pw

a/b

Structure (COS)

geometry.cos

abbs.cos

apm.cos

materials.cosge

ne

ral(

lib

)

Page 73: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

73Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Evaluation Test Case Statistics: COB Structure

Flap Link Test Case

• Supports reusability• Supports complex large problems

Tot

al

Agg

rega

te

Tot

al

One

way

Agg

rega

te O

pera

tion

Agg

rega

te I

nsta

nce

4 11 3

lib\geometry.cos 108 68 30

12 34 22

3 9 1

lib\apm.cos

lib\materials.cos

lib\abbs.cos

apm.cos….. ….. ….. ….. ….. ….. ….. ….. …..

344 753 25 376 8 12 59

Attributes

prod

uct

spec

ific

Structure (COS) Ent

ities

COB Libraries Used

10

36 2

Relations

flaplink

11apm.cos 1

cbams.cos 5 25

gene

ral (

lib)

materials.cos

Totals

abbs.cos

apm.cos

geometry.cos

Page 74: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

74Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Evaluation Example COB Reuse as Modular Building Blocks

Structure (COS) Where used1D Linear Elastic Model (ABB) Extensional Rod ABB

Torsional Rod ABBMargin of Safety ABB 1D Linkage Extensional Flaplink CBAM for stress

1D Torsional Extensional Flaplink CBAM for stress1D Torsional Extensional Flaplink CBAM for twist2D Plane Stress flaplink CBAM for stress2D linkage extensional flaplink CBAM for deformation1D PWB Thermal Bending for warpage2D PWBThermal Bending for warpage1.5D Lug CBAM for stress

Flaplink APM Linkage Extensional CBAMLinkage Plane Stress CBAMLinkage Torsional CBAM

BikeFrame APM Lug Axial/Oblique; Ultimate/Shear CBAMFitting Bending/Shear CBAM

PWA/B APM Thermal Bending CBAM6 Layer Plain Strain CBAMN Layer Plain Strain CBAM

EBGA ChipPackage APM EBGA Thermal Resistance CBAMPBGA ChipPackage APM PBGA Thermal Resistance CBAM

Thermal Stress CBAMQFP ChipPackage APM Thermal Resistance CBMA

Page 75: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

75Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Major Types of Analysis Objects

CBAM = why + how = Analysis Context + Analysis Subsystems (ABBs, etc.) + Associativity Linkages• Can be new, reused, or adapted template• Instance can contain one or more runs

Analysis Context• Analysis specification (why vs. how)• Definable during early planning stages

analysis problem a.k.a: template, context-based analysis model (CBAM),

analysis module

Analysis Building Blocks

(ABBs)

idealizations

boundary variables

allowables

APM Entities

Conditions &Next-Higher

CBAMs

MSallowableactual

Boundary Condition Objects

Part Feature

Mode

Objectives

Analysis Subsystems

SolutionMethod Models

(SMMs)

AnalysisContext

Context-BasedAnalysis Model

(CBAM)

AssociativityLinkages

Page 76: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

76Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

MRA Summary Multiple representations required by:

– Many:Many cardinality– Reusability & modularity

Self-Test: Consider impact of removing a representation Similar to “software design patterns”

for CAD-CAE domain– Identifies patterns between CAD and CAE

(identifies new types of objects)– Other needs: conditions, requirements, next-higher analysis– Captures explicit associativity

Distinctive CAD-CAE associativity needs– Multi-fidelity, multi-directional capabilities

Page 77: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

77Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis » Circuit Board Thermomechanical Analysis» Chip Package Thermal Analysis

– Summary

Part 4: Advanced Topics & Current Research

Recommended ApproachSkim the methodology, then review Part 3

first, then come back for a more detailed look.

Page 78: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

78Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Classes of AnalysisAnalysis Class

Aspect Example Original Adpative Ubiquitous

InputsDesign Families* Multi-layer PWBs Design Instances PWB #95145 Several Several One - ManyDesign Variations Re-order stackup Several - Many Several - Many Several

Solution MethodDevelop new method New FEA element Use established method

Analysis ProcedureDevelop procedure PWB warpage analysis Define analysis criteria Tmax = avg T of chip Define idealizations, : Boundary conditions Uniform temperatureAnalytical body types Plane strain bodyGeometric simplifications Total thicknessMaterial models Linear elastic

Validate procedure Measure samples Shadow moire'Correlate with measurements

Use established procedure IPC-D-279 PTH fatigue

OutputsValidated solution method Validated analysis procedure Sensitivity studies Example datasets Analysis results & design impact

Who Senior Analyst Analyst Designer

Focus Development Development Regular Usage* Design = product or process Analysis = simulation of physical behavior

Page 79: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

79Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Desired Characteristics ofDesigner* Analysis Tools

Tools that are easy to use and that automate tasks as much as possible Predefined catalogs of common product-specific analysis models, along with usage

guidelines Product-specific terminology for model interaction

(e.g., product-specific variable names) Linkages with COTS and in-house design tools that have selective

multi-directional associativity Ability to leverage COTS general purpose CAE tools, as well as

in-house specialty tools Ability to utilize analysis tools without becoming a tool expert Insulation from analysis model details (e.g., node numbers), but access if needed

*Note: Some organizations categorize two types of “design” product team members:

a) Those who develop the product architecture and plan the design of subassemblies and piece parts (at the feature level). Commonly used names for this type of team member include engineers, physical designers, etc.

b) Those who utilize CAD tools to capture these designs in detailed manufacturable form. Commonly used names include designers, CAD users, etc.

In these slides the term “designer” is used loosely for both groups. Generally, Type a) team members need to use analysis modules earlier in the design process to help “size” the designs and evaluate alternatives. Then Type b) users can employ analysis modules to guide and check the detailed design.

This is the typical progression of who has more training to judge the inner workings and limitations of the analysis modules (and thus an increasing class of design cases that they can be called on to analyze): Type b), Type a), and Analyst. Thus if Type b) encounters a border line case or odd analysis results, they might ask the Type a) person to take a look at it. If Type a) feels it is beyond their scope, they can then ask the Analyst to take a

look. If the Analyst is also not certain about it, then physical tests and analysis module extension studies may be needed.

Page 80: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

80Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

IncreasingDesign Space & Analysis Utility

Perform & CorrelateAnalyses

Analyst

DefineApplicability

Analyst

Use inDesign Process

Designer

Improved Design

AnalysisResults

Needs0.1 0.2 2.0

Create Once Use Many Times

Design Instances

Examples,Sensitivity

Studies,Measurement

Correlation

ProcedureDocumentation,Design Guides

Adaptive Analysis (Procedure Creation)

UbiquitizeProcedure

All

Ubiquitization(Template Creation)

Analysis ModuleTemplate

1.0

Ubiquitous Analysis(Template Usage)

(increased precision & scope)

(typical practice)

Applicable Design Space (Comfort Zones)

Use Design Guides

Use Analysis Module

Use Analyst (not automated)

Page 81: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

81Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Ubiquitization ProcessTemplate Creation & Usage Phases

Other Developer/Integrator Roles: Product Modeler, Parts Librarian, Materials Librarian, CAD & CAE Tool Specialist(s)

Identify UbiquitousAnalysis Model

Designer & Analyst

Develop CBAM& Related Entities

Analyst & Developer

Implement CBAM& Related Entities

Developer

Analysis ModuleTemplate (CBAM)

& Applications

Design Needs

1.1 1.2 1.3Established

Analysis Procedure

Ubiquitization (Creation Phase)

UseAnalysis Module

Designer

AutomatedAnalysis Results

Ubiquitous Analysis (Usage Phase)

Analysis ModuleTemplate

DesignInstances

Create Template Once,Use Template Many Times

2.0

Building Blocks

1.0 Ubiqutize Procedure

Page 82: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

82Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

MRA Foundation for Product-Specific Tools

Generic MRA

Foundation

Product-SpecificTooli

i=1...n

Product-Specific

Entities

1 2 3 4

j

product = product domain (e.g., airframes, PWBs, chip packages, …)

Specific APMs

Specific

Specific SASs

Abstract APMs

SMMs General Purpose ABBs

Abstract CBAMs

CBAMs

SAS= specialized analysis system (with possibly specialized procedures - Ex. a VTMB algorithm)

XaiTools PWA-BXaiTools ChipPackage

XaiTools FrameWork Examples

Page 83: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

83Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Typical Sources of Ubiquitous Analysis Models

Corporate technical memos Unpublished notes & know-how Example CAD & CAE model files In-house computer programs Handbooks Journal papers Conference proceedings Textbooks

Page 84: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

84Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Informal Description of a Ubiquitous Analysis Model (Analysis Procedure)

Model Purpose - A brief statement about the model and what design needs it fulfills. It should indicate what design stages best benefit from the model, (typically based on model accuracy

versus computational cost). Major Analysis Steps and Variations - A high-level, top-down view of the

major analysis steps in the form of a tree/network diagram or an IDEF0 process model. Variations

such as directionality, loading conditions, and product configurations should be identified. Analyst Sketches & Idealizations - Sketches of analysis models noting types

of idealizations used: bodies, loads, and material models in product-specific terms.

Relations and Variables - A list of relations and variables. For models that require solution tools such as finite element analysis (FEA) programs, the list should contain a relation

whose variables are the inputs and outputs for that tool. Model Limitations - Guides for the end user, including model assumptions and

acceptable ranges of inputs and outputs.

Model References - Background information about the model, including application to the product type at hand, as well as descriptions of product-independent analysis concepts.

Representative Datasets - Example values for input, intermediate, and output variables for each major variation. These datasets should include related solution tool input and output files (e.g., FEA preprocessor models and results files). If possible, tool files should be parameterized according to their relations and variables identified above

Page 85: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

85Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Observations to Date Need to ensure proper usage (highly automated!)

– Must capture limitations & validity criteria Knowledge capture technique Synergy of specialists; communication aid Catalyst for more analysis research Usage by designers & non-designers (e.g., mfg.)

Page 86: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

86Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Observations (continued) Delivery by network-based

engineering service bureaus (ESBs)– Internet-based: Commercial ESB w/ self-/full-serve consulting– Intranet-based: Internal ESB (for shared corporate usage)– Extranet-based: Internal ESB, with controlled

access for customers & suppliers

XaiTools status:– Focus to date:

» Toolkit for developers & analysts to create analysis templates (ubiquitization process, but non-interactive )

» Support automated template usage by end users

(ubiquitous analysis) - fixed topology; non-field relations

– Next: Aid interactive adaptive analysis (template creation / one-of-a-kind analysis)

Page 87: An Introduction to X-Analysis Integration (XAI) Part 2: Multi-Representation Architecture (MRA) Primer Georgia Tech Engineering Information Systems Lab

87Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis » Circuit Board Thermomechanical Analysis» Chip Package Thermal Analysis

– Summary

Part 4: Advanced Topics & Current Research