withers, william james (1991) pressure fluctuations in the plunge...

Post on 28-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Withers, William James (1991) Pressure fluctuations in the plunge pool of an impinging jet spillway. PhD thesis. http://theses.gla.ac.uk/8246/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten:Theses http://theses.gla.ac.uk/

theses@gla.ac.uk

PRESSURE FLUCTUATIONS IN THE PLUNGE POOL

OF AN IMPINGING JET SPILLWAY

(VOLUME II OF II - TABLES AND FIGURES)

A THESIS ON PLUNGE POOL ENERGY·

DISSIP ATORS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY: WllllAM JAMES WITHERS

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF GLASGOW

FEBRUARY 1991

(i)

IMAGING SERVICES NORTH Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGE NUMBERS ARE

CLOSE TO THE EDGE OF

THE PAGE.-

. SOME ARE CUT OFF

PRESSURE FLUCTUATIONS IN THE PLUNGE POOL

OF AN IMPINGING JET SPILLWAY

(VOLUME II OF II - T ABLES AND FIGURES)

ILLUSTRATION LIST

(T ABLES AND FIGURES FOR EACH CHAPTER IN MAIN TEXT)

CHAPTER 1:

Fig. 1.1

Fig. 1.2

Fig. 1.3

CHAPTER 2' I

Table 2.1

Table 2.2

Table 2.3

Fig. 2.1(a)

Fig. 2.1(b)

Fig. 2.2(a)

Fig. 2.2(b)

Fig. 2.2(c)

Fig. 2.3

Fig. 2.4

View of Morrow Point Dam

View of Crystal Dam

Scour hole at Kariba Dam

Typical values of jet break-up length for

various outlet turbulence levels. (Ervine,

McKeogh and Elsawy)

Experimental conditions in different authors'

studies of air entrainment by plunging jets.

Typical values of Cp' for various hydraulic

structures.

Turbulent energy spectrum.

Comparison of eddy length in pipe.

Velocity variation in X-direction.

Distribution of turbulent velocity.

Co-ordination system for fluctuation

components (Section 2.2 only).

Turbulence mixing length and velocity

fl uct uat ions.

Schematic representation of jet diffusion

pattern. (Albertson)

{i i }

~

2

2

3

5

5

6

7

7

8

8

8

9

9

Fig. 2.5

Fig. 2.6

Fig. 2.7

Fig. 2.8

Fig. 2.9

Fig. 2.10

Fig. 2.11

Fig. 2.12

Fig. 2.13

Fig. 2'.14

Fig. 2.15

Fig. 2.16

Fig. 2.17

Fig. 2.18

Fig. 2.19

Fig. 2.20

Fig. 2.21

Fig. 2.22

Fig. 2.23

Turbulent submerged jet showing typical

velocity profiles, flow regions and loci

of half centre velocities (Davies).

Velocity distribution in circular jets

-Trupe 1.

Definition sketch of circular turbulent jet.

Similarity of velocity profiles.

Gaussian normal probability velocity

distribution.

Comparison of Tollmien's solution with

observations.

Comparison of Goertler and Tollmien-type

solutions with experimental results.

Jet centre line velocity decay (Albertson).

Velocity profile in flow establishment

region. (Albertson)

Comparison of experimental velocity profile

through flow establishment region with

prediction.

Confined jet diffusion-flow pattern.

Shallow depth impingement-hydraulic jump.

Large depth impingement-characteristic flow

regions.

Centre line velocity decay with various

values of nozzle-to-surface spacing and

Reynolds number.

Comparison of measured mean pressure

distribution with free jet theory (Hausler)

Additional pressure head on boundary

(Poreh and Cermak).

Definition sketch of deflection region and

stagnation zone.

Dimensionless pressure profiles.

(Be ltaos et a1.)

Dimensionless boundary-pressure profiles.

'iii )

10

11

11

12

12

12

13

13

14

14

15

15

16

16

17

17

18

18

18

Fig. 2.24

Fig. 2.25

Fig. 2.26

Fig. 2.27

Fig. 2.28

Fig. 2.29

Fig. 2.30

Fig. 2.31

Fig. 2·.32

Fig. 2.33

Fig. 2.34

Fig. 2.35

Fig. 2.36

Fig. 2.37

Fig. 2.38

Pressure distribution along impingement

plate. (N.A.S.A. TND - 5690)

Distribution of pressure on bottom of

basin. (Cola)

Turbulence development In pool. (Corrsln)

Forces on spherical bubble.

Pool entrainment pattern (smooth turbulent

jet).

Jet diffusion In the plunge pool for

single phase and two-phase shear layers:

(a) submerged jet (Albertson et.al.);

(b) smooth turbulent plunging jet (McKeogh).

Centre line velocity decay with distance

from plunge pool point.(McKeogh)

Variation of penetration depth with (UoDo).

(Rough turbulent jet, large air entrainment)

Typical air concentration profiles for rough

turbulent jet.

Air concentration profiles: (a) Unrestricted;

(b) Restricted jet penetration.

Jet issuing from short/long nozzle.

Relative turbulence of jet issuing from

short/long nozzle.

Velocity profile across plunging jet.

Plot of (Eddy size)2 with x/do for

restrained turbulent jets. [Davies]

Jet trajectory with air resistance.

[Novak]

Fig. 2.39(a) Lateral jet spreading with turbulence

intensity acting at orifice outlet.

(Ervine and Falvey)

Fig. 2.39(b) Spreading turbulent jet.

Fig. 2.40 Free surface with definition of physical

parameters.

(iv)

19

19

20

20

21

21

22

22

23

23

24

24

24

25

25

26

26

26

Fig. 2.41

Fig. 2.42

Fig. 2.43

Fig. 2.44

Fig. 2.45

Fig. 2.46

Fig. 2.47

Fig. 2.48

Fig. 2.49

Fig. 2;50

Fig. 2.51

Fig. 2.52

Fig. 2.53

Fig. 2.54

Morrow Point Dam: (a) Full-scale jets;

(b) Model jets (1:24 scale).

Appearance of water jet from 6mm nozzle.

(Hoyt et al.)

Jet axial swirl.

Jet break-up length.

Jet stability curve (schematic).

Sinuous nature of jet surface just before

break-up. (Ervine).

Probability of encountering water outside

the solid core of a plunging turbulent jet.

Sinuous jet waveform showing boundary layer

extent and air entrainment within surface

undulations.

Correlation of entrainment ratio.

(Vertical jets).

Air entrainment of pool by high velocity

wall jet.

Arrangement of crest splitters. (Mason)

Possible loading on pool floor slab.

Formation and collapse of cavitation void.

Hydraulic jump showing eddy and transducer.

Fig. 2.55 Trace of pressure fluctuations with time.

Fig. 2.56(a) Definition sketch for hydraulic jump

figures.

Fig. 2.56(b) Probability density function of pressure

fluctuations beneath hydraulic jump [Tosol.

Fig. 2.57

Fig. 2.58

Fig. 2.59

Fig. 2.60

Fig. 2.61

Pressure fluctuations under a free hydraulic

jump (Akbari et a1. [83]).

Turbulent spectrum - model/prototype.

Turbulence intensity along Jet centre line.

Section through Morrow Point Dam and

stilling basin.

Section and plan of Lakhwar Dam model.

(Bhargava et al.)

{v)

27

27

28

28

28

29

29

29

30

31

31

32

32

32

33

33

33

34

34

35

35

36

Fig. 2.62

Fig. 2.63

Fig. 2.64

Fig. 2.65

Fig. 2.66

Fig. 2.67

Fig. 2.68

Fig. 2.69

Fig. 2.70

Fig. 2.71

Fig. 2.72

CHAPTER 3 . .

Table 3.1

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 3.7

Fig. 3.8

Sketch of Hausler's apparatus.

Jet core length and convergence angle.

Centre line velocity decay of jet O plunging

through air into water (Lencastre).

Distribution of pressure on bottom of

plunge basin. (Lencastre)

Jet in atmosphere and in plunge pool.

(Ervine and Falvey).

Layout of experimental rig. (H.R.Ltd.)

Dynamic pressures due to submerged jets.

(H.R. Ltd.)

Dynamic pressures due to plunging jets.

(H.R. Ltd.)

Dynamic pressure spectra for plunging jet,

Ui"" 6.6m/s.

Detail of scour hole development at Kariba

Dam.

Elevation on principal components of scour

apparatus. (Mason)

Range of test parameters.

Definition sketch of physical parameters.

Approximate half angle of spread of plunging

jets.

Turbulent jet: Do-100mm, U-Sm/s. Re-4xlO s

Turbulent jet: Do - 100mm. U - 25m/s.

Re - 2xl0 6

Detail of experimental apparatus.

End elevation of experimental apparatus.

View of pump. gate valve and rising

pipework

Theoretical and experimental head-discharge

relationship.

(vi\

36

37

37

38

38

39

40

40

41

41

42

44 45

46

47

47

48

49

49

50

Fig. 3.9

Fig. 3.10

Fig. 3.11

Fig. 3.12

Fig. 3.13

Fig. 3.14

Fig. 3.15

Fig. 3.16

Fig. 3.17

Fig. 3.18

Fig. 3.19

Fig. 3:20

Fig. 3.21

Fig. 3.22

Fig. 3.23

Fig. 3.24

Fig. 3.25

Fig. 3.26

Fig. 3.27

Fig. 3.28

Fig. 3.29

Fig. 3.30

Fig. 3.31

Fig. 3.32

Fig. 3.33(a)

Fig. 3.33(b)

Final outlet nozzle arrangement.

View of nozzle attached to pipework.

Section through orifice and outlet support.

Plan and section of plunge tank base plate.

View of water level indicator.

Jet conditions in the atmosphere.

(Do-78mm, Uo~ 3m/s).

Jet condition in the atmosphere.

(Do - 78mm, Uo~ 9m/s).

Plunge pool dissipation. (Do - 78mm,

Uo~ 1.5m/s, L - 2530mm Y - 200mm).

Plunge pool dissipation. (Do - 78mm,

Uo~ 9m/s, L - 2530mm, Y - 200mm).

Schematic of experiment and definition

of parameters.

Final design of turbulence transducer probe.

Schematic representation of turbulence probe.

Oscilloscope trace giving natural frequency

of undamped probe. Scan speed - 2.5 millisecs/cm

, fo - 200 Hz

Typical energy density spectra measured with

turbulence probe (fo - 150Hz), damped and

undamped. [Arndt and Ippen]

Turbulence probe and probe support.

Dynamic calibration of turbulence probe.

Schematic diagram of strain gauge arrangement

Transducer connection to base plate.

Brass pressure cell for transducer calibration.

Schematic diagram of calibration rig.

Typical calibration relationship for transducer.

Method of data collection.

Hardware components and computer interface.

Illustration of computer system and peripherals.

Sampling of continuous record.

Illustration of aliasing problem.

[vii )

51

52

52

53

54

54

55

55

56

56

57

58

58

59

59

60

61

61

62

62

63

64

64

65

65

65

Fig. 3.33(c) Aliased power spectrum due to folding.

Fig. 3.34 Example of stationarity test results.

Fig. 3.35 Limit of maximum fluctuations.

Fig. 3.36 Moments of probability density function.

Figs. 3.37-3.40 Typical pressure records

Figs. 3.41-3.47 Typical power spectra.

CHAPTER 4:

Fig. 4(a) Definition sketch for terms used in results

diagrams.

Fig. 4.1-4.4(i) Radial distribution of mean pressure heads.

Fig. 4.5-4.23 Centre line mean pressure head

variation with plunge pool depth.

Fig. 4.24-4.35 Internal jet turbulence results.

CHAPTER 5:

Fig. 5.1-5.6 Radial distribution of pressure

fl uctuat ions.

Fig. 5.7-5.51 Pressure fluctuations beneath jet

Fig. 5.52

Fig. 5.53

CHAPTER 6;

Table 6.1

Table 6.2

Fig. 6.1

centre line.

Skewness and kurtosis with plunge pool

depth.

Probability density function of pressure

fluctuations at central measurement point

compared with normal distribution.

Estimated ratios of L/LB for nozzles and

orifice.

Initial air concentrations in plunge pool.

Growth of surface disturbances. (Ervine and

Falvey).

(viii )

66

66

67

67

68-71

72-78

80

81-85

86-104

105-118

120-125

126-170

171

172

174

175

176

Fig. 6.2

Fig. 6.3

Fig. 6.4

Fig. 6.5

Fig. 6.6

Fig. 6.7

Fig. 6.8

Fig. 6.9

Fig. 6.10

Fig. 6.11

Fig. 6.12

Fig. 6;13

Fig. 6.14

Fig. 6.15

Fig. 6.16

Fig. 6.17

Fig. 6.18

Fig. 6.19

Fig. 6.20(a)

Fig. 6.20(b)

Fig. 6.21(a)

Growth of surface disturbances. (Hecker)

Growth of surface disturbances. (Hoyt).

Idealisation of jet condition at impact.

Conditions in plunge pool for impinging

turbulent jet.

Comparison of mean dynamic head values with

submerged jet case.

Detail of Morrow Point outlet structure.

Effect of partially open sluice gate.

Degree of jet spread in the atmosphere

with outlet conditions.

Jet spreading concept.

Comparison of measured and calculated

jet diameter at impact.

Spreading jet condition at various cross

sections.

Probability of encountering water outwith

solid core and notation.

Condition of plunging jet once core has

diminished.

Graphical representation of core diameter

calculation.

Comparison of jet break-up lengths.

Jet break-up length with turbulence intensity

Comparison of radial variation of mean

dynamic pressures for plunging jet

impingement.

Mean dynamic pressure head variation with

radius compared with submerged jet va~ues.

Mean dynamic pressure head relative to

centre line value with Rp/Di.

Mean dynamic pressure head relatiave to

centre line value with Rp/Y.

Expressions for radial distribution of

mean dynamic pressure (Y - 100 and 200mm).

(ix

176

176

177

177

178

179

179

180

181

182

183

183

183

184

185

186

187

187

188

188

189

Fig. 6.21(b)

Fig. 6.22

Fig. 6.23

Fig. 6.24

Fig. 6.25

Fig. 6.26

CHAPTER 7

~ig. 7.1

Fig. 7.2

Fig. 7.3

Fig. 7.4

Fig. 7.5

Fig. 7.6

Fig. 7.7

Fig. 7.8

Fig. 7.9

Fig. 7.10

Fig. 7.11

Fig. 7.12

Fig. 7'.13

Expressions for radial distribution of

mean dynamic pressure (Y - 350 and 500mm).

Comparison of centre line mean dynamic

pressure head results with Hausler's data.

Comparison of centre line mean dynamic

pressure head results with Lencastre's data.

Mean dynamic pressure head variation with

plunge pool depth at various L/LB ratios

Comparison of mean dynamic head for rectangular

jet (L/LB-0.65-0.85) with submerged slot jet case

Mean dynamic pressure head variation with

189

190

191

192

193

plunge pool depth at various air concentrations. 194

RMS pressure fluctuation (Cp') versus postion

in the hydraul ic jump [Toso]. 196

Components of turbulent velocity in hydraulic

jump (Rouse). 196

Large scale flow structure in hydraulic jump. 197

Power spectra versus location in hydraulic

jump.

Recirculation velocity (Ur).

Maximum pressure fluctions beneath hydraulic

jump (Toso).

Situations for cause of fluctuations.

Mechanisms for fluctuations in hydraulic

jumps.

Mean value of jet centre line R.M.S pressure

fluctuat ion.

Turbulence intensity along jet centre line.

Vortex structures in plunge pool.

Relation of dominat frequency with Ui/Y.

Comparison of maximum and minimum instantaneous

fluctuations in plunge pool with Cp'.

(X)

197

197

198

198

199

199

200

200

201

202

Fig. 7.14

Fig. 7.15

Fig. 7.16

Fig. 7.17

Fig. 7.18

Fig. 7.19

Fig. 7.20

Fig. 7.21

Fig. 7.22

Fig. 7.23

~ig. 7.24

Fig. 7.25

Fig. 7.26

Fig. 7.27

Fig. 7.28

Fig. 7.29

Fig. 7.30

Recirculating eddy at boundary.

Predominant anti-clockwise eddies in

plunge pool.

Likely flow structures in plunge pool.

Radial distribution of axial turbulence

i ntens ity.

Radial pattern of pressure head fluctuations.

Comparison of radial distribution of Cp' with

H.R. Ltd. data.

Distribution of dynamic peak and minimum head

at plunge pool floor.

Experimental set-up and acquisition system

[ Cas til 10] .

Variation of Cp' with pool depth [Castillo].

Variation of Cp+ and Cp- with pool depth

[Cast i 110] .

Maximum, minimum and mean dynamic pressure

envelope [Castillo].

Comparison of centre line Cp' results with

values computed from jet turbulence data.

Baffle block within hydraulic jump.

Cp' values at front face of baffle block.

Comparison of centre line Cp' results

with values obtained at other hyraulic

structures.

Comparison of Cp' results at low droplength.

Comparison of Cp' results at larger

droplength.

Fig. 7.31(a),(b) Jet centre line turbulence near

nozzle outlet.

Fig. 7.32

Fig. 7.33

Fig. 7.34

Fig. 7.35

Cp' with Y/Di (Do-78mm. L-725-1125mm).

Cp' with Y/Di (Do-25mm, L-2018-2418mm).

Cp' with Y/Di (Orifice: Do-25mm.

L-1020-1420mm).

Comparison of fluctuations for intact jet with

submerged jet.

(x i)

202

203

203

204

204

205

205

206

206

207

207

208

208

208

209

209

210

210-211

211

212

212

213

Fig. 7.36

Fig. 7.37

Fig. 7.38

Fig. 7.39

Fig. 7.40

Fig. 7.41(a)

Fig. 7.41(b)

Fig. 7:42

Fig. 7.43

Fig. 7.44

Fig. 7.45

Fig. 7.46

Fig. 7.47

Fig. 7.48

Fig. 7.49

Fig. 7.50

Growth of boundary layer and jet condition

impact for high velocity jet (Do-78mm) .

Growth of boundary layer and jet condition

impact for low velocity jet (Do -78mm).

Turbulence intensity along centre line of

ori flce jet.

Variation of cpt for constant high impact

velocity (Ui 2/2g - 9-10) for 78mm nozzle,

25mm nozzle and orifice.

at

at

Variation of cpt for a constant impact velocity

(Ui 2/2g-3.3-4) for 78mm nozzle, 25mm nozzle and

25mm orifice.

Typical growth in boundary layer in smooth

nozzle jets plunging through atmosphere.

Turbulence levels in plunging orifice jet

at two velocities.

Cp+ with Y/Di (Do-78mm, L-725-1125mm).

Cp+ with Y/Di (Do-25mm, L-2018-2418mm).

Cp+ with Y/Di (Orifice: Do-25mm,

L-1020-1420mm).

Variation of Cp+ for a fixed high impact

velocity (Ui 2/2g-9-10) for 78mm nozzle,

25mm nozzle and orifice. Variation of Cp+ for a fixed lower impact

velocity (Ui 2/2g-3.3-4) for 78mm nozzle,

25mm nozzle an orifice.

Cp- with Y/Di (Do-78mm, L-725-1125mm).

Cp- with Y/Di (Do-25, L-2018-2418mm).

Cp- with Y/Di (Orifice: Do-25mm,

L-1020-1420mm).

Variation of Cp- for a fixed high impact

velocity (Ui 2/2g-9-10) for 78mm nozzle, 25mm

nozzle and orifice.

(xi i)

213

214

214

215

216

217

217

218

218

219

219

220

220

221

221

222

Fig. 7.S1

Fig. 7.52

Fig. 7.53

Fig. 7.54

Fig. 7.55

Fig. 7.56

Fig. 7.57

Fig. 7.58

Fig. 7.59

Fig. 7~60

Fig. 7.61

Fig. 7.62

Fig. 7.63

Fig. 7.64

Fig. 7.65

Fig. 7.66

Fig. 7.67

Fig. 7.68

Fig. 7.69

Fig. 7.70

Variation of Cp- for a fixed lower impact velocity

(Ui 2/2g-3.3-4) for 78mm nozzle, 25mm nozzle

and orifice.

Extreme pressures with Y/Di (Do-78mm,

L-725-1l25mm) .

Extreme pressures with Y/Di (Do-25mm,

L-2018-2418mm).

Extreme pressures with Y/Di (Orifice,

L-1020-1420mm).

Variation of extreme pressures for a fixed high

impact velocity (Ui 2/2g- 9-10) for 78mm nozzle,

25mm nozzles and orifice.

Variation of extreme pressures for a fixed lower

impact velocity (Ui 2/2g- 3.3-4) for 78mm nozzle,

25mm nozzles and orifice.

Pressure fluctuat ions (Cp' ) for L/LB-0.04-0.07

Pressure fluctuat ions (Cp' ) for L/LB-0.08-0.14

Pressure fluctuat ions (Cp' ) for L/LB-0.ll-0 .18

Pressure fluctuat ions (Cp' ) for L/LB-0.27-0.32

Pressure fluctuat ions (Cp' ) for L/LB-O.41

The influence of jet break-up(L/LB) on pressure

fluctuations in a plunge pool.

Variation of Cp' with air/water ratio (~i) for

222

223

223

224

224

225

225

226

226

227

227

228

a pool depth of Y/Di-4. 229

An impinging jet Froude comparison (Fro-14.3). 230

An impinging jet Froude comparison (Fro-6.S). 230

Envelope of maximum and minimum dynamic head. 231

Proposed stilling basin design below free

falling jets (Hartung and Hausler). 231

Load combinations for downward and upward

pressure application.

Overlap of fluid and structures natural

frequency.

Pressure reduction at same pool due to highly

diffused jet in the atmosphere.

(xiii)

232

232

233

FIGURES FOR CHAPTER I"

Fig.l1 VIEW OF MORROW POINT DAM

Fig .l2 VIEW OF CRYSTAL DAM

Min. drawdown} EI.475.5

Fig.1-3

Scour hole, Aug. 1978 Prototype

EI.404

tailwater EI. 382

""-,,,,,,,, /' " ,/

,,/ //

" \/>-_ .... , Max. scour. hole ,'-., .... /,/ reservoir 1::.1.489

... :.:/ Model tests.

Mox. scour hole reservoir EI. 484.5. Model tests.

o 50 100 meters ~!!!!!!!!!!!!!!!S;;;;;; ___ ;;;;i;i

SCOUR HOLE AT KARIBA DAM

TABLES & FIGURES FOR CHAPTER 2

Jet turbulence level % Break-up length - f(Qw)

0.3 LB - 60 Q WO• 39

3.0 LB - 17.4 Q WO. 31

8.0 LB - 4.1 Q WO. 20

Table 2.1 Typical values of jet break-up length for various

outlet turbulence levels. (Ervine,McKeogh and Elsway).

Nozzle Jet Jet Reo Nozzle Author diameter length velocity range geometry

range nun range nun rtA?§e x 10 4 Lo/do

Henderson (12) 2.54to12.7 10 - 270 10 - 30 max 20 0,1, 10

van de Sande 1.95 to 10 100-400 3 - 10 max 5 50 (38)

Cumming (71) 4.5 to 9 100-800 1. 3-8.7 1 to 8 0,5,10,80

van de donk 10 to 100 260-1070 1. 5- 11 13 - 40 2.2 - 22 (49)

Ervine (69) 6 to 25 o - 4700 2 - 6 2 - 10 1 - 4

Kumagai (36) 2 to 8 20 - 800 1. 2 - 37 0.9 -15 50

Notes: (1) All water/air systems

(ii) Reo - Reynolds number at outlet

(iii) Lo - length of the cylindrical section of a nozzle.

Table 2.2 Experimental conditions In different authors studies of

air entrainment by plunging jets.

5

Structure R,M,S, pressure coefficient

Hydraulic jump s till i ng bas i n 0,05

Boundary layer on spillway face 0,007

Side wa 11 s 0 f bottom outlet 0,06

Baffle blocks in a stilling basin 0,25

Table 2,3 Typical values of cpt for various hydraulic structures,

max. max. Prandtl max. micro eddy size energy diss i po t i on

Fig. 2·1 (a) TURBULENT ENERGY SPECTRUM

Distance from pipe wall (y)

Increasin9 Reynolds no.

Data values

Eddy length ( l )

Fig. 2" (b) COMPARISON OF EDDY LENGTH IN PIPE

-U=U+U

r-I

-u

Fig.2·2(a) VELOCITY VARIATION IN X- DIRECTION

d' =.f'U2 = ul ..,

0·2

0·1

-d +0" +20' +3c:f

( u-u)=u ..,

Fig.2·2 (b) DISTRIBUTION OF TURBULENT VELOCITY

z Wi

y Vi

TIME

~-----~x _____ ~Ul

Directions R.M.S. velotities

Fig. 2·2 (c) (O-ORDINATE SYSTEM FOR FLUCTUATION

COMPONENTS (SECTION 2'2 ONLY)

y

,-2 -- U2=U2+~-~~'t"-'-----'

l I I '--- u= -l dO

,., dy ---- u, --~-.l/hl

~--------------~ X

Fig.2·3 TURBULENCE MIXING LENGTH AND VELOCITY FLUCTUATIONS

Zone of flow 1" Zone of established ,.,. ftow ~

~ I ~

r establishment

I .......---

I -----centre·lin -t -D -t--u __ ~ ----~_=; i6~ I Umax= U ·0 Umax<U 0 .-C--j -~-r+.::r--?fC::::::!tI ~o goo 0 0 0 <D 0 0 0 0 0 0

~ 0 0 ~ Boundory between zones

--T?--?---? 0 0 00 0 >,-° 0 0"", ~ '" 0°

NominoL limits of -.......... '" diffusion region -............

Fig. 2·4 SCHEMATIC REPRESENTATION OF JET

DIFFUSION PATTERN (ALBERTSON)

Q

I Terminal

Transition Region of established flow Region

Flow Es t ablishment

D Lo\:US 01 hu\f l:I~lltre \ine '1e\odt~ ~::t::;:~ .. --------- -~~------ ._--____ \L- ~el centre line ~

::> --- -- -- -------Velocity profile

downstream Designation of shear layer boundary

Fig. 2·5 TURBULENT SUBMERGED JET SHOWING TYPICAL VELOCITY PROFILES J FLOW REGIONS

AND LOCI OF HALF CENTRE VELOCITIES ( DAVIES ).

I/) -I>O\c-\-+-

~i'O/)M

-+- i-oaM -0- i" OM

--i'12M ~.'16M

E .0 ~~-t--t---- ---.-.f----t-

r (m)~

Fi g. 2· 6 VELOCITY DISTRIBUTION IN CIRCULAR JETS - TRUPEL. ( x = Axial distance from nozzle outlet)

Flow !cleve lopmentlE

regIon

I

Fully developed flow re9ion

I r

> ..

Di L [Ui -:.~=====~...L] ~_......-- ~~ -----'--jJI&-_ C~lindr_icCll (zJ

Urn I Axial (xl t Axis of jet

core

Approximate jet boundary

Fig.2·7 DEFINITION SKETCH OF CIRCULAR TURBULENT JET.

A4

10 -..-CIi f.w~a..p oi:06M

ei'OIM e~ .. ai·IOM --. o.

e llo ..·12M

.~o. • i' I.. M ,. -dI! .. .-, -,

eo

o o 025 050 075 1.00 125 1.50 1.75

,? .!. b

Fig.2·8 SIMILARITY OF VELOCITY PROFILES

r i

d \

Um

U

Um e

Jet axis

Fig.2·9 GAUSSIAN NORMAL PROBABILITY VELOCITY DISTRIBU TION

125

100

075 U

Um 050

025

o o

-.q

~ ~-~

05

° i 106M 6 i:OIM •• IIOM ° .112M , e ..... M

"" ~ ~ I--1.0

,?.!. b

15

~

2.0

t--

I--

25

Fi g.2·10 COMPARISON OF TOLLMIEN/S SOLUTION WITH OBSERVATiONS.

.. ...

10 ~---.---"------r-----r--~---'

l:L OS Um

.. .!.'27} bO • R.lchard,',

o· ~ :3S EXPERIMENTS

" • .L '60 bO -+-----"-.------i- Goer lIer ·lype

10

--- Tollmi."

'I • .!. b

20 30

Fig. 2·11 COMPARISON OF GOERTLER AND TOLLMIEN-TYPE SOLUTIONS WITH EXPERIMENTAL RESULTS. (Reicharclt:- b.= Nozzle size)

0·5

t /Best fit

o Albertsonls data

0·2 Um -Ui

0·1

0·0 Urn = 6·2 (..x. r Ui Oi

0·01~-+---+---+--+----+---+--+-----+----1

1 2 5 10 20 50 100 200 500 1000

)I0i :.

Fig.2·12 JET CENTRE LINE VELOCITY DECAY {ALBERTSON L

Flow Establishment Region (Urn= Ui)

-+--U-j .... -, - I Ui -~ -- ~ =--!\' Jet cen-=t-re---=-lin-e-::J-""-X ( symmet rical abou t )

....

Xc .. End of core

Fi g. 2·13 VELOCITY PROFILE IN FLOW ESTABLISHMENT REGION (ALBERTSON) .

r = radial distance from core edge

.8 b = distance from core where U= Um/2

- Experimental results .2

--- Albertson et al.

o

Fig.2·14 COMPARISON OF EXPERIMENTAL VELOCITY PROFILE THROUGH FLOW ESTABLISHMENT REGION WITH PREDICTION.

11..

JET

Fig.2·15 CONFINED JET DIFFUSION - FLOW PATTERN.

RADIAL HYDRAULIC JUMP

Ui

1

JET

-t:S u

=+= L. u

c!. ClI Co :J Vl

..c +-Co C1I

"'0

Fig. 2·16 SHALLOW DEPTH IMPINGEMENT-HYDRAULIC JUMP.

OJ '--c:: OJ u

~ -c: o 'Vi ~ e .-o

Oi

1-1--11"--- Co r e

Region 1

y Region 2 ----+-Velocity profile

1_ --tr-Region 3--~

. ~Region 4 »

7 7 7 7 7 7 7 7 '/ 7 ~) 7 7 7~ 7 ~7 7 7 7 7 ,;

stagnation point L Impingement surface

Fig.2·17 LARGE DEPTH IMPINGEMENT-CHARACTERISTIC FLOW REGIONS.

• S

,6

.- .4 :::» -­E :::J Dimensionless

.2 nozzle- to- I surface spacing I

Y/Di~

\ \ , \ \ \ I I I I

7\ I

I I \

I I I I

101 \

Dimension- ReynoldS less number,

nozzle-Ie-plale spacing.

o 30 33000 o 30 35000 <J 20 25000 [J 20 50 000 t::. 10 25000 "il 10 35000 t> 10 50 000 o 7 25000

-{J 7 50 000 "4 25000

Dimensionless distance from nozzle exit y I Di

Fig.2·18 CENTRE LINE VELOCITY DECAY WITH VARIOUS VALUES OF NOZZLE-TO-SURFACE SPACING AND REYNOLDS NUMBER.

(Reproduced from N.AS.A. - TND 5690)

H.

0·5

O' 05 0·1 0·2 0-3

Pressure profile (Cor Jet dcCtection)

Velocity-head pro(lle 1.0 (without jet deflection)

0·4 0·5

..i = e - (10J:.)2 Um2 Y

(Free jet)

r y

Fig.2·19 COMPARISON OF MEASURED MEAN PRESSURE DISTRIBUTION WITH FREE JET THEORY (HAUSLER).

I I~ Limit of stagnation zone

0·75

I h (R r '\~h=1-125 ~ [Eqn.2·691

0·50 1\ S Y I \~ I

I 0 I Limit of deftection

0·25 Q r region

I I ~ I

0 09 Q

0 0·05 0·1 0·2 0·3 0·4 0·5

Rp/ y ~

Fig.2-20 ADDITIONAL PRESSURE HEAD ON BOUNDARY ( POREH & CERMAK)_

1'7

1 I /-+---Jet centre line

Veloci ty unaffected ! by boundary I. / Longitudinal extent

I Y = pool depth I RegIon 2

1

i----t--- t Radial extent of I RegIon 3 I deflection region I 1- Zone of stagnation [Eqn. 2·69]

Radius: O' 05 Y l " stagnation point ----.I" Rpll

Pressure reduc d to static

Fig.2·21 DEFINITION SKETCH OF DEFLECTION REGION AND STAGNATION ZONE.

01

P 06 Fraction of Pm pool depth

o. • 0955 • 0921

02 • 097.

Fraction of pool depth

• 0'52 • 0.7.

• 0'" • 1000

Fig.2·22 DIMENSIONLESS PRESSURE PROFILES (Beltaos et at.)

ID

01 '\ o RUN No. I

• RUN No.2

P • RUN No.3

0.6 • RUN No.'

Ps o RUN No.5 • Po,.h , C.,,,,ok

0.'

0.2 •

00 • 0.1 0.3

R~Y

Fig.2·23 DIMENSIONLESS BOUNDARY-PRESSURE PROFILES.

1Q

r 'iT

.. QI c­:J I/) I/) cu c­o..

I/) I/) cu ~ c: a 1/1 c: QJ

E CI

o .5

Dimensionless nozzle-to­

plate spacing,

Y/Oi

--4 ---- 7 ---10 ---- 20

LO

Data for nozzle-to-plate spacing of 4 diameters

Reynolds Noule diameter, number Dj

025000} o 35000 050000 ~56000 } ~ 66000

2.5

in. (cm)

O. 250 (0. 635)

.375 (.952)

Dimensionless distance from stagnation point I Rp/Di

Fi g.2·24 PRESSURE DISTRIBUTION ALONG IMPINGEMENT PLATE. (N.A.S.A. TND- 5690 )

h Ui2/2g

Ui , 1.30 m/s • 1.80 mil I' 2.30 m/s • 2.80 m/s

" 3.30 m/s 4 380 m/s .- 00 m/s .. 480 m/s

VI= slot 'Width 0.05-

-r~l-----+-------+-------+----~~'~~~--T-• t----.:.-10 o 10 20 30

Fi g. 2·25 DISTRIBUTION OF PRESSURE ON BOTTOM OF BASI N. ( Cola)

.. n

r W

Potential core region

Established flow I

~JL \

Ui

, ,

SDi

15Di

\

Fig.2·26 TURBULENCE DEVELOPMENT IN POOL. (Corrsin-Ref.[12])

Fb = buoyancy force

Fd = drag force

FL=lift force (vorticity)

FI = inertia (2 components)

Water surface

Fi g. 2·27 FORCES ON SPHERICAL BUBBLE.

,

bubbles

U < 0·26 m/s

Air bubbles

Fi g. 2·28 POOL AIR ENTRAINMENT {Smooth turbulent jet}.

Zone of flow

-~]~." h," Zone of I established

I flOW,

(0.)

Smooth turbulent

1 plunging let - small degree of air entrainment

( b)

Fig.2·29 JET DIFFUSION IN THE PLUNGE POOL FOR SINGLE­PHASE AND TWO- PHASE SHEAR LAYERS: (a) Submerged jet (Albertson et o.t.) i (b) Smooth turbulent plunging jet ( Mckeogh ).

")1

i Urn Ui

10

08

06

In

H T d ia : 9m

Tuo : 0 2 'I. Vi m Isec

o 3 3 • 39

AIR ENTRAINMlNT

Urn =3.3 ~ ( ) ,.,

Ui Y

Tuo : 10°/.

Vi m Isec o 3.3

• 3· 9

( Albertson)

01~ __ ~ __ ~~~~~ __ ~~~~ __ _ '·0 H ~o 60 80 100 1.00

Y/Di ~

Fig. 2· 30 CENTRE LINE VELOCITY DECAY WITH DISTANCE FROM PLUNGE POINT. (Me Keogh)

1·0

0·75

0·50

0·25

Op Penetro.tion depth for o.ir bubbles (m)

McKeogh et al.

\

Vigo.nder [51 ]

\/ /

/-

Op

Biphasic cone'/

o 0 0·02 0·04 0·06 0·08 0·10

Do

Fig.2·31 VARIATION OF PENETRATION DEPTH WITH (Uo Do). (Rough turbulent jet I large air entro.inment)

..,..,

M-11 ~~~ ~:n~/S Point of impact ~. Do = 9 rrm

Depth (mm) yr 4C~' 20 4,0

Air • 12 Concentration ( V., , _ 25- - - 0 -

r-60 80

: . 100

o (mm)

cOl.! 150- - - O,r--------'-~--'---

Fig.2·32 TYPICAL AIR CONCENTRATION PROFILES FOR ROUGH TURBULENT JET.

'='

Y

~I ~,TU2 t,-_je_t _~ __ .. , ..... ~ ,,;.: " .. jllllllil i i X>r:c~L .1 0 b' ,. :; · ... • 'i~ £JJn=rr.... r

Op .\ .. ~ ~("'f't,..,. pool base

,,""~;J;~

j ( a)

( b)

build up of air bubbles

br> bu U, = U2; D, = D2

Tu, = TU2

Fig.2·33 AIR CONCENTRATION PROFILES: (u) Unrestricted; (b) Restricted jet penetration.

boundary --+-\

layer still thin

9lass like / surface on issuing jet

! I ~ Uo ~ L

surface -dis tur bances

Long nozzle

I I I I

boundary layer development

Vi

Short nozzle 11 possible shearing action be tween water and air

fig.2·34 JET ISSUING fROM SHORT I LONG NOZZLE.

UI

U. 2

1

Edge

\ \

Long nozzle

/ U. = Shear velocity

\ Short ...... -

Centre line

fig.2·35 RELATIVE TURBULENCE Of JET ISSUING fROM SHORT I LONG NOZZLE.

Vertical circular nozzle ~....,.-""T""""'"I _____ Je t velocity profile

at exit from nozzle

Plunging jet --+ Veloci ty profile

-r-,-nr-t=--- downstream (zero velocity gradient)

Fig.2·36 VELOCITY PROfILE ACROSS PLUNGING JET.

24

o 2000 o ~ o ~ -::l

N -OJ N V)

>­-C -C l.LJ

1000

o Water jet in air x Kerosene jet in air

I 40

X/Do

I 60

I 80

Fig.2·37 PLOT OF (Eddysize)2 WITH X/Do FOR RESTRAINED TURBULENT JETS. [Davies]

A

B

y

I:

0.75

05

0.25

Defini tion sketch

Uo

DATA FROM FIELD TESTS HATANAGI NO.2, JAPAN SHIHMEN DAM, TAIWAN

.1 .1 x

O~--~--~--~--~---L--~--~ 10 15 20 25 30 35 40 45

Uo in metres / sec.

Fig.2·38 JET TRAJECTORY WITH AIR RESISTANCE. I NOVAK]

5

10 Axial turbulence intensity, u'luo: %

Fig.2·39(a) LATERAL JET SPREADING WITH TURBULENCE INTENSIlY ACTING AT ORIFICE OUTLET. (Ervine and Falvey)

Section 1

!

Lateral jet spread from high speed photographS

Solid inner Jet core

---

Section 2

~ ---

d

----

Flow direction.

---v·~Uo

Fig.2·39 (b) SPREADING TURBULENT JET; Total jet diameter at Section 2 is de= d + 2&, + 282

Flow direction

U L Water

Atmosphere

Fig.2·40 FREE SURFACE WITH DEFINITION OF PHYSICAL PARAMETE RS.

- ,

(a) ( b)

Fig.2·41 MORROW POINT DAM: (a) Full-scale jets; (b) Model jets (1: 24 Scale). [U.S.B.R]

(a) At exit from nozzle (b) 0·9 m from nozzle exit

" ..!

" , ., ,. ~ . t' Jr

. ;. ~ . "

(c) 1-8 m from nozzle exit (d) 2·7 m from nozzle ex i t

Fi g.2·42 APPEARANCE OF WATER JE T FROM 6mm NOZZ LE. (Hoyt et aU

27

,t·A. -----'--

Helical~-­

motion \ \ ~ Outer limit \ of je t

1/ \ \ \ \

Fig.2·43 JET AXIAL SWIRL.

Jet break-up length

LB

. ,

Laminar flow region

l

I 1

/1

/B

Plunging jet ____

Point of disintegration at large

plunge length--~ .0 .1, •• ~~.

-Outlet

Break-up length LB

Fig. 2 ·44 JET BREAK-UP LENGTH.

1< Tur bulent ftow region >1 I

I ~ I I /./

1

I I

Jet velocity

Fig.2·45 JET STABILITY CURVE (Schematic L

Fig.2·46 Sinuous nature of jet surface just before break-up. (Ervine)

Air entrainment

" E'O, u \ Q,) ,.

c: \ ,

• Experimental probability data

d; 8 ., ..= ' ...... c: Q,) u a; 6 E e ::J 4 o Q,) u c: !E 2 I/)

o

..........

..... / ............................. .... .... ,.

Gaussian fit to .......... , experimental data '., at edge of free let \

° O~--~2~O--~40~--6~O~~8~O~~100 Probability of encountering water: %

Fig.2·47 Probability of encounterin9 wa.ter outside the solid core of a plunging turbulent jet.

1 L or H

Extent of boundary layer

.-l--J--~-Jet

Fig.2·48 Sinuous jet wQveform showing boundary layer extent and air entrainment within surface undulations.

104

~ a -a<

11f

clol mml

• 2.54 • 6.35 [721 • 12.1

~ 10

3 a -0<

100

~ a -cj<:C·

4 10

0.2' 0.4 Fr. (L./d )

J .J 0

{36]

0.%1 0.4 Fr. (L Idol

J

Correlations by Bin {701 ( Frj = Ui2/ gdo I Lj = L )

1- Eqn. 2 ·108 [ 1- Reference numbers

Fig.2·49 CORRELATION OF ENTRAINMENT RATIO (Vertical jets).

Jet

Wall/

Ur= Recirculation velocity

Foam layer

Receiving water

Fig.2· 50 AIR ENTRAINMENT OF POOL BY HIGH VELOCITY WALL JET.

t-. A-; i

=-=== .... --L.. A-i i

Fi g. 2·51 ARRANGEMENT OF CREST SPLITTERS (Mason).

'J1

p f4'V~f~::. Time - Pressure fluctuation below mean

[ 15- (Cp-) ] Net effect

1 Uplift

Large positive pressure fluctuation [ P ... (Cp+) 1

Fig.2· 52 POSSIBLE LOADING ON POOL FLOOR SLAB.

Uc:c

SEPERATION REGION

CAVITATION VOID ASYMETRICAL ENTERI NG HIGHER COLLAPSE PRESSURE REGION

IMPINGING MICRO JET

((jJJ) ......• WlJ) - ---. ~,~ ; I;";>"';; I;"~,

Fig.2·S3 FORMATION AND COLLAPSE OF CAVITATION VOID.

Large eddy Roller

~

Fig.2·54 HYDRAULIC JUMP SHOWING EDDY AND TRANSDUCER.

p

p= P. P ~

Time p

Fig.2·S5 TRACE OF PRESSURE FLUCTUATIONS WITH TIME.

Y,

• U, 7 7

I t 7 7 7 77 117777

Fig.2·56(a) DEFINITION SKETCH FOR HYDRAULIC JUMP FIGURES.

0.5

0.4

0.3 f(pl

0.2

0.1

fA)

O~~~LL~~~~m -7 -5 -3 -I 0 I

NORMAL Ol!> lR/OUT/ON

Z :5 5 7 15

F, a 4.17

.!. (_Zl) XIV, a 6.48

( ,)1 2 ji • 0.38 t I. tip)' 2U ~ (T a 0.064 ft.

p-ji skewness = 0·63 Za-U kurtos is = 5· 32

-I

-2

-3

-4

-a: ;:' -5 a

J -6

-7

-8

-9

o DATA PT.

" TYPE / CURVE

-10 '---'--........... --L.--L_I--..J........lW

o 2 3 4 5 6 7 /5

Z

Fig.2-S6 (b) PROBABILITY DENSITY FUNCTION OF PRESSURE FLUCTUATIONS BENEATH HYDRAULIC JUMP [Toso 1.

0..0.5

0.04 Fl = 5 20.

_Q. U

0.02

40. 45 50. 55 60.

Fig.2·s7 PRESSURE FLUCTUATIONS UNDER A FREE HYDRAULIC JUMP (Ak bari et at. [ 83] ).

Non­dimensional

turbulent energy

I Large eddy t pressure fluctuations

~ \

Small scale fluctua tions

I /~------~--------------~,

\ Air entrainment

MOdel/ ---­Prototype/

11 Eddy length

fig.2·58 TURBULENT SPECTRUM - MODEL I PROTOTYPE.

E 0 c:... ...-CJ u c d .

-+- -+-VlCll ~.~

Jet centre line turbulence intGnsity

0·0

5

10

0·02 In plunge pool.

0·06

~ ....

r~i / \ r , I \ ••••••••••••

J ••••••• -¥ ••••••• . ........... .

Ut ~lh

I \ Y / \

\ \

Sutrnerged )/ free jet FI·g.2'9n Corrsin '7

Of do",·£/. "65

Camp"ssar ,IIo",btr·

FoCI of tJom •••••• -

•. /0· 010 oir in'"

0·10

/

I /

/

/\~l~ Impinging I \ l y free jet " \ Mckeogh

Turbulence intensity along jet centre line.

/110'. II,S. CI. 7/'S"\ I,' " .. Top of dam'EI 7/65

.' -Vole hOlsl

.::s..-: -.... J NDr. 11.5. CITI'O' -::-=- • [Weal,., door

"'/5; 1613' '/lId "",,1 gal'

SECTtON THRU SPILLWAY

Dutil' 'ro.hro,.

;"CtJI'IImd'itJII· jOittl •• ',.011 noI SIlo ...

Fig.2·60 SECTION THROUGH MORROW POINT DAM AND STILLING BASIN.

'1'"

-

LEG£NO:-

: I

I(

SPLITTER

IkICKEr

17 J

it I I l' I

! 7

NOOO. MOOEL MODEL

c:::::l r::::::1 ~ r::::::1 c:::::l c:::::l e§

t: r::::::1

U§ c::::J

11$ I 10 I 75

.. OM

i5 ~

BUCKET :-EL. • 700 R. . .m 8 • 35·

SPUTlU:-El...: 70t R. : 7m

• : n·

CISTERN EL.llO·O

PlEZD. POIII' J • •• '1 •••• \0 • •••• , ••• ~ • ~I

'" • •••••••••••••••••• • • •••••••••••••••••• • t.ca ••••••••••••••••••• • I 5 10 15 20

Fi g. 2·61 SECT ION AND PLAN OF LAKHWAR DAM MO DE L . (Bhargava et at.)

Water sur

Movable table

Outlet

face ""'"

measurlnll

VOlve~

.x

Changeable

u. nozzle s H

--Vertical Je

~ " ~

y

~ ___ ....1.+ Y

~- -----------~---- ..:0

fi g.2·62 SKETCH OF HAUSLEf<S APPARATUS.

Ri

tL / ySOlid inner core

/ Yc I / Ri tano<=C= -

I 2 Yc

/ / Urn

/

Fig. 2- 63 JET CORE LENGTH AND CONVERGENCE ANGLE.

1.00

0.10 + .. : ~ ~: : ~.~ L !s the fall height and

+. • Lib: 10.7 b IS the slot thickness.

0.60

I + 0.40

Urn • Ui o.zo

of • 0.10

0.01

of 0.06

0.04 o 5 10 15 20

y/b

Fig.2-64 CENTRE LINE VELOCITY DECAY OF JET PLUNGING THROUGH AIR I NTO WATER (Lencastre) _

1.1

1.0

0.9

0.'

0.7

0.6

o.~

Hm-c 0 ••

Ui2/2g 0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0 .• -14

c is the and b is

• ••

-12 -10

- Direction of flow in channel

tailwater depth the slot thickness

-I

--%=10.6

rl b

Fig.2·65 DISTRIBUTION OF PRESSURE ON BASIN (Lencastre ).

BOTTOM OF

Onset of free surface aeratIon ... hen u' > 0275 mlS or U> 0 275/(u'/U)

Outer limIt of let surface

1\

" , I I I I I I I

Atmosphere

6, - Inner core decay angle

PLUNGE

Nom,"al edge of Inner ---.L~I solid core

... 'k-t % (exclud,ng ~ffect of gravIty)

d, IS dIameter Of plunging

let at Impact point calculated from graVIty conSlderaltons only

(d,> d,)

Zone of flow establishment

Plunge pool

,62 - oUler spread angle

I ... 05u'/U ... 2-5%

I orr-I PrObablllly 01 encounterong \ water outside the SOlId

, 00% I let inner core (p)

1 I \ I I I

I d, - diameter of solid I \ core remainIng at

I Impact \

~ Nom,"al edge of two·phase flOW spreading shear layers (02 > 0 , )

12

Fig.2·66 JET IN ATMOSPHERE AND IN PLUNGE POOL (Ervine and Fo.lvey).

... o

3540

T-

4S0 • pipe

------ Perforated plate and honeycomb flow straightener

I.. 200 " 67 vertical pipe. Length altered by removing and adding sections

Tank. square in plan

Fig.2·67 LAYOUT OF EXPERIMENTAL RIG (H.RLtd)

,...---1---- -I 1-----1 L ___ -I

Orifice plate and tappings for flow measurement

~

All measurements in mm

100mm I

• V IY = 4.48m/s A V IY = 3.17m/s Shaded symbols indicate mean values of pressure Open symbols indicate peak values of pressure

-50

0

1500

2000

Nominal position 1of jet

66 76

0 00 ~

Pressure relative to hydrostatic (mm water)

96

0

00

Fig.2.68 DYNAMIC PRESSURES DUE TO SUBMERGED JETS (H.R.LtdJ

100mm

• V IY = 4.24m/s A V..., = 3.1Sm/s • V.., = 2.44m/s

Shaded symbols indicate mean values of pressure Open symbols indicate peak values

of pressure

0

500

Nominal position lof jet

76

I::.

8 ~

• t ::--A_ 0

• -.--- I::.

0

o c 8

Pressure relative to hydrostatic (mm water)

96

0

j

Fig.2.69 DYNAMIC PRESSURES DUE TO PLUNGING JETS (H.R.LtdJ

I. (\

o~Ill~!i~ .. J:.~:i::i.!:,ii.:_~=:: o 5 10 1S 20 2S

Frequency Hz

a) Transducer 3B (Centre) Prms = 166mm head of water Cpl= 0·075

"i 15. 10' II TIJ:RggnIT;g~·;1-~J~~I.g::.:[:.~:[J:.TITII .... . ...................................................................................................................... . >- ······· .. ·1· ... , ........................................................................................ · ...... · .......... 1

. ~ ::.:::::::::. ::::':::::i:::::::::::::::Y:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::,

i o·······Lt~~~~ c' I \.LJ 0 5 10 1S 20 25

Frequency Hz

b) Transducer 5B (Edge) Prms = 256mm head of water Cpl: 0·115

Fig.2·70 DYNAMIC PRESSURE SPECTRA FOR PLUNGING JET I Ui~6·6m/s

" __ I " .. ,. of

"...,.., ~ . :.:: ~ .~.~

-• -j i • ~ III

400

~

... ....

~""" ~""t.rL""I'

Fig.2·71 DETAIL OF SCOUR HOLE DEVELOPMENT AT KARlBA DAM.

1.1

150 dlome!!!teLr __ ~II ri .. r pipe

Air inou-_----.

1250. 590.3''''''' __ ---1 lCour lonk

Mobile oroyel bed

J : ~er .. oter leyel Lt_y-

N

Hilt. : All dimenlione in millimetr ..

Fig.2·72 ELEVATION ON PRINCIPAl COMPONENTS OF SCOUR APPARATUS ( Mason) .

TABLE & FIGURES FOR CHAPTER 3

I.').

l="'­f"'"

Do (mm) Vo m/s Fro Reo Weo L (rom) L/Do x 10 5

78 1. 5-13 1. 7 -15 1 - 9.0 50-426 2230-2630 29-34 II II II II 725-1125 9-14

52.5 3 - 15 4 - 21 1.4-6.8 81-403 2126-2526 40-48

" n II II 620-1020 12-19

25 3 - 25 6 - 50 0.65-5.0 56-464 2018-2418 81-97 II II II II 513-913 21-37

orifice " II II II 1020-1420 41-57 25

Approx. 1.5-25 1. 7-50 0.65-10 50-450 513-2630 9-97 Range

_. __ .-

Note Pool depth (Y) varied from 100 to 500mm in all cases.

Table 3.1 Range of test parameters.

Y/Do

1.3-6.4 "

2-9.5 I

II

4-20

" n

1.3-20 - --

Outlet diameter­-do

PLAN

fP-=Q Jllo Circular:. b fd=1 o 0

Plunge tank

-

Y

I

~

L

I I I

/ /

./

81

-Plunging water jet (ew AJw d ) , ,

\

\

Ambient surroundings (ea,JUa )

-

Plunge pool \ \

"- Base lvl. '-I

~I Fig.3·1 DEFINITION SKETCH OF PHYSICAL

PARAMETERS

x100/0\ Half angle of jei spread bId =1.2·2

l Percent) o 0

10 + b /d =t.3·3 b/d=t. 1·4 t

o 0 o 0

9+ I I 0 D bId =t. 8·3 0

l 0 Best fit

8 + o 0 0 / ~ 0

7 + 0 8 0

b + 8 ~ 0 0

.............. 0 ~

" 5

4 ~ ~ 0 0 0

3 t 0 o - Data points

2

1 -, 5)(106 1.2)(107 2x107

0 0 0·5 1·0 1·5 2·0 2·5 30() 3-5

Gate opening - do (m)

Fig.3·2 MORROW POINT DAM - APPROX. HALF ANGLE OF SPREAD OF PLUNGING JETS.

OUTLET VELOCITY APPROX. CONSTANT (Uo= 9~9·6 m/s)

Fig.3 ·3 TURBULENT JET: Do=100mmJ U=5m/s J Re=4x10S

Fig.3 ·4 TURBULENT JET : 00

= 100mm J U=25m/s J Re= 2 x10G

I ..,

~[-3-Extensions each 500mm

.r:--

~I long

00

I I 0 Ln or-..:t

I Water level

indicator \

T e e

0 N 0 .-

IL

.. ~Nozzle:-152 to 78mm

- 90· Bend

Fig.3·S DETAIL OF EXPERIMENTAL APPARATUS. (Scale 1: 30)

Scaffolding and manometers omitted for clari t y.

.-Plunging jet

152 mm !/J r 1 152 mm m Dve Ga te val ve C pipe

~Tanks:- ~ 1~ I 1·84mx1·22mx 1'02m • ~I~IJII 1344mm >1

-;.-e9-ee. mu 0> Ne.

.,. . . ~ Base plate and support

End suction centrifugal pump

Fig.3·7 VIEW OF PUMP} GATE VALVE AND RISING PIPEWORK.

Fig.3·6 END ELEVATION OF EXPERIMENTAL APPARATUS.

I/)

......... r-I

CJ

IJJ l!) a: 4: I U (f) ~

a

ORIFICE PLATE CALIBRATION

100

- (nm3~= O'~9 .J~h (~) .--- :--~=:'-:-C-~~~l~~ -+-_3i::UFi'i-:, - .... _"'"~~;..- -=_t----'

--l---~--~ "'!'c*:- -- __ ~~~

~--x:~ p WATER ",.(i}~f--O.:~

1---------- -- -- - -~- -- -- -- - ~-- -~ ----- -- -- - I-+---- ~------q~ - !

-- ~ __ - I

10.0 ----- ---- --- I-- __ ~-ef -- ------ __ 1 ___ - -.1:1 .-\11- -- - -_ -- .- - l

-----------, - ----~- ,--I--_ ___ __ ~--- -- - - - --=-~ -._1p4c~~:~I_~

-- x & 0 EXF. V~LLES v -~ --- --B-E~ T- Fin ---I I-+--r------- ---j----,--t--t-I--r-t I I -t---t---I ---t--,-+-- 1-1-

I

I

1.0 I I

10.0 100.0 1000

HEAD AT MANOMETER (mm) (). h Fig. 3.8 THEORETICAL AND EXPERIMENTAL HEAD-DISCHARGE RELATIONSHW

Perspex /' main body

-<U ~

~

152 ¢

78

1 I

\ a-Hole flange

for connection to pipework

Fine machined surface

'7*====:~#::a...,--+----+---I-....a:::D:Wcal N

Scale = 1:2,5

Aluminium extension pieces

I I

W

Typical weld detail

Fig.3·9 FINAL OUTLET NOZZLE ARRANGEMENI (AU dimensions in mm.)

...

P.v. C. Pipe -----152 mm 1.0.

Platform

Orifice Detail

Fig.3·10 VIEW OF NOZZLE ATTACHED TO PIPEWORK.

Flange adaptor

~ Bucking flange

plate

Orifice plate

Fig. 3 ·11 SECTION THROUGH ORIFICE AND OUTLET SUPPORT.

E e

o o Lon II

o $2 A !<. Ln

>-

~ N +1

~

r 500 mm

,

,---Ir-- -

I' ,L __ _ ,---

T ,

500mm

Insert plate - I, 5 possi bte , I transducer locations

==-=ll II ~-~I II

-+1::---- ---1 ~f-+-.t-tF-~ ~ --~ 1/

'I II " / II :F==~~-_-_--ll! IIII I II II ~ II &-=--=--~-----:..~ /1

,I ,I I I 1m x 1m x 25 mm thick ,I I I Marine plywood I I

830 mm

A) PLAN ON BASE PLATE

l I

A

25mm ¢ Steel rod

Transducer housing (Fig. 3·26 )

~~~~~==! - Support frame

~==========:::f:j (20 mm S.H.S.) 510mm

Tank floor

'Adjustable feet

B) SECTION A-A

Fig. 3·12 PLAN AND SECTION OF PLUNGE TANK BASE PLATE .

.....

Graduated / scale

Plunge tank

Base plate. Plunge pool floor t=====~ _ ~=POOI depth

Valve

Stilting box- l -Perspex tube

Fig.3·13 VIEW OF WATER LEVEL INDICATOR.

Fig.3·14 JET CONDITION IN THE ATMOSPHERE. ( Do = 78 mm J Uo:: 3 m /s )

Fig.3 ·15 JET CONDITION IN THE ATMOSPHERE. ( 00 = 78 mm) Uo == 9 m Is)

~ .....,-~

... "'~ ... ~""'''" .' .....

Fig.3·16 PLUNGE POOL DISSIPATION. (Do=78mm I Uo==1·5 m/s) L= 2530 mm, Y=200 mm)

c c

Fig.J17 PLUNGE POOL DISSIPATION. ( Do = 78 mm J U 0:: 9 m /s J L = 2530 m m J Y = 200 m m )

Fig.3 ·18 Schematic of experiment Tube bundle and definition of Rarameters. Smooth tapered nozzle

T urtxJlence probe L

• I I \

Plunge pool / , y

Array of flush mounted pressure transducers

r= I

Tota\ head tube: 2 mm 1.0. 3·2 mm 0.0. L1 = 115 mm

Bteed screw

Adaptor

\

Shock chamber (19 mm ct>x 10 mm)

\

Brass housing

I Mou t· " ( I < • / n Ing ring

\ WS-5000 Pressure transducer

Fig.3·19 FINAL DESIGN OF TURBULENCE TRANSDUCER PROBE.

A

z

A 1 = Area of total head tube A 2 = Area of shock chamber L1 = Total length of total head tube L 2 = Length of shock chamber Z = Deflection of diaphragm Kd = Spring stiffness

Fig.3·20 SCHEMATIC REPRESENTATION OF TURBULENCE PROBE.

Fi g. 3·21 OSCILLOSCOPE TRACE GIVING NATURAL FREQUENCY OF UNDAMPED PROBE. Scan speed = 2·5 miltisecs./cm .. f. = 200 Hz.

~ rn

I

~= 10 -:-.<1 a. • U

8 I

I

1\ 6

r, \

4

2

o o

\ "- " , ...... ~ t-:---

20 40

I I

i I I

60

I Flume flow Oepth:: 4·45 mm

I Umax :: 1·89 m/s

-- meastred with damped I

I

instrument -- - - measured wi th probe In

undamped condi tion

i ,..

.J 1 / \ 1/ "-,

---./ ........ .- -----

80 100 120 140 160 180 200 --frequency (cps)

Fig.l22 TYPICAL ENERGY DENSITY SF{CTRA MEASURED WITH TURBULENCE PROBE (f.= 150 Hz) I DAMPED AND UNllAMPED.

[Arndt and Ippen]

Fig.3·23

TURBULENCE PROBE AND PROBE SUPPORT.

~: ct~ _

0--. o

I >

I QI en c:J --~

7-0

6·0

5·0

4·0

3·0

2·0

1· 0

Best fit:- V = 0·0286 U02 ~

0- Data points ~

Run number 5 :­Span =6 :. Gain=4

Temperature = 64°F

O' 0 I >-5·0 7·0 9·0 11-0 13-0 15-0

Outlet velocity - Uo >-

Fig.3-24 DYNAMIC CAUBRATION OF TURBULENCE PROBE.

10 Vol ts

Foil strain gauge (Full bridge )

Power Supply

± 20 mV

Amplifica tion

± 10 Volts

Fig. 3· 25 SCHEMATIC DIAGRAM OF STRAIN GAUGE ARRANGEMENt

~ ___ --.:...7..:.-0 m~m.:.:...-___ ...., r- Insert / plate

Mounting ~ ring \

20mm S.H.S. Support

32mm P.CD.

1~9mm q) 1

4-1-- Transducer

E E

N

Fig.3·26 TRANSDUCER CONNECTION TO BASE PLATE.

61

24mm¢

19mm¢ Bleed scre~ H Brass pressure cell

E E

CD ,."

Seating ring

~--....... 11---.

I 20mm¢ I

/Inlet

E E

-:t N

1 1< .M j ~ M3 Screws .: 30mm p.eD. ... ..

36mm¢ ............ ............ Transducer

40mm¢

Fig.3·27 BRASS PRESSURE CELL FOR TRANSDUCER CALIBRATION.

Valve

Air supply

Air/Water ---..... Chamber

Output

Pressure cell

Computer

'----; Amplification and signal conditioning

Digital display

Fig.3·28 SCHEMATIC DIAGRAM OF CALIBRATION RIG.

> I Cl.I c:n d -~ 0 >

0"-w

10-0 -9-0

Channel1 transducer- Static calibration I-

V = 0-1382 P (m) a-o - x Data points

7-0 -6-0 -roo

5-0

4-0

3-0

2-0

1- 0

0-0

-I-

A/ -I-

~ ~

-roo

/ 'f"

-roo /

./ -l-

V V

10 20 30 I I I I I I I I

o 1-0 2-0 3-0 I

...J

./ ~

/ ~

/' V /

V

RUn number 11 :-Transducer fuUy submerged Span= 8 :- . Gain= 1 Temperature = 20

0

(

Pressure- P (m

40 50 60 I I

I I

4-0 5-0

I I

6·0 Pressure-P ( bar)

fig_3-29 TYPICAL CALIBRATION RELATIONSHIP FOR TRANSDUCER.

Turbulence Probe f+-

Amplifica tion Signal ~

Pressure Conditioning

Transducers H--- I AID Conver terp

I Disc ~ IBM p.c.

XT ""-

Printer t l SoftwareJ I Monitor J

Fig.3·30 METHOD OF DATA COLLECTION.

Amplified and conditioned signal

Storage

f

r 1+---- Hardware -------.!1 I

Termination I: Carrier AID

Panel Card - Converter J

{AnalOg} Interface Input

Computer

Output I I Programs I ( Asyst)

Fig. 3·31 HARDWARE COMPONENTS AND COMPUTER INTERFACE.

,

P(T)

.'

Fig.3·32

ILLUSTRATION OF COMPUTER SYSTEM AND PERIPHERALS.

Fig.3·33 (a ) SAMPLING OF CONTINUOUS RECORD.

P (T )

I I I I I I I I I

X I

Fig.3 -33 (b) ILLUSTRATION OF ALIASING PROBLEM_

lC

T

G(f) G(f)

True spectrum Aliased spectrum

Fi g.3· 33 (c) ALIASED POWER SPECTRUM DUE TO FOLDING.

0·50

0·375

0·25

0·125

0-0 o

Mean test

Hma~Hmin. x 100

H

R.M.S. test

hi hi . max. - min. x 100 hi

Test conditions :- 10 Central transducer Do = 78 mm I Uo= 6·1 m/s L=1025mm l Y=200 mm

7·5

IS tandard deviation

/ Mean

5 10 15

---------- 5·0 Significance level

25 30 35 4.0

2-5

0-0 45 50

Time (Sec.) •

Fig. 3- 34 EXAMPLE OF STATIONARITY TEST RESULTS.

hh ~---....---

Hmax J H (m)

4·0

Maximum of Hmaxo1

~~ooo-I

-~---O----"'O

3· 0 ~

2·0 I-

1· 0 I-

0·0 o

L Time reauired to define I~ limiting maximum value I adequately

Average of H ~ ~ H H H H H H

, I -1 1

1 2

Test condi tions : Central transducer Do=52·5 mm,Uo=7m Is L=770mm, Y=350mm

I I , I

I -. 1 1

, 3 4 5 6 7 14 15 16

Time (mins.)

Fig.3·35 LIMIT OF MAXIMUM FLUCTUATIONS.

Probe Possible p.d.f.:­skewness> 0

Normal distri bution :_ ~ '" ~ kurtosis> 3

6 = standard deviation / \/ symmetrical about mean. / \

I bell shaped. / limi t around 3 0 /

1///1 d

(Simplified)

~

-3 -2 -1 Mean +1 +2 +3

Fig.3-36 MOMENTS OF PROBABILITY DENSITY FUNCTION.

67

11. B

... I .., ~ 9.BB c: IrI

= W = 7.BB = III III IrI = ~ 5.BB

3.BB

9.9"

... I .., ~ 7.1" c: W

= W = 5.1" = III III IrI

= ~ 3.19

.2 "

SCAN OF FLUCTUATIONS

NOZZLE DIAMETIR (Do) = 78 MM OUTLET UELOCITY (Uo) = 9 M~S FALL HEIGHT <L> = 23SB MM POOL DEPTH <Y) = 359 MM

.6 "

SCAN OF FLUCTUATIONS

TIME (Sec.)

1. 49 1. "

TIME (Seo.)

Fig. 3.37 PRESSURE HEAD RECORD FOR 78 mm orA. JET AT DIFFERENT FALL LENGTHS

1.28

~ 5.68 G: lit :I:

W IIIi 4.88 ~

'" '" W lie ~ 2.4"

.S9"

5.4" ,.. I .., ~ 4.2" « W :I:

III lie 3.9" ~

'" '" III lie ~ 1.8"

.6""

SCAN OF FLUCTUATIONS

NOZZLE DIAMETER (Do) = 52.5 MM OUTLET UELOCIt~ (Uo) = 9 M~S FALL HEIGHT (L) = 2126 MM POOL DEPtH (V) = 599 MM

1. 48 1. "

SCAN OF FLUCTUATIONS

NOZZLE DIAMEtER (Do) = 52.S MM OUTLET UELOCIT¥ (Ue) = 9 M~S FALL HEIGHT (L) = 629 MM POOL DEPtH (¥) = SIa" MM

TIME (S.c.)

.2 8 .6 8 1. 9 1. 4" 1. 9

TIME ($eo.)

Fig. 3. 38 PRESSURE HEAD RECORD FOR 52.5 mm DIA. JET AT DIFFERENT FALL LENGTHS

3.6a

~ 2.sa c (II

= (II .: 2.aa ::::I

'" '" (II .: ~ 1.211

.41111

4.511

'" I ."

.511a

Fig. 3.39

SCAN OF FLUCTUATIONS

.2 II 1.411 1. II

T I ME (Seo.)

SCAN OF FLUCTUATIONS ---------------------------

.2 II 1.4a 1. a TIME (Seo.)

PRESSURE HEAD RECORD FOR 25 mm NOZZLE DIA. JET AT DIFFERENT VELOCITIES AND FALL LENGTHS

.9aa ,.. I '.I

Q .1aa « III

= III .: .5aa = lit lit III .: "" . 3aa

.1aa

SCAN OF FLUCTUATIONS

ORIFICE DIAMETER (Do) = 25 MM OUTLET UELOCITV (Uo) = 3 M/5 FALL HEIGHT (L) = 111a MM POOL DEPTH (V) = 35a MM

.2 a 1. 4a 1. 9

TIME (Sec.)

Fig. 3.40 PRESSURE HEAD RECORD FOR 25 mm ORIFICE DIA. JET

"4

3688 ,.. N POWER SPECTRUM ( ----------------------... Is. N022LE DIAMETER (Do) = 78 MM Is. 2888 OUTLET VELOCITY (Uo) = 3 MI'S

'" ~AL~ ~~~~HT ~L) = ii38 MM II 00 H ( ) = 5 MM

III ~

= 288" ... ... Z ~ CI: I: 128"

4"". 5. 9 15.8 25.9 35.9 45.9

FREQUENCY (Hz)

1.8" ,.. N POWER SPECTRUM ( --------------------...

N022LE DIAMETER (Do) Is. = 78 MM /II 1.4" OUTLET VELOCITY (Uo) 9 MI'.

'" JALL HllCn T ~t) = 1389 MM II OOL D PT ( = 3 " M"

III ~

= 1."" ... ... Z ~ CI: I: .'"''

.288

5. 9 15.8 35.8 45."

FREQUENCY (Hz)

Fig. 3. 4 1 POWER SPECTRA FOR 78 mm DIA. JET A T DIFFERENT VELOCITIES AND PLUNGE POOL DEPTHS

,.. N ( ... III

1. sa

III 1.4a .., II

/II A :::I 1.aa ... ... z u cz E .6all

.2811

1.S11 ,.. III < ... III III 1.411 .., II

III A :::I 1.811 ... ... z u cz E .6811

.2811

Fig. 3.42

5. II

5. 8

POWER SPECTRUM

NOZZLE DIAMETER (Do) = 52.5 "" OUTLET UELOCITV (Uo) = 3 "~S FALL HEIGHT (L) = 2426 "" POOL DEPTH (V) = 2aa ""

15.8 25.11

FREQUENCY (Hz)

POWER SPECTRUM --------------------NOZZLE DIAMETER (Do) = 52.5 "" OUTLET UELOCITY (Uo) 9 "Is FAL~ ~IJ¥nT (t) = 6,26 "" poo (Y = 5 ""

25.8 35.11 45.11

FREQUENCY (Hz)

POWER SPECTRA FOR 52.5 mm DIA. JET A T DIFFERENT VELOCITIES AND PLUNGE POOL DEPTHS

45'1. ,.. N ( Joe III III 35a. v II

III Q :::I 2sa. Joe ... Z IJI a: E 15a.

5a.a

5. II

27aa ,.. N ( Joe III r- 21aa v II

III Q

= 15911 Joe ... Z IJI a: E 9aa.

3aa.

5. a

POWER SPECTRUM --------------------NOZZLE DIAMETER (Do) = 25 MM OUTLET UELOCI TV (Uo) 7 M,t. FAL~ HIICHT (L) = 2a18 MM POO D PT (V) = saa MM

15.8 25.a 35.a 45.a

FREQUENCY (Hz)

POWER SPECTRUM ---------------------NOZZLE DIAMETER (Do) 25 MM OUTLET UELOCITV (Uo) = I1M/S

lS.a

JA&~ HIICU T ~L) = 1118 MM o PT () = 5 MM

25.11 45.11

FREQUENCY (Hz)

Fig. 3. 43 POWER SPECTRA FOR 25 mm NOZZLE DIA. JET AT DIFFERENT VELOCITIES

71~

1888 .... III POWER SPECTRUM ( ---------------------"" (Do) 78 Ire N022LE DIAMETER = 111111 Ire 14'UI OUTLET UELOCITV (Uo) = 3 1111'S OJ JALL HE~CHT (L) = 725 MM II OOL DE TH (Y) = 599 MM

III ~

= 1998

"" 101

Z U G: E 688.

288.

5. 8 15.8 25.8 35.8 45.8

FREQUENCY (Hz)

1.88 .... III POWER SPECTRUM ( -----------------------"" N022LE DIAMETER (Do) 78 Irc = MM Ire 1.48 OUTLET UELOCITIl (Uo) 9 1111'S OJ FAL~ HI~CUT (L) = 875 MM II POO T (Y) = 358 MM

III ~

= 1.88

"" 101

Z U G: E .688

FREQUENCY (Hz)

Fig. 3.44 POWER SPECTRA FOR 78 mm DIA. JET AT DIFFERENT VELOCITIES AND PLUNGE POOL DEPTHS

7r;

1899 ... N < ... lie rr. 1499 \II

II

III A :::I 1999 ... ~

Z IJ CI: I: 699.

299.

1. 89 ... N ( ... rr. lie 1.49 \II

/I

III A :::I 1.911 ... ~

Z IJ CI: I: .6911

.2911

Fig. 3.45

POWER SPECTRUM ----------------------NOZZLE DIAMETER (Do) = 52.5 MM OUTLET UELOCITV (Uo) 3 MI'S FALt HEIGHT (L) = &29 MM POO DEPTH (V) = 2 9 MM

5. 9 15.9 25.9 35.9 45.9

FREQUENCY (Hz)

POWER SPECTRUM ----------------------NOZZLE DIAMETER (Do) 52.5 MM OUTLET UELOCITY (Uo) = 9 MI'S JALL HIJ~HT ~t) = 119 MM OOL D (= 5 MM

5. II 15.9 25.9 35.9 45.9

FREQUENCY (Hz)

POWER SPECTRA FOR 52.5 mm DIA. JET A T DIFFERENT VELOCITIES AND PLUNGE POOL DEPTHS

369. ,.. N POWER SPECTRUM < ---------------------104 III NOZZLE DIAMETER (Do) = 25 MM III 289. OUTLET UELOCITV (Uo) 7 MI'S .., FA&L HEIGHT (L) = 513 MM II PO L DEPTH (V) = 599 MM

III A = 299. 104

"'" Z CJ CI: Z 128.

49.9

~:--+--:-~~~~~ 5. 8 15.8 25.9 35.8 45.9

2799 ,.. N < 104 III III 2199 .., II

III A

= 1589 104

"'" Z CJ G: Z 998.

399.

Fig. 3.46

FREQUENCV (Hz)

POWER SPECTRUM --------------------NOZZLE DIAMETER (Do) = 25 MM OUTLET UELOCITY (Uo) = 15 MIs JALL HI1GHT (L) = 513 MM OOL PT (Y) = 599 MM

5. 9 15.8 25.9 35.9 45.9

FREQUENCY (Hz)

POWER SPECTRA FOR 25 mm NOZZLE DIA. JET AT DIFFERENT VELOCITIES

77

,.. N < lot Ir4

81. 9

Ir4 63.9 .., II

III ~ = 45.9 lot ... Z U 4: E 27.9

8.119 ,.. N < Joe Ir4 Ir4 6.49 .., " Jr;l ~ = 4.81iJ lot ... Z U 4: E 3. 21iJ

Fig. 3.47

5. 9

5. IiJ

POWER SPECTRUM

ORIFICE DIAMETER (Do) = 25 MM OUTLET UELOCITV (Uo) = 3 M/5 FALL HEIGHT (L) = 1179 MM POOL DEPTH (Y) = 359 MM

15.9 25.1iJ 35.9 45.9

FREQUENCY (Hz)

POWER SPECTRUM

15.1iJ 25.9 35.1iJ 45.1iJ

FREQUENCY (Hz)

POWER SPECTRA FOR 25 rom ORIFICE DIA. JET AT DIFFERENT VELOCITIES

7A

FIGURES FOR CHAPTER 4

Ro Outlet Diameter Uo I _________ ( Do)

-+----------

Jet Axis-+-----! L

Jet Diameter at Impact

(OJ} Ui

y /

/ /

~TurbuLence Probe

+-Turbulent Jet in the Atmosphere

Plunge PooL Free SurfClce

I -, I \ \ \

\, Plunge Pool Floor

'-' " /

/ Rp

Centre Line I

Pressure Transducer

Fig.4(a) DEFINITION SKETCH FOR TERMS USED IN RESULTS DIAGRAMS.

80

I

1.00

·600

.200

If

f

o

.000 1.00 2.00 RADIAL OUTANCE I OUTLET 01A. (Rp/DoJ

(el Uo - 3-3.3 ale. Uj·/2f1 • 1.2-1.7.

.000 1.00 3.00 RADIAL DrsTANCE I OUTLET 01A. IRp/DoJ

(el UP - 7-7.3 ale. U1·12fI - 3.4-3.'.

1.00

~ I:i i -

1.00 x - Y/Do - 1.28 a - Y/Do - 2.56 f - Y/Do - 4.49 If - Y/Do - 6.41 ,,~

~ ... 600 :: "

LEGEND FOR ALL GRAPHS

~I~ ~ e .200

If

f o x

I i-

.000 1.00 2.00 3.00 RADIAL DISTANCE I OIITLET DIA. (Ifp/DoJ

(hI IJo • 5-5.2 a/s. U1·/2f1· 2-2.5 •

. 000 RADIAl 01BTAHCE I DUTLET DrA. (Rp/DoJ

(dl Uo - 9-9.2 ';s. Uj·/2f1 - 4.'-5.3.

1.00

i-jJ .600 ,,~ j ..... 600

; ~~ " II~ II~

~ ~ ~ .200 e .200

• I

.000 1.00 3.00 .000 1.00 2.00 3.00 RADIAl orSTANCE I OUTLET OIA. (Rp/DoJ RADIAl DISTANCE I DIJ7t.ET 01A. (Rp/DoJ

(.1 UP - 10.!l-U.1 ';s. U1·12fI - 6.'-7.4 • m Uo - 12.6-13';e. U1·12f1 - 9.1-9.7.

FIS. .,. 1 TOTAL MEAN PRESSURE HEAD VARIATION IN RADIAL DIRECTION (Rp/DoJ FOR A RANGE OF PLUNGE POOL DEPTHS (Do - 78 I11III. L - 725 - 1125 IIfIIJ

~ t i_ j{ II! ~-0-e

'W ..

* f 0 f x *~

.000 2.00 4.00 RADZAL DUTAHCII / IMPACT DU. 0../011

(s' LID - 3-S.3';s. UJ '/Zg - 1.2-1.7.

1.00

.600

.200 , !l

.000 1.00 2.00 3.00 RADIAL OISTAHCII / IHPACT DIA. "",/OU

(C] IJo - 7-7.3';" UJ'I2g - 3."-3.8.

I

.000 1.00 RADIAL DISTAHCII / IHPACT DIA. ,..lDU

(I) IJo - 10.9-11.1 ';" UJ'/2rJ - 6.8-7." •

~ ... u

i .. -~~ ~ .. :: iii ~-0-e

~

i-j .. @ ::

II! ... -i! e

1.00

.600

.200

x - Y - 100 mm o - Y - 200 mID , - Y - 350 mID II - Y - 500 mm

LEGEND FOR ALL GRAPHS

II , o X

, II

.000 1.00 2.00 3.00 RADIAL DISTANCE / IHPACT OIA. o../OU

(b) Uo - 5-5.2 ~" UJ-/2g. 2-2.5 •

1.00

.600

.200 * , .000 1.00 2.00 3.00

RADIAL DISTAHCII / IHPACT OIA. 0../011

(d] IJo - 9-9.2.1 •• UJ'/2g - ".8-5.3 •

I .000 ·2.00

RADIAL DIITAHCII / IHPACT DU. ,..lDU

(fJ Uo - 12.6-13 .;.. UJ '/Zg - 9.1-9.7 •

FIG. ;(.2 TOTAL lEAN PRESSURE HEAD VARIATION IN RADIAL DIRECTION (RpID1J FOR A RANGE OF PLUHSE POOL DEPTHS (Do - 78 .,.. L - 725 - 1125 IIlIIIJ

A?

I 1.00

I ,I. .600

J~ Us:

.200 I,! • j I -.200

.000 1.00 2.00 3.00 IMDfAL DISTAHt2 I OUTLET DIA. _IDaJ

(e) UO - 3-3.3 II/a. U1-l2g - 1.2-1.7.

I ... . BOO u

t~ 's I ~ .400 II If Q

I • t -.000

.000 1.00 2.00 3.00 IMDfAL DfSTAHt2 I OUTLET DIA. AlIDaJ

• (e) UO - 7-7.311/ •• U1 /2g - 3.<I-3.B •

I Il

. BOO

.. 's I' .400 s:

II! I

, I -.000 II

.000 1.00 2.00 IMDfAL DISTANCE I OUTLET DfA.

(.) UO - 10.11-11.1 II/s. U1- /2g - 6.'-7.<1 •

I I:; .. !~ 's

x - VIDa - 1.28 a - VIDa - 2.56 , - VIDa - 4.49 II - VIDa - 6.41

LEGEND FOR ALL GRAPHS

.000 1.00 2.00 3.00 IMDfAL DISTAHt2 I CXIT1.ET DfA. (F/pIDaJ

(b) UO - 5-5.2 II/a. U1-/211 - 2-2.5 •

• .000 2.00 3.00

IMDIAL DISTAHt2 I OUTLET DlA. (F/pIDoJ

(d) IkI - 9-9.2';a. U1'/211 - <I.B-5.3 •

.BOO

! ~ .400

I'! I -.000

, I

.000 2.00 3.00 IMDIAL Df.TAIa I OUTLET DIA. _IDaJ

(fJ UO - 12.6-1311/ •• U1'/211 - 9.1-9.7.

FIS. 4.S HEAN OYHAHIC PRESSURE HEAD VARIATION IN RADIAL DIRECTION (RpIDo) FDR A RANGE OF PLUN6E POOL DEPTHS (Do - 78 II1II. L - 725 - 1125 nun)

1.00

i .. u

i-$. ' ..

.600

i~ uS: .200

II! .F Q

i -.200

~ .. u

i .~ , .. i~ uS:

II! Q

.000 2.00 4.00 RADIAL DISTANCE / IIFACT all.. (Rp/DU

(e) Uo - 3-3.3 _Is. Uj·12g - 1.2-1.7.

.BOO

.400

i -.000 • t

~

11 'S i; u. i l: Q

.000 1.00 RADIAL OISTANCE / IMPACT all.. (Rp/DH

(C) Uo - 7-7.3'; •• Uj·12g - 3.4-3.&.

.BOO

.400

i -.000

.000 1.00 2.00 3.00 RADIAl. DISTA11f2 / IMPACT all.. (Rp/D1J

(el Uo - 10.9-U.1 '; •• Uj-12g - 6.&-7.4 -

~ .BOO x - y - 100 mm

~~ ," i~

0 - y - 200 mm

f - y - 350 mm II - Y - 500 mm

b): .400 ~. LEGEND FDA ALL GRAPHS llf I -.000 I"

~ t;

i~ • 's

1---r--+--1---r--~ 2.00 3.00 .000 1.00

RADIAL DISTANCE / IIFACT DIA. fRI>/DU

(b) Uo - 5-5.2 ./s. Ui·12g - 2-2.5 _

.BOO

~ ~ .400

II! Q

i , \ -.000

.000 RADIAL DlSTAHCI! / IIFACT all.. (Rp/DU

(dJ Uo - 9-9.2 ';S. Uj·12g - 4.&-5.3 _

• .000

RADIAL DISTAHCE / IHPACT alA. (Rp/D1J

(f) Uo - 12.6-13 ./s. Uj·12g - 9.1-9.7 •

FIG. 4.4 MEAN DYNAMIC PRESSURE HEAD VARIATION IN RADIAL DIRECTION (RPID1) FOR A RANGE OF PLUNGE POOL DEPTHS (Do - 78 "''''. L - 725 - 1125 mm)

P./.

.000

.000

x - YIDJ - 1.15 - 1.75 o - YIDJ - 2.32 - 3.45 I - YIDJ - 4.12 - 5.90 N - YIDJ - 6.0 - 8.13

RADIAL DISTANCE I IMPACT DIAMETER (RplDj)

4.00

FIG. 4.4 til HCAN DYNAMIC PRESSURE HEAD VARIATION IN RADIAL DIRECTION (Rp1D1l FOR ALL RESULTS. (Do - 78 mm. L - 725 - 1125 mm )

Q

~ I-lJ

i .... -~~ ~"' ~:s z, ~

~,! ...I .... ~ I-0 l-

x

1.00

f I V ¥ +

.000 2.00 4.00

POOL DePTH / OUTLeT DIAMeTeR

+

)(

o

(Y/Do)

FIG. 4.5(e) CENTRE LINE TOTAL MEAN PRESSURE HeAD RATIO VERSUS (Y/Do) ( Do - 78 mm. L - 725 - 1125 mm )

x Uo (m/51 Ui2 /2g 1m)

x - 3.0-3.2 1.3-1.5 1.00

o - 5.0 2.0-2.4

, - 7.0-7.2 3.4-3.7

'0 0 x II - 9.0 4.8-5.2 It II' -¥ V ¥ V - 11-11.1 7.0-7.3

+ + - 12.8-13 9.1-9.7

.BOO LEGEND FOR BOTH GRAPHS ,.

0 X+

v X

.600 0

II ,

.000 2.00 4.00 6.00 B.OO 10.0

POOL DEPTH / IMPACT DIAMETER (Y/DjJ

FIG. 4.5 (b) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (Y/Di) ( Do - 78 mm • L - 725 - U25 mm )

ii;;J. _____ -

x

.900

S ~ + x

II

.700

Uo em/5) Ui2 /2g 1m) , +

x - 3.0-3.2 1. 3-1. 5 v o - 5.0 2.0-2.4 0

.500 , - 7.0-7.2 3.4-3.7

4.8-5.2 II

II - 9.0 x , v - 11-11.1 7.0-7.3

+ - 12.8-13 9.1-9.7 0

.300 LEGEND FOR BOTH GRAPHS x

.000 2.00 4.00 6.00 POOL DEPTH / OUTLET DIAMETER (Y/DoJ

FIG. 4.6(e) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (Y/DoJ ( Do - 78 mm. L - 725 - 1125 mm )

.900 !o +

.700

.500

.300

.000

FIG. 4.6(bJ

x

.Jff 0

x II

I

2.00 4.00

+

v o

II x ,

o

x

6.00 B.OO POOL DEPTH / IMPACT DIAMETER

10.0 (Y/D1)

CENTRE LINE MEAN OYNAHIC PRESSURE HEAD RATIO VERSUS (Y/DiJ ( Do - 78 mm. L - 725 - 1125 mm )

R7

0

~ I-U

i-.... !: ,.;-. o ...

~~ ~ If ~--.... ~ ~

1.00

.BOO

x -

o -.600 , -

II -

v -

+ -

x o

t ¥

Uo (m/5) 'Ui2 /2g (m)

3.0-3.3 2.8-3.1

5.0-5.6 3.8-4.0

7.0-7.9 5.1-5.6

9.0-10.2 6.6-7.6

11.1-12.6, 8.9-10.4

13.0-14.91 11.1-13.7

f j

o

x

+

v

, o

.400 LEGEND FOR BOTH GRAPHS

.000 2.00 4.00 6.00 POOL DEPTH I OUTLET DIAMETER (Y IDa}

FIG. 4.7(111 CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YIDo)

1.00

, 0

It

t .BOO

.600

.400

.000

FIG. 4.7(0)

x 0

II ,

{

( Do - 78 mm. L - 2230 - 2530 mm }

VIIX + ,

+ 0

v

It

I

x

0

4.00 6.00 B.OO POOL DEPTH I IMPACT DIAMETER

10.0 (YIDi)

CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YID1} ( Do - 78 mm. L - 2230 - 2530 mm )

00

0

~ .... 0

iAl ... 111' .... ,::3 0'

'"' ~): 01 ... ~~ 0

2:

~

~ .... 0 ~ Q

i~ .... 111 .... ,::3 0'

~): 01 .... ~I! Q

2:

~

~-.

.900 x , , ¥ x #

+ .700

0

V

Uo (m/s) Ui2 /2g (m)

.500 x - 3.0-3.3 2.8-3.1 * o - 5.0-5.6 3.8-4.0 #

# - 7.0-7.9 5.1-5.6 X

* - 9.0-10.2 6.6-7.6 0 .300

V - 11.1-12.61

8.9-10.4

+ - 13.0-14.91 11.1-13.7

x .100 LEGEND FOR 80TH GRAPHS

.000

FIG. 4.8 (a)

.900

I'

.700

.500

.300

.100

.000

FIG. 4.8(b)

2.00 4.00 6.00 POOL DEPTH I OUTLET DIAMETER (YIDo)

CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (YIDo) ( Do - 78 mm • L - 2230 - 2630 mill )

Ie 0

0 yt # +VMX

f +

0

V

tf

f

x 0

x

2.00 6.00 8.00 10.0 (YIDJ) POOL DEPTH I IMPACT DIAHETER

CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (YIDJ) ( Do - 78 mm. L - 2230 - 2630 mm )

AQ

0

! I-Uat 1(~ i .. ......

:;:, ............ 0

~'f "-

2 ; ..J

~ e

0

~ I-U

i~ .... ~ .. ...... :;:, 0 ......

~>= UI

~! i ' .... 0 2

i

1.00

0 0 Xx

oxi X

-l-X 0 xO

0* 000 0

Ox X 0

.BOO 0

X X

X

0 X

.600 X 0

X X 0

0

K - L - 725 - 1125 mm 0

Q - L - 2230 - 2630 mm .400

.000 2.00 4.00 6.00 B.OO POOL DEPTH / IHPACT DIAHETER

FIG. 4.9 (a) TOTAL HEAN PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

.900 fox 0

0 0

oDJt. ~ l!c Ole X 00

0

X 0

.700 a X X

a X

X

.500 0

X a X

0 X

K - L - 725 - 1125 mm 0 .300

Q - L - 2230 - 2630 mm

.100

.000 2.00 6.00 B.OO

FIG. 4.9 (b)

POOL DEPTH / IHPACT DIAHETER

HEAN DYNAHIC PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

Q()

10.0 (Y/D1)

o

10.0 (Y/Dj)

~ I-U

i--.... 1: 'N' 0 ....

~~ :Z:I! ~ ... ..J

~ ~

~ ..

1.00

x -o -f -II -

v -+ -

.400

.000

• , o

x

Uo em/s) 2.9-3.0 5.0-5.3

7.0 9.0

11.0 13.0

I I I I I I I

I I I I

v

• o

x

Ui2 /2g em) 1.1-1. 4 1. 9-2. 3 3.1-3.5 4.7-5.1 6.S-7.2 9.2-9.6

LEGEND FOR BOTH GRAPHS

4.00

x

+

I o

6.00 10.0

POOL DEPTH / OUTLET DIAMETER (Y/Do) FIG. 4.10(.) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (Y/Do)

( Do - 52.5 mm. L - 620 - 1020 mm )

1.00

v

'tiM + IIf 0 ,

.SOO 0

X x

x

+ .600

v 0

II' X 0

+ , .400 v II

.000 4.00 S.OO 12.0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 4.10 (b) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (Y/Di) ( Do - 52.5 mm • L - 620 - 1020 mm )

01

~ ... u

i .... :: N'

" .... ::I c " ~ ):

u .... :z I

~ If c ;z

W

·900 v

~ + If , ,

0 0

.700 x

x +

.500 V

If

! +

v If .300

X • .000 4.00 6.00 B.OO 10.0

.900

.700

.500

.300

POOL DEPTH I OUTLET DIAI.fETER (YIDo)

FIG. 4.11ie} CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (YIDo) ( Do .. 52.5 mm. L" 620 - 1 020 mm )

v

~ + * , ,

a

x

a

x +

v

If , a

Ua em/5) Uiz /29 em) x - 2.9-3.0 I 1. 1-1. 4 o - 5.0-5.3 I 1.9-2.3 , - 7.0 I

3.1-3.5 I I

tf - 9.0 I 4.7-5.1 v - 11.0 I 6.8-7.2 I + - 13.0 I

9.2-9.6 I

LEGEND FOR BOTH GRAPHS

+

v If

x , a x

.000 B.OO 12.0 POOL DEPTH I IMPACT DIAMETER (YIDiJ

FIG. 4.11 ib) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RA TID VERSUS (Y ID11 ( Do .. 52.5 mm. L .. 620 - 1020 mm )

Q?

0

.900 t , c ~ ~

II + +

.... II

i x .... at .700 + t\I , III' C .... • ~ :;,

Uo (m/s) U12 /2g (m) :r ,

3.0-3.1 2.6-3.0 ~I!

x - 0 o - 5.0-5.1 3.4-3.B

::It -- .500 I - 7.0- 7.1 4.7-5.0 -J 9.0 6.2-6.6 ~ II - + e v - 11.0 B.3-B.7 ,

+ - 13.0 10.7-11.1 x • . 300 LEGEND FOR BOTH GRAPHS x

.000 2.00 4.00 6.00 B.OO 10.0 POOL DEPTH I OUTLET DIAMETER (YIDo)

FIG. 4.12 (a) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YIDo) ( Do - 52.5 mm • L - 2126 - 2526 mm )

0

.900 I x , 0

C II V

~ V II

+ + .... II

i- x ..... at .700 + t\I

'III' f c ..... v If

~~ ~I!

0

x-- .500 -J

~ + e v xl

II 0

.300 x

.000 4.00 POOL DEPTH I IMPACT DIAMETER (YIDiJ

FIG. 4.12(b) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YIDj) ( Do - 52.5 mm • L - 2126 - 2526 mm J

~ I-U

i ... ~ 'It' ~~ u ): ... ~~ 2!

~

·900

.700

.500

.300

.100

.000

x -o -, -* -v -+ -

I +

Uo (m/s) I

3.0-3.1 I 5.0-5.1 I

7 '~~07 '1,1 11.0 13.0

x

Ui2 /2g (m)

2.6-3.0

3.4-3.8

4.7-5.0 6.2-6.6 8.3-8.7

10.7-11.1

LEGEND FOR BOTH GRAPHS

2.00 4.00

+

o

x

6.00 B.OO POOL DEPTH / OUTLET DIAMETER

+

v

• o

x

10.0 (Y/Do)

FIG. ".13 (a) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RA TID VERSUS (Y /Do) ( Do - 52.5 mm. L - 2126 - 2526 111111 )

.900 ,0 v" x f 0 + +v ..

.700 + X

v II ,

.500 0

+ v

.300 .. I x

0

.100 x

.000 4.00 B.OO 12.0 16.0 POOL DEPTH / IHPACT DIAMETER (Y/D1)

FIG. 4.13 (b) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (Y/D1J ( Do - 52.5 mm • L - 2126 - 2526 111m )

0

~ .... II ~

i~ I-t til ,~

1\1 0'01

~~ ~I~ ..J

i:! ~

.900

.700

.500

.300

.000

0 X

0 0 0 0

~ OX ~ X

X X

x - L - 620 - 1020 mm

o - L - 2126 - 2526 mm

4.00

0

Ox 0 0

x x 0

xX X

o

o

B.OO 12.0

POOL DEPTH I IMPACT DIAMETER

FIG. 4.14 (a) TOTAL MEAN PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

.900

.700

.500

.300

.100

.000

~

o o

X

X

x o X 0 0

o ~x

x

x - L - 620 - 1020 mm

o - L - 2126 - 2526 mm

o

Ox o 0

x x o

x x x

o x Xc 0

x Ck o

o

B.OO 12.0 POOL DEPTH I IMPACT DIAMETER

FIG. 4.14 (b) MEAN DYNAMIC PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

nr

16.0

(rIDH

·900

.700

.500

.300

.100

.000

., * I o

)(

+

v

, o

* )(

B.OO

Uo em/s) U12/29

)( - 3.3-3.5

I 1.0-1.5

o - 5.0-5.3 1. 8-2.2 , - 7.0-7.2 I

3.1-3.5 I I

* - 8.9-9.2 I 4.7-5.1 I v - 10.9-11.11 6.7-7.0 + - 12.9-13.21 9.2-9.8

LEGEND FOR BOTH GRAPHS

12.0

)(

o , •

16.0

em)

)(

o

,. * II-

20.0

POOL DEPTH I OUTLET DIAMETER (YIDo)

FIG. 4.15 (e) CENTRE LINE TOTAL MEAN PRESSURE HEAO RATIO VERSUS (YIDo) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

.900

I o

.700 +

)(

v

.500 x , o

)( )( o .300 o , ,

+ v * + v

.100

.000 ".00 B.OO 1 .0 20.0 24.0

(YIDJ) POOL DEPTH I IMPACT DIAMETER

FIB. 4.15(b) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YIDJ) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

Q

~ I-u

~ Q

~ I'll ...... .... Q

::l

~ ......

>: u .... I Z ~ d! >"' ...... Q

~

~

.900

.700

.500

.300

.100

t

II

, o

x

+

v

f

H o

x

Uo Im/s) U12/2g 1m)

x - 3.3-3.5 1.0-1.5 0 - 5.0-5.3 I 1. 8-2.2 I f - 7.0-7.2 I

3.1-3.5 I I

H - 8.9-9.2 I 4.7-5.1 I v - 10.9-11 .11 6.7-7.0 + - 12.9-13.21 9.2-9.8

LEGEND FOR BOTH GRAPHS

i x

.000 B.OO

FIG. 4.16 (a)

.900

II

f o

.100

POOL DEPTH / OUTLET DIAMETER CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (Y/Do)

( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

+

x v

f

H o

x +

VHf 0

o

.000 4.00 8.00 12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/D1) FIG. 4.16 (~) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (Y/D1)

( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

07

.900

.700

.500

.300

.100

.000

FIG. 4.17(e}

.900 tf' o+v \t

.700

.500

.300

.100

.000

, ... tf

,

o

x

B.OO

Uo Im/5) x - 5.0-5.3 o - 6.9-7.3 f - 9.0-9.2 tf - 11.0-11.2 v - 13.0-13.1 + - 14.9-15.3

U12

/2g 1m) 3.3-3.7 4.7-4.9 6.3-6.6 B.2-B.7 10.6-11.2 13.7-14.3

LEGEND FOR BOTH GRAPHS

+

v tf f o x

+

12.0 16.0

POOL DEPTH I OUTLET DIAMETER

20.0

(YIDa)

CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (YIDo) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm )

If

, x

o

+

v tf X

f +

v o , x

o x

12.0 1 .0 20.0 2 .0

POOL DEPTH I IMPACT DIAMETER (YID1)

FIG. 4.17(b) CENTRE LINE TOTAL HEAN PRESSURE HEAD RATIO VERSUS (YID1) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm )

QA

1.00

0

i too .BOO u

i Q Iooi

"- ~ '"' .600

i .... ::;,

"-u >: Iooi i I

.400

olf 2:

i .200

-.000

.000

FIG. 4.18 (II)

.400

.200

-.000

.000

Uo (m/s) U12

/2g (m) x - 5.0-5.3 3.3-3.7

• ... o - 6.9-7.3 4.7-4.9 , * f - 9.0-9.2 6.3-6.6

* - 11.0-11.2 B.2-8.7

* V - 13.0-13.1 10.6-11.2 X + - 14.9-15.3 13.7-14.3

LEGEND FOR BOTH GRAPHS 0

+

V

X * # + 0

V

X , 0 x

4.00

POOL DEPTH I OUTLET DIAMETER

CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (rlDo) ( NOZZLE:

o

+

V

* X

Do - 2S mm •

V o

*

L - 2018 - 2418 mm )

, x o

12.0 16.0 20.0 24.0

X

POOL DEPTH I IMPACT DIAMETER (YIDJ)

FIG. 4.18(b) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RATIO VERSUS (r/Ol) ( NOZZLE: Do - 2S mm. L - 2018 - 2418 mm )

00

.900 xx o 0Xo 0

0 0 x

X

.700 0

0 x

x o

.500 x

x x

o x .300 o 0 x

x x o K - L - 513 - 913 mm o - L - 2018 - 2418 mm

x x x 0 x o o x A o o o

.100

.000 12.0 16.0 20.0 24.0

(Y/Di)

1.00

-.000

POOL DEPTH / IMPACT DIAMETER

FIG. 4.19 (a) TOTAL MEAN PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

xx o Ox 0

o 0

x x

o

o o x

x o

x x

o x

x - L - 513 - 913 mm o - L - 2018 - 2418 mm

o 0

~ x x ~

o o

x x

o

.000 4.00 12.0 1 .0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y /Dj)

FIG. 4.19 (b) MEAN DYNAMIC PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

Q

! t-tl

i t-f liS 'N'

~ ..... ::J ,

tl ):: t-f X ~ I

~If 2: ;

.900

.700

.500

.300

.100

+ o

+ +

x - Do o - Do I - Do If - Do v - Do + - Do

+ V

V V Y + + +

LEGEND FOR BOTH GRAPHS

- 78 mm • L - 725 - 1125 mm - 78 mm • L - 2230 - 2630 mm - 52.5 mm • L - 620 - 1020 mm - 52.5 mm • L - 2126 - 2526 mm - 25 mm • L - 513 - 913 mm - 25 mm • L - 2018 - 2418 mm

v II V

V

+ +

.000 4.00 B.OO 12.0 16.0 20.0 24.0

(Y/Dj)

1.00

.BOO

.600

.400

.200

-.000

POOL DEPTH / IMPACT DIAMETER

FIG. 4.20 (a) TOTAL MEAN PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

~II~ ,,"X +11+

I '?I' V

+ Xb~

X ""'/11 o I +

xCf If xliV

0 I Xy

rf'l. II

l, II

0 t

¥-y V + Y

II + v

!1- v v + v

+ +

.000 4.00 B.OO 12.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y /Dj)

FIG. 4.20(b) MEAN DYNAMIC PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

1fH

0

i .... 0

i Q

...... t\I

o~

! .... ::l

~ ......

il~ -' ~ ~

.900 -

.700

.500

.300

.100

.000

FIG.

. 900

.700 -

.500

.300

.100

.000

4.21 (a)

If' V

+ o

+

v

• Uo (m/5) Ui 2/2g (m) v x - 3.0-3.4 1.6-1. 8 ~ o - 5.3-5.4 2.4-2.8 , - 6.9-7.3 3.5-4.0

+ If - 8.9-9.0 5.1-5.4 v - 10.8-11.2 7.3-7.4

v + - 12.9-13.0 9.6-10.1

If LEGEND FOR BOTH GRAPHS f

0 X

X

X :t 0

• , If If.

4.00 8.00 12.0 16.0 20.0

POOL DEPTH / OUTLET DIAMETER (Y/Do)

CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (Y/Do)

If , x

8.00

+

( ORIFICE: Do-25mm . L - 1020 - 1420 mm )

o

x

X x 0

V II' o , + v

16.0 2 .0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 4.21~) CENTRE LINE TOTAL MEAN PRESSURE HEAD RATIO VERSUS (Y/Di) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

1 f\.,

l­f.)

i tot 1: ,,~ o :;

.900

.700

, It

+

v

Uo Im/5)

x - 3.0-3.4 o - 5.3-5.4 ,- 6.9-7.3 If - B.9-9.0 v - 10.8-11.2

Ui 2/29 1m)

1.6-1. B

2.4-2.8 3.5-4.0 5.1-5.4 7.3-7.4

+ - 12.9-13.0 9.6-10.1

~ " ):: .500 * f

LEGEND FOR BOTH GRAPHS

.300 x o

+

x v ; o J

.100

.000 4.00 8.00 12.0 16.0

.900

.700

.500

.300

.100

POOL DEPTH I OUTLET DIAMETER

FIG. 4.22 (a) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RA TID VERSUS (Y IDa) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

v*' + 0

+

v

, x o

+ v

0* f

.000 8.00

(YIDJ)

FIG. 4.22 (tI) CENTRE LINE MEAN DYNAMIC PRESSURE HEAD RA TID VERSUS tY /D1) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

.900

x .300

x x x 0

0

.100

LEGEND FOR BOTH GRAPHS

X - ALL NOZZLES o - 25 mm ORIFICE

X

x x x x

X II X OX 0

If x X xO 0 XX

x

x o

0

X x

.000 4.00 8.00 12.0 16.0 20.0 24.0

(YIDj)

1.00

~ I-tJ .800

~ ~ ...... ~ ~ 3 .600 ~ ......

.200

-.000

POOL DEPTH I IMPACT DIAMETER

FIG. 4.23~) COMPARISON OF TOTAL MEAN PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

o X

X

X o

X

.000 4.00 12.0 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 4.23(b) COMPARISON OF MEAN DYNAMIC PRESSURE HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

o o ....

o o .... )(

o l::l _ .......

• D

~

0 0 .... )(

Ig ....... ::l

• D ::I ....

1.00- - LEGEND FOR ALL GRAPHS

x - Uo 7 m/s

0 - Uo 9 m/s I - Uo ~ 11 mls H - Uo + 13 m/s

.600

.200- -

.000 .200

(a) 1 I Do - 0

1.00

.600

.200

.000 .200

(b) 1 I Do - Z. 4

1.00

.600

.200

.000 .200

(e) 1 I Do - 4.97

I

o

X

o X

.400 .600 .BOO

o x

RADIAL DISTANCE I OUTLET RADIUS (r, I Ro)

o X

* I o x

x

o

.400 .600 .BOO 1.00

RADIAL DISTANCE I OUTLET RADIUS (rj IRo)

o

X

o x

.400 .600 .BOO 1.00

RADIAL DISTANCE I OUTLET RADIUS (r,IRo)

FIG. 4.24 VARIATION OF TURBULENCE INTENSITY ( Tuolr) IN RADIAL DIRECTION (r,l Ro ). (Do - 78 mm 1

105

0 0 ... )(

1::1

-' ::I

?!.

o o ...

1.00 -x - U ~ 7 m/s 0 - U ~ 9 m/s I - U '* 11 m/s H - U of 13 m/s •

.600 0

II » x

, 0 x

0

.200 x

.000 .200 .400 .600 .BOO 1.00

(a) 1 / D, - 0 RADIAL DISTANCE / JET RADIUS h/R,}

1.00

.600

.200

.000

x - U - 7.24 - 7.35 m/s o - U - 9.18 - 9.22 m/s I - U - 11.15 - 11.2 m/s .. - U - 13.14 - 13.2 m/s

o x

.200 .400 .600 .BOO

If , o

o

x

(b) 1 / Dj - 2.58 - 2.66 RADIAL DISTANCE / JET RADIUS

1.00 -

.600-

.200

.000

x - U - 7.5 - 7.B m/s o - U - 9.4 - 9.S m/s I - U - 11.3 - 11.5 m/s .. - U - 13.3 - 13.4 m/s

.200 .400

II , o

x

.SOO

o x

.BOO

(c) 1 / Dj - 5.24 - 5.32 RADIAL DISTANCE / JET RADIUS

FIG. 4.25 VARIATION OF TURBULENCE INTENSITY ( TuK) IN RADIAL DIRECTION (r,1 RJ ). (Do - 7B mm ]

106

x

1.00

1.00

0 0 .. )(

I~ _ .......

;:,

• 0

~

0 0 .. )(

I~ ....... -;:,

• 0 :::I ....

0 0 ... )(

d~ ........ ;:,

• 0

~

.300

.100

.000 1.00

(a) CENTRE LINE

.500

.300

.100

.000 1.00

(b) rJ / Ro - 0.49

1.00 LEGEND FOR ALL GRAPHS

)( - Uo + 7 m/s o - Uo + 9 m/s I - Uo i' 11 m/s If - Uo ~ 13 m/s

.600

.200

.000 1.00

(e) r J / Ro - 0.77

II I

0

X

DISTANCE FROM OUTLET / OUTLET OIA.

II , 0

X

2.00 3.00 4.00

DISTANCE FROM OUTLET / OUTLET OIA.

II , 0 x

2.00 3.00 4.00 DISTANCE FROM OUTLET / OUTLET OIA.

II I

0

x

5.00

(1/00)

II , o

x

5.00

(1/00)

5.00

(1/00)

FIG. 4.26 VARIATION OF TURBULENCE INTENSITY ( Tuo~) IN LONGITUDINAL DIRECTION ( 1 / Do ). {Do - 78 mm ]

1("7

0 0 ... )(

1::1

" :,

::I ....

0 0 ... )(

1::1

" ::I

::I ....

0 0 ... I<

1::1

" ~ • ::I ....

.300

.100

.000 1.00 2.00

(a) CENTRE LINE

.500

.300

.100

.000 1.00 2.00

(b) ", I R, - 0.49 - 0.54

1.00 LEGEND FOR ALL GRAPHS

x - U - 7 - 7.B m/s o - U - 9 - 9.6 m/s I - U - 11- 11.5 m/s * - U - 13 - 13.4 m/s

.600

.200

.000 1.00

(c) '" I R J - 0.77 - O. B6

It

I

0

X

DISTANCE FROM OUTLET / JET DIA.

It , 0

X

DISTANCE FROM OUTLET I JET DIA.

It

I

0 x

4.00 5.00

DISTANCE FROM OUTLET / JET DIA.

It I

0

x

It

I

6.00

(liD, )

o

x

~o x

6.00

(110,)

6.00

(liD,)

FIG. 4.27 VARIATION OF TURBULENCE INTENSITY ( TuK) IN LONGITUDINAL DIRECTION ( 1 I D J ). [Do - 78 mm J

1f\Q

0 0 .. l(

I~

" -:;,

• D

~

o o ..

0 0 ... )(

13 ....... ::»

• D ;:, to-

.250

.150

II

.050 x

.000 .200

(a) 1 / Do - 1.6

.250

x - Uo .: 9 m/s

0 - Uo f 11 m/s , - Uo - 13 m/s

If - Uo . 15 m/s

II

x

.600 .BOO 1.00

RADIAL DISTANCE / OUTLET RADIUS (r, / RoJ

I

o

x - Uo - 9.6 m/s a - Ua - 11 m/s I - Uo - 13.4 m/s If - Uo - 15 m/s

~--4----r--~---r~~--~~~--~~--t-~ . 600 . BOO 1. 00

(b) 1 / Do - 10.08 RADIAL DISTANCE / OUTLET RADIUS (r,/ RoJ

1.00

I x - Uo - 9 m/s

• a - Uo - 11.2 m/s I - Uo - 13 m/s

II If - Ua - 14.7 m/s

.600

.200 • x

I I .000 .200 .400 .600 .BOO 1.00

(e) 1 / Do - 17.2 RADIAL DISTANCE / OUTLET RADIUS (r, / Ra)

FIG. 4.28 VARIATION DF TURBULENCE INTENSITY ( Tuo%) IN RADIAL DIRECTION (r, / Ro ). {NOZZLE: Do - 25 mm J

1"0

o o ~

0 0 ~

)(

l:l

"' :l

;:, l-

0 0 .. )(

l:l

"' :l

• ;:, I-

.250-

.150- -

.050 x

.000 .200

(a) 1 I D J - 1. 6

.250

.150 II

I

.050 0

x

x

.600

x - U ~ 9 mls o - U -: 11 m/s I - U -: 13 mls N - U 'i' 15 m/s

RADIAL DISTANCE / JET RADIUS

x - U - 9.9 mls f o - U - 11.2 mls

, - U - 13.6 m/s N - U - 15.1 m/s

" X

0

.000 .200 .400 .600 .BOO 1.00

(b) 1 / DJ - 10.08 - 11.5 RADIAL DISTANCE / JET RADIUS frJlRJ J

1.00 x - U - 9.4 mIl o - U - 11.6 m/s I

I - U - 13.25 mil 0 X

" - U - 15 m/s II

.600

.200 • 0

x

.000 .200 .400 .600 .BOO

(e) 1 / D, - 17. 9 - 20. 5 RADIAL DISTANCE / JET RADIUS wJIRJJ

FIG. 4.29 VARIA TION OF TURBULENCE INTENSITY { Tu%} IN RADIAL DIRECTION {r J / R J J. {NOZZLE: Do - 25 mm J

1.00

0 0 .. )(

I~

-' ;:)

• 0

I:!

0 0 .. )(

I~ , ;:)

• 0

I:!

.250

.150

II

.050 x

.000 4.00 B.OO

II

f

x

o

x

12.0

(0) ", / Ro - 0.32 DISTANCE FROM OUTLET / OUTLET DlA.

16.0 (1/00)

1.00 LEGEND FOR ALL GRAPHS ,

x - Uo 0 - Uo I - Uo II - Uo

.600

.200 • II

X

.000

(e) "J / Ro

FIG. 4.30

- 9 - 9.6 m/s - 11 - 11.2 m/s • - 13 - 13.4 m/s II - 14.7 - 15 m/s

, II 0

4.00 B.OO 12.0 16.0

- 0.64 DISTANCE FROM OUTLET / OUTLET DIA. (1/00)

VARIATION OF TURBULENCE INTENSITY ( Tu.~) IN LONGITUDINAL DIRECTION ( 1 / Do ). (NOZZLE: Do - 25 mm J

111

0 0 .... )(

I~ , ~

• :::J l-

0 0 .... )(

I~ , ~

~

0 0 .... )(

I~

-' ~

• :::J I-

.250

I

0

.150

II

.050 x

.000 4.00 B.OO

(IJ) CENTRE LINE

.250

.150

II

.050 x

.000 4.00 B.OO

(b) r J I R J - o. 32 - o. 33

1.00 LEGEND FOR ALL GRAPHS

.600

.200 •

.000

II

X

x - U - 9 - 9.9 mls 0 - U - 11 - 11.6 mls I - U - 13 - 13.6 m/s " - U - 15 - 15.1 mls

(cJ r J I R J - 0.67 - 0.76

II

, 0

x o

12.0 16.0

DISTANCE FROM OUTLET I JET DIA.

If

I

o

x

12.0 16.0

II ,

DISTANCE FROM OUTLET I JET DIA.

I

IIX o

I

II

16.0

DISTANCE FROM OUTLET I JET OIA.

o

x

0 X

20.0

(1IDJ)

FIG. 4.31 VARIATION OF TURBULENCE INTENSITY ( Tut) IN LONGITUDINAL DIRECTION ( 1 I OJ J. I NOZZLE: Do - 25 mm J

11?

0 0 .... l(

Ig

-' :l

• 0

~

0 0 .... l(

Ig

-' :l

• 0 :::3 ....

0 0 .. )(

Ig _ .......

:l

• 0 :::3 ....

, .500- o - Uo -: 11 mls

I - Uo -: 13 mls Ii - Uo - 15 mls

.300

0

.100 J If

.000 .200 .400 .600

(a) 1 I Do - 2.0 RADIAL DISTANCE I OUTLET RADIUS (r,IRo)

1.00 - 9 mls x - Uo I

o - Uo - 10.B mls I - Uo - 13 m/s If - Uo - 14.7m/s

If

.600

0

x If

.200 I x 0

.000 .200 .400 .600 .BOO

(b) 1 I Do - 4.92 RADIAL DISTANCE I OUTLET RADIUS (r,IRo)

2.50 If

x - Uo - 9 mls o - Uo - 10.B mls I - Uo - 12.9 mls If - Uo - 14.6 mls

1.50 If

I f

0

0

.500 x x

.000 .600 1.00

(c) 1 I Do - 10.B RADIAL DISTANCE I OUTLET RADIUS (r,IRo)

FIG. 4.32 (j) VARIATION OF TURBULENCE INTENSITY ( TUD~) IN RADIAL

DIRECTION (r j I Ro ). [ORIFICE: Do - 25 mm ]

11 ~

0 0 ... )(

I~

-' ::l

• 0

?

0 0 .. )(

I~

-' ::l

• 0 ~ ....

4.50

x - Uc - 9.1 mls 0 - Uc - 10.B mls

If I - Ua - 13 m/s 3.50

If - Ua - 14.B m/s

2.50 0

0 If

I

I

1.50

x x

.500

.000 .200 .400

(d) 1 I Do - 14.4 RADIAL DISTANCE I OUTLET RADIUS

7.00 x - Uc - 9 m/s o - Uo - 10.B m/s I - Uo - 12.9 m/s If - Uo - 14.6 m/s

5.00 If

I

3.00 o If

I

o 1.00

x x

.000 .200 .400 .600 .BOO 1.00

(e) 1 I Do - 17 RADIAL DISTANCE I OIJTLE'T RADIUS (rj IRa)

FIG. 4.32 (jj) VARIATION OF TURBULENCE INTENSITY ( Tuo%) IN RADIAL

DIRECTION (r J / Ro ). (ORIFICE: Do - 25 mm J

114

0 0 .... Ie

l::l , ::l

:3 ....

0 0 ... Ie

l::l

-' ::l

:3 ....

0 0 ... Ie

l::l

:;;-. ::l

:3 ....

.500

.300

.100

.000

(a)

1.00

.600

.200-

.000

o - U 11 m/s , - U 13 m/s II - U 15 m/s

.200

1 / Dj - 2.5

Ie - U - 9.1 m/s o - U - 10.9 m/s , - U -II - U -

13.1 m/s 14.7 m/s

II f

.200

(bJ 1 / DJ - 4.92 - 5.35

2.50

1.50 if

I

0

.500

.000 .200

(e) 1 / DJ - 10.B - 12.3

x o

x

*

0

i II

.400 .600 .BOO RADIAL DISTANCE / JET RADIUS (rJ IRJ J

f

0

x

.400

RADIAL DISTANCE / JET RADIUS

x - U - 9.3 m/s o - U - 11.1 m/s

if - U - 13.1 m/s

II - U - 14.8 m/s

I

0

x

.400 .600 .BOO RADIAL DISTANCE / JET RADIUS (rJ /RJ )

FIG. 4.33 (j) VARIATION DF TURBULENCE INTENSITY ( Tu%) IN RADIAL DIRECTION (r,/ R, J. C ORIFICE: Do - 25 mm 1

11~

1.00

1.00

1.00

o o ..

0 0 ... )(

I:::. ::-. :::.

• :::I ....

3.50

2.50

o

, 1.50-

x

·500

.000 .200

o

,

.400 .600

x

x - U - 9.5 m/s o - U - 11.1 m/s I - U - 13.3 m/s ~ - U - 15 m/s

.BOO 1.00

(d) 1/ D J - 13.3 - 15.6 RADIAL DISTANCE / JET RADIUS

7.00

5.00

3.00

1.00

.000

FIG. "'.33 (11)

x - U - 9.5 m/s

o - U - 11.2 m/s

I - U - 13.2 m/s

If - U - 14.9 m/s

II

t

" ,

o

x x

.200 .400 .600 .BOO

RADIAL DISTANCE / JET RADIUS (rJ /RJ)

VARIA TION OF TURBULENCE INTENSITY ( Tu%) IN RADIAL

DIRECTION (r J/ R J ). [ORIFICE: Do - 25 mm }

11("

1.00

o o ...

0 0 ... )(

13 , ::l

I 0

~

0 0 ... )(

13 -' ::l

I 0

~

7.00

5.00

3.00

1.00

LEGEND FOR ALL GRAPHS

X ~ Uo - 9 - 9.1 mls a - Uo - 10.8 - 11 m/s I - Uo - 12.9 - 13 m/s H - Ua - 14.6 - 15 m/s

.000 4.00

fa) CENTRE LINE

5.00

3.00

1.00

.000

(b) r J /Ra - 0.32

3.00

1.00 , , II

R

.000

(el rJ /Ra - O. 56 - O. 72

,

• x

x

s.oo 12.0

DISTANCE FROM OUTLET / OUTLET DIA.

s.oo

II

# o

x

, x

12.0

,

o

x

16.0 (liDo)

II

,

o

x

DISTANCE FROM OUTLET / OUTLET OIA.

II

, o x

o

,

x

S.OO 12.0 16.0

II

o

x

DISTANCE FROM OUTLET / OUTLET DIA. (1/00)

FIG. 4.34 VARIATION OF TURBULENCE INTENSITY ( Tu .. ~) IN LONGITUDINAL DIRECTION ( l / Do ). [ORIFICE: Do - 25 mm ]

111

o o ...

0 0 ... )(

I:;) ::.. :::. • ~

0 0 ... )(

I:;) ::.. :;)

::J I-

7.00

5.00

3.00

1.00

.000

LEGEND FOR ALL GRAPHS

x. - U - 9.1 - 9.5 m/s o - U - 10.9 - 11.2 mls # - U - 13 - 13.3 m/s N - U - 14.7 - 15 mls

4.00 B.OO

If

* * o

, 0 x

x

12.0

(a) CENTRE LINE DISTANCE FROM OUTLET I JET DIA.

5.00

3.00

1.00

.000 4.00

3.00

1.00

(b) r,l R, - 0.3 - 0.4

f

f If

.000 4.00

(e) r,l R, - 0.58 - 0.9

M , o

If

x

12.0

If

f

f

x

16.0 DISTANCE FROM OUTLET / JET DIA.

o , f

, x

o x

B.OO 12.0 16.0

DISTANCE FROM OUTLET / JET DIA.

o

x

(110, )

o

x

o

x

(lID, )

FIG. 4.35 VARIA TION OF TUR8ULENCE INTENSITY ( Tu~) IN LONGITUDINAL DIRECTIDN ( 1 / D, ). (ORIFICE: Do - 25 mm )

11 Q

20.0

20.0

FIGURES FOR CHAPTER 5

,'9

~.~ ...

.250

I 1- .150

I~ x 0

• Ii .050 • Ii Ii

.000 1.00 2.00 3.00 RADIAL. OIITAH12 I DUT'Lfl' OIA. tllplDol

f.I IJG .3-3.311/ •• Uj-/2g· 1.2-1.7.

I .150

I~

f 0

I .050 iii x a Ii Ii

.000 1.00 2.00 3.00 RADIAL. OISTAH12 I DIITlV' DIA. tllplDol

fel IJD· 7-7.311/ •• Ul-/2g· 3.4-3.8.

I .150

I~

f 0

f If

.050 , iii Z x Ii

.000 1.00 2.00 3.00 1UD1AL. DIIT AHI2 I DUT'Lfl' DIA. tllplDol

f.I IJG • 10.1-11.1 11/ •• Uj·/2g - 5.8-7.4 •

i i i=--

f Ii Ii Ii

I i ~~

f Ii .. Ii

~ i I~

I~ Ii .. Ii

.150

0

x

.050 t

.000 1.00 2.00 3.00 RADIAL. OIST ANCE I DUTLV' OIA. tllplDol

fbI IJG • 5-5.2 11/ •• Ul -/2g • 2-2.5 •

.150

.050

x - V/Do - 1.28 o - V/Do - 2.56 f - Y/Do - 4.49 If - V/Do - 6.41

LEGEND FOR ALL GRAPHS

o

I

• .000 1.00 2.00 3.00

1UD1AL. DISTANC6 I DUT'Lfl' DIA. ".IDoI

(dJ IJG • 8-9.1 11/.. Ul -/2g • 4.8-5.3 •

.150

i If

.050 8 x

.000 1.00 2.00 3.00 RADIAL. DIST ANC6 I DIITlV' OIA. ".IDoI

(fJ IJG - 12.5-1311/ •• Uj·/eg - 9.1-9.7.

FIS. 5.1 VARIATION OF R.N.S. PRESSURE HEAD COEFFICIENT IN RADIAL DIRECTION (Rp/Do) FOR A RANGE OF PLUNGE POOL DEPTHS (Do - 78 mm. L - 725 - 1125 mm J

1'0

·250

I ~ i i .150

1- .150 ~;

I~ x

1-0

.. .050 I It :ri

Ii Ii Ii

o

.050

x I

.000 2.00 4.00 R4DIAL D1STAHC! I l~ACT DIA. ""1D1l

.000 1.00 2.00 3.00 R4DIAL Dl'TAHC! I l~ACT DlA. ",,1D1l

(.) Uo - 3-3.3 aI •• Ul·/2g - 1.2-1.7. (tIJ UO - 5-5.2 aI,. U1·/2g - 2-2.5 •

i X - Y - 100 mm

I o - Y - 200 mm

.150 i .150 f - Y - 350 mm * - Y - 500 mm

1:- 1:- LEGEND FOR ALL GRAPHS

f 0 f 0

, , .050 i .; .050 .. X :ri

, • X Ii Ii

.000 1.00 .000 1.00 2.00 3.00 1lAD1AL D1STAHC! / l~ACT DIA. ""IOU 1lAD1AL D1STAHC! / l~ACT DIA. "'IOU

Ie) Uo - 7-7.3 aI •• U1·/2g - 3.4-3.8 • (IIJ UO - 9-9.2 aI,. U1-/2g - 4.'-5.l.

I 1:-

f .050

.150

~ i 1:-

0 I~ f II

It .; Ii x Ii

.150

.050

x

.000 1.00 1lAD1AL DlSTAHC! / l~ACT Dl.. ""1D1l

.000 1.00 2.00 R4DIAL DISTAHC! / l~ACT DIA. ""1D1l

II) UO - 10.9-11.1 aI •• Ut-/211 - 6.8-7.4 • lfJ UO - 12.6-13 s/ •• Ut·l2g - 9.1-9.7 •

FIB. 5.2 VARIATION OF R."'.S. PRESSURE HEAD COEFFICIENT IN RADIAL DIRECTION (Rp/D1J FOR A RANGE OF PLUNGE POOL DEPTHS (DQ - 78 1111. L - 725 - 1125 mil J

171

1.00

! i i .600

I x .600 1- a ~~ a

I! i~ .200

, .200 • i i • i

.000 1.00 2.00 3.00 .000 2.00 IW)ZAL DZSTAJa I cxm.n DIA. ~1Do' IW)ZAL Dl8TAJa I cxm.ET DlA.

(e) IJCJ - 3-3.3 1118. Ui-/2g - 1.2-1.7. fb) IJCJ - 5-5.2 III.. U1-/2g - 2-2.5 •

I I x - VIDa - 1.28 a - VIDa - 2.56

.600 i .600 f - VIDa - 4.49 tI - VIDa - 6.41

I- I- LEGEND FOR ALL GRAPHS

I! tI I! a 8 f .200 .200 f

x i i x • i .000 1.00 3.00 .000 2.00

IlADIAL Dl8TAJa I cxm.n DIA. ~1Do' IW)ZAL DISTANCE I cxm.n DIA. ~1Do'

(e} IJCJ - 7-'7.31118. Ui-/eg - 3.4-3.1 • (d) Uo -1-9.21118. Ui-/2g - 4.8-5.3.

I .450 t .450

Ii I! • 1- .150 I I I

! .150

If x

i x II

i .000 1.00 .000 2.00

IW)zAL DZITAJa I cxm.n DIA. IW)ZAL DZSTAJa I cxm.ET DZA. ~1Do'

(.) IJCJ - 10.1-11.11118. UJ-/2g - 1.8-7 .... (fJ IJCJ - 12.6-13 1118. Ui -/2g - 9.1-9.7 •

FIG. 5.3 VARIATION OF MAX. PRESSURE HEAD CDEFFICIENT IN RADIAL DIRECTION (Rp/Do) FOR A RANGE OF PLUNGE POOL DEPTHS (Do - 78 1111. L - 725 - 1125 111m )

I 1-I~ i

~ i Ii I-i

1.00

X .600

0

" .200 tHo

.000 4.00 RADIAL DlITAHC2 I IIfPACT DIA. (Rp/DH

fs' UD - 3-3.3 II/S. UJ-/2g - 1.2-1.7.

.600

.200

.000 1.00

II o I

)( i

RADIAL DISTI.N/CW I IIfPACT DIA. (Rp/DJ)

fc' Uo - 7-7.3 als. UJ-/2g - 3.4-3.8 •

.<450

I

.150 ft )(

.000 1.00 2.00 3.00 RADIAL DISTAHC2 I IIfPACT DIA. (Rp/D~I

fs' UD - 10.9-11.1 ./s. UJ-/2g - 8.8-7.4 •

~ i i: i~ i

i i I -;

f i

.600

o

.200

.000 1.00 2.00 3.00 RADIAL DISTANCE I 114PACT DIA. (Rp/D~)

(b' Uo - 5-5.2 11/ •• UJ-/2g - 2-2.5.

.000

x - y - 100 mm o - Y - 200 mm I - Y - 350 mm II - Y - 500 mm

LEGEND FOR ALL GRAPHS

* I

)(

1.00 RADIAL DISTANC! I 1l4PACT OIA. (Rp/DJ)

(d' Uo - 9-9.2 aI •• UJ-/2g - 4.8-5.3.

.450

.150

.000

)(

2.00

I

x* o

RADIAL D1STA~ I IHPACT DrA. ""'IDS)

(fJ UO - 12.8-1311/ •• UJ-/2g - 9.1-9.7.

FIS. 5.4 VARIATION OF MAX. PRESSURE HEAD COEFFICIENT IN RADIAL DIRECTION (Ap/OJ) FOR A RANSE OF PLUNGE POOL DEPTHS (Do - 78 mm. L - 725 - 1125 mm J

1?~

I .500

x

I A .300 0

I- I If 0

I

i .100

.000 2.00 3.00 RADZAL. OlSTANCI! / txm.0' OIA. (Ap1Do)

(.J UtJ - 3-3.3./ •• UJ 1/2g - 1.2-1.7.

I .500

IA .300 0

I- I If i x

i .100 J!

.000 1.00 RADZAL. DZWTANCI! / txm.n' DIA. (Ap/Do)

I .500

I A .300 0

f

1- If • If

X

i .100 X

.000 1.00 2.00 3.00 IUDZAL. ozsrAHU / 0IJ7UT OZA. (ApIDoI

(.J Uo - 10.9-11.1 .; •• UJ 1/2g - 6.8-7.4.

.. ~

~ .. 1-I~ ~

I

.500

.300

.100

.000 1.00

o

2.00

o I II

3.00 RADZAL. OZIITANCI! / txm.O' DZA. (Ap/Do)

fbJ Uo - 5-5.211/1. UJ 1/2g - 2-2.5 •

x - V/Do - 1.28 0 - V/Do - 2.56 I - Y/Do - 4.49

.500 If - Y/Do - 6.41

LEGEND FOR ALL GRAPHS

I ~ .300 0

I-i

.. ~ i I-I~ i

I 0

I I If

.100 x

.000 1.00 2.00 3.00 RADIAL. DISTANCI! / txm.O' DZA. (ApIDoI

(IJI UtJ - 9-9.2 ';'. UJ8/2g - 4.8-5.3 •

.500

.300

.100

o f If

X

X

.000 1.00 2.00 3.00 RADZAL OllTAHU / txm.O' OZA. ""IDol

m Uo - 12.6-13 ./ •• UJ 1/2g - 9.1-9.7 •

FIG. 5.5 VARIATION OF NIN. PRESSURE HEAD COEFFICIENT IN RADIAL DIRECTION lAP/Do) FOR A RANGE OF PLUNGE POOL DEPTHS (Do - 78 mm. L - 725 - 1125 11m )

1?L

I .500

x

1- .300 0

I! ,. II 0

w'x

i .100

.000 2.00 IUDIAL DISTIJoIr2 I INP ... CT 01 .... (RplDfJ

f.) lAo - 3-3.3'; •• UJ'I2g - 1.2-1.7.

I .500

17 .300

f 0 ,. II j x

! .100 ~

.000 1.00 2.00 3.00 IUDIAL DISTANCE I INP ... CT 01 .... (RpIDU

fc) /Jo - 7-7.3.1 •• UJ'I2g - 3.4-3.1 •

I .500

I. 0 .300

I~ ,. II ,.

* X

i .100 X

.000 1.00 2.00 3.00 IUDIAL DISTANCE I INP ... CT DIA. (Rp/DU

(e) /Jo • JD.I-11.1 '; •• UJ'/2g· 5.8-7.4 •

.. ~

i ~7

i~ ~

~ i ~-

I~ ~

! i

.500

.300

.100

o

IE o ,.

lEX

.000 1.00 2.00 3.00 1UD1 ... L DISTANCE I 114P ... CT 01.... (RpIDU

fbI /Jo • 5-5.~ V.. Uj'l2g - 2-2.5 •

.500

.300

.100

.000

x - Y - 100 mm o - Y - 200 mm ,. - Y - 350 mm II - Y - 500 mm

LEGEND FOR ALL GRAPHS o

f o f II

X

1UD1 ... L DISTANCE I INPACT Dl.... (Rp1D1I

fll) UO ·9-9.2'; •• UJ'IZg - 4.1-5.3 •

.500

~ A .300 0

Iv f

* II

X I ~ .100

X

.000 1.00 2.00 IUDIAL DISTANCE I INPACT DIA. (RpIDJJ

(fl /Jo • 12.&-13 V •• UJ'/2g - 9.1-9.7 •

FIS. 5.6 VARIATION OF NIN. PRESSURE HEAD COEFFICIENT IN RADIAL DIRECTION (Rp/D1J FOR A RANGE OF PLUNGE POOL DEPTHS {Do - 78 m,.. L - 725 - 1125 mm J

1?~

I-

~ I.J ....

~ I.J

Q

~ ~ . i3 f}

If CI)

X a:

I-

~ I.J ....

~ I.J

Q

i § .

i f}

CI)

X a:

.225

.175

.125

x .075

0

f .025 • .000 2.00

X

0

f

It

!I-

x

o f

v

+

6.00

f

II

POOL DEPTH I OUTLET DIAMETER (Y IDo)

FIG. 5.7(II} CENTRE LINE R.M.S. PRESSURE HEAO COEFFICIENT WITH (YIDo) ( Do - 78 mm. L - 725 - U25 mm )

Ua (m/s) Ui2 /2g (m)

x - 3.0-3.21 1.3-1.5

5.0 I

2.0-2.4 o - I I , - 7.0-7.21 3.4-3.7 I

If - 9.0 I 4.8-5.2 I

.225 v - 11-11.11 7.0-7.3

+ - 12.8-13 I 9.1-9.7 x

LEGEND FOR BOTH GRAPHS V

.175

.125

.075

.025 f , .000

FIG. 5.7(b}

o

+ 0

f It

If * X 0 X

X o

V

f

+

6.00 8.00 10.0

POOL DEPTH I IMPACT DIAMETER (YIDj)

CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDi) ( Do - 78 mm. L - 725 - 1125 mm )

1.,J.,. ___ . ___ . __ . ____ . __ ._. _____ . ____ . __ _

... ffi I-i U I-i

It ~ u 0

~ III + !S f}

i ! ~ )(

~

.900

.700

.500

.300

.100

.000

x

o

x

I

o

If . .,

x

o

I

II

V

+

2.00 6.00

POOL DEPTH I OUTLET DIAMETER

I

(YIDo)

FIG. 5.8(1J) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( Do - 78 mm. L - 725 - H25 mm )

x -

o -

I -

.900 " -V -

+ -

.700

.500

.300

.100

Uo Im/5) U12 /2g (m)

3.0-3.2 I 1.3-1.5

5.0 I

2.0-2.4 I I

7.0-7.21 3.4-3.7 I

4.8-5.2 9.0 I I

~~~~~~~ I 7.0-7.3

9.1-9.7

LEGEND FOR BOTH GRAPHS

o

X

I o

X

If

V

+

x

0 o x If I

I

.000 4.00 8.00

POOL DEPTH / IHPACT DIAHETER 10.0

(YIDjJ

FIG. 5.8~) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH lYIDi) ( Do - 78 mm. L - 725 - H25 mm )

1'7

... ~ u ....

~ u

~ ~

I

B CI) r ~

~ X

... ~ u

i c u C

~-IIJI

SB i'-~ ~ ~ X

x

.500

o

.300 X -

0 -x ,

f -

IE -

IE v -o

+ -.100

$

.000 2.00

Uo (m/5)

3.0-3.2

5.0

7.0-7.2

9.0

11-11.1

12.8-13

x o

, +

Ui2 /2g (m)

1.3-1.5

2.0-2.4

3.4-3.7

4.8-5.2

7.0-7.3

9.1-9.7

LEGEND FOR BOTH GRAPHS

4.00 6.00

POOL DEPTH / OUTLET DIAMETER

+

v

J IE

0

(Y/Do)

FIG. 5.9(4) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (Y/Do) ( Do - 78 mm. L - 725 - U25 mm )

X X

0

.500 ., + , v

0 +

, X

IE

0 .300

X ,

0

.100 , f

.000 2.00 4.00 6.00 8.00 10.0

PDOL DEPTH / IMPACT DIAMETER (Y/Dj)

FIG. 5.9 (b) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (Y/DiJ ( Do - 78 mm • L - 725 - 1125 mm )

128.

x .... .... at M x ~ .....

" 1\1 1.40 0 .... ... X :l :l

..... 0 X ..... , 8 )( c: l( III .... ,

! ! 0 + 1.00 , * Q Q ,

i i +

l- I- f ~ u u • * i i f .... .... .600 ..... ..... 0 Q Q +

i ~ v X

~ » • ~ ~ . 200 0 • ..J ..J X

~ ~ e e 2.00 4.00 6.00 .000

POOL DEPTH / OUTLET DIAMETER (Y/Do)

FIG. 5.10(a} CENTRE LINE TDTAL PEAK AND MINIMUM PRESSURE HEAD RATID tiITH (Y /Do) . ( Do - 78 mm . L - 725 - 1125 mm )

Uo Im/5) Ui2 /2g 1m)

X - 3.0-3.2 I 1.3-1. 5

o - 5.0 I 2.0-2.4 I

I ., - 7.0-7.2/ 3.4-3.7

* - 9.0 I I 4.8-5.2 I

v - 11-11.1 I 7.0-7.3 x I

-.. + - 12.8-13 I 9.1-9.7 -.. CI M X ~ ......

1.40 LEGEND FOR BOTH GRAPHS " " 0 .... ... X :l :l

0 X "- "- f 0 )( c: \'If 't* f

I ....

f f 0 + - 1.00 -l * ; ; .II +

I- " X ¥ I- + 0 u u *

i i f .600

"- "- 0 + Q

~ ~ V X

* f

~ 0 X

~ .200 0 -tI4 , ..J X

~ ~ e e 2.00 6.00 B.OO 10.0 .000 POOL DEPTH / IMPACT DIAMETER (Y/Dj)

FIG. 5.10 (b) CENtRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO. tilTH (Y/DjJ. ( Do - 78 mm • L - 725 - 1125 mm )

1"0

1.60 ~ ~

fit' III' ..... .... X ::l ::l X , "- X

>= 1.20 0 0

>= r + I I • )( c: ,

+ III .... 0

f i t II 0 ..... .,. + X

0 0

~ ~ .800 • It-t * l- I-

II II , i i + ... 0 , , .400 v 0 0

~ ~ II

X , i

:..::

~ ~ -.000 0 8

II II X X .... !t ::&:

~ ~ .000 2.00 4.00 6.00 :.;; 0 0 POOL DEPTH / OUTLET DIAMETER (Y/Do)

FIG 5.11 (a) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATID WITH (Y /Do) • (Do-78mm. L - 725 - 1125 mm )

Uo (m/s) Ui2 /2g (m)

X - 3.0-3.2 : 1.3-1.5

5.0 I

o - I 2.0-2.4 I

* - 7.0-7.21 3.4-3.7

9.0 I

II - I 4.8-5.2 1.60 I

M M v - 11-11.11 7.0-7.3 I

N' fit' + - 12.8-13 I 9.1-9.7 ..... ..... X ::l ::l X , , X LEGEND FOR BOTH GRAPHS

1.20 0 0 ): ):

VII ' +

I I YIf )( c: I + I III .... 0

! ! vi * 0

+ it' X 0 0

; ~ .800 H ¥ ... 0 X

* l- I-II II I

i i ... ... 0 + , "- .400 v

~ 0

~ II

X I

"* :..::

~ :z ,

0 ~ -.000 0

II II X ... ... ::&: ::&: I I ! ! .000 2.00 B.OO 10.0 0 Q POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.11 (b) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RA TID WITH (Y /D1) • ( Do - 78 mm • L - 725 - 1125 mm )

,~'t'<b~ I< c

... ~ Col

i Col

CI

i

i CI) . Z a:

CI)

z· a:

. a

.225

X

0 f .. .175 X v

0

f x

.125 0 + X

f 0 ..

.075 .. v + ,

v

* +

.025

.000 2.00 4.00 6.00

POOL DEPTH I OUTLET DIAMETER (YIDo)

.225

.175

.125

.075

.025

FIG. 5.12(11) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDo) ( Do - 78 mm. L - 2230 - 2630 mm )

Uo (m/s) : Ui2 /2g (m) I

x - 3.0-3.3 I 2.6-3.1 I

o - 5.0-5.6 I 3.6-4.0

I - 7.0-7.9 I 5.1-5.6

* - 9.0-10.2 6.6-7.6 I B.9-10.4 v - 11.1-12.6/

+ - 13.0-14.9/ 11.1-13.7

LEGEND FOR BOTH GRAPHS

X

0 X ,

0 .. * v + ,

v -tv .. +

, +

v

o .. X ,

o

.000 4.00

POOL DEPTH I IMPACT DIAMETER

FIG. 5.12{b) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDJ) ( Do - 78 mm. L - 2230 - 2630 mm J

1~1

X

... ~ .900 x u

i x

.700

i a

+ B- f

i 0

.500 x * a x v

~ f

.300 f

i * 0

* + , .,. If .. * .100

.000 2.00 ".00 6.00

POOL DEPTH I OUTLET DIAMETER (YIDa)

FIG. 5.13 (a) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (YIDa) ( Do - 78 111m , L - 2230 - 2630 mm)

Ua (m/s) Ui2 /2g (m)

x - 3.0-3.3 2.8-3.1

a - 5.0-5.6 3.8-4.0

i f - 7.0-7.9 5.1-5.6

.900 II - 9.0-10.2 6.6-7.6 x

i y - 11.1-12.6. 8.9-10." x + - 13.0-14.91 11.1-13.7

.700

i LEGEND FOR BOTH GRAPHS 0

+ 8 f

i a .500 )( *

a x v

I , .300

, i * 0

* + f

'" f/

* .....

.100

.000 6.00 8.00 fO.O

POOL DEPTH I IMPACT DIAMETER (YIDJ)

FIG. 5.13 (b) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (Y/Dj) (Do-78111I1, L - 2230 - 2630 111111 )

1~?

... i5 .... u .... ~ 0 u 0

~ I

&

~ f3 If ~

~ X

... i5 .... u ....

~ U

Q

i I

&

S i ~ ~

~

~_:.r' , .

.700

.500

.300

.100

.000

FIG. 5.j4

.700

.500

.300

.,.' +

.100

.000

x

0

0 • ; V

* x V

0

x 0 + X

• ,

+ ¥

2.00

POOL DEPTH I OUTLET DIAMETER (YIDo)

(e) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) (Do-78mm.

x

o * ,

v

)(

o +

f

2.00

L - 2230 - 2630 mm )

+ v

*

x -0 -, -* -v -+ -

Uo (m/s) I Ui2 /2g (m) I

3.0-3.3 I 2.8-3.1 I

~::=~:: II ::~=;:~ 9.0-10.2 I 6.6-7.6

I 11.1-12.61 8.9-10.4

13.0-14.91 11.1-13.7

o LEGEND FDA BOTH GRAPHS

, x

o

x

POOL DEPTH I IMPACT DIAMETER

FIG. 5.14 (b) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDiJ ( Do - 78 mm. L - 2230 - 2630 mm )

""' ""'

: : IV' IV' 1.40 x .. ..

:l :l 0 .. X , , f

)( c 0 i III .. f « ! ! *

l/. ¥ ¥-¥

1.00 Q Q

~ ~ l- I-U U

• i i • lot . 600 + , , ~

Q V

~ 0 ,

~

~ + ~ X .200 0 V

X tl -I -I

~ ~ X

e e 2.00 4.00 6.00 .000 POOL DEPTH I OUTLET DIAMETER (YIDo)

FIG. 5.15 (a) CENTRE LINE TOTAL PEAK AND MiNIMUH PRESSURE HEAD RATIO WITH (YIDo). ( Do - 78 mm • L - 2230 - 2630 )

- ""' I: : N' N' 1.40

x .... .. :l :l 0 X X 0 , ,

I 0 )( c I X

I .. f If f 0 ! *

¥ f* +v +v If - 1.00

~ ~ Uo (m/s) 1 Ui2 /2g (m)

I X - 3.0-3.3 1 2.8-3.1

l- I- I o - 5.0-5.6 I 3.8-4.0 U U ...,* I

i i ~f f f - 7.0-7.9 I 5.1-5.6

.600 0 x + I , , If - 9.0-10.2 6.6-7.S I

~ ~ V I

V - 11.1-12.61 8.9-10.4 0

If + - 13.0-14.91 11.1-13.7 ~

f

~ ~ + X .200 v LEGEND FOR BOTH GRAPHS

-I -I x *0

~ ~ 0

x ~ ~ 2.00 4.00 .000 6.00 B.OO 10.0

POOL DEPTH I IMPACT DIAMETER (Y/DjJ

FIG. 5.15 (b) CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YID1). ( Do - 78 mm • L - 2230 - 2630 mm )

1.60 l?1 l?1 III' N' .... .... ;:, ;:, , , ): ): 1.20 I I )( c:

! .... ~ 0

~ .BOO

l-u

i I-f , .400

~

1.60 Q Q N ~ III' '" .... .... ;:, ;:, , ,

1.20 >: >: I I )( c: III .... f f 0 0

~ ~ .BOO

l- I-U U

i i I-f I-f , , .400

i 0

~

x 0 , x

~ 0

* , • , ¥ W ¥

S + v

0

J + v x 0 *

x 0 , x

2.00 4.00 6.00

POOL DEPTH / OUTLET DIAMETER (Y/Do)

FIG. 5.16 (a) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (Y/Do). (Do - 78 mm. L - 2230 - 2630 mm )

Uo (m/5) Ui2 /2g (m)

x - 3.0-3.3 2.8-3.1

o - 5.0-5.6 3.8-4.0 , - 7.0-7.9 5.1-5.6 II - 9.0-10.2 S.S-7.6

v - 11.1-12.6 8.9-10.4 I

+ - 13.0-14.91 11.1-13.7 x

0 LEGEND FOR 80TH GRAPHS , x 0 0 x

II , *

, , -II 4>'* +v II 0 +v

"tit' ~II ,

0 x + V

0 II ,

+

x

~ ~ -.000

v x MO

0 U u f x

~ .... x x

! ! .000 2.00 4.00 6.00 B.OO 10.0 0 Q

POOL DEPTH / IMPACT DIAMETER (Y/D1J

FIG. 5.16 (b) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (Y/DJ). ( 00 - 78 mm • L - 2230 - 2630 mm )

1'35

·250 l- X - L - 725 - 1125 mm

~ o - L - 2230 - 2630 mm a II a 0

~ a .f 0 x 0

x x a

.150 x x a Q . X 0

~ B a 0

S 0 x 0 a

; a x 0

¥I .050 0

X ~ X

I' x tI) ~ :z IX .000 2.00 4.00 6.00 B.OO 10.0

POOL DePTH I IMPACT DIAMeTeR (YIDi)

FIG. 5.17(a) R.M.S. PReSSURe HeAD COeFFICIeNT AGAINST PLUNGe POOL DePTH FOR 78 mm NOZZLE FOR THE TWO DIFFEReNT FALL LENGTHS

1.00

l- X - L - 725 - 1125 mm ffi

a o - L - 2230 - 2630 mm 0 lot

II

i x 0

x 'b x II .600

Q + 0 X oalf(

~ B 0 0 0

§ 0 X X 0

tI) 0 0 o x

m 0 II .200 x x 0 a Q. Ox

>< fcX X

~ .000 2.00 6.00 B.OO 10.0

POOL DePTH I IMPACT DIAMETER (YIDi)

FIG. 5.17 (b) MAX. PRESSURE HEAD COEFFICIENT AGAINST PLUNGe POOL DePTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

X - L - 725 - 1125 mm I- 0 o - L - 2230 - 2630 mm ~ II 0 lot .600

~ 0 0 X 0 0 Q I lI< 0 X

II [} X 0 X

Q 0

~ X 0

X

X X 0

§ 0 x 0

i cPo " 0

.200 00 x

x

~ 'it lfc x

.000 2.00 4.00 6.00 B.OO 10.0

POOL DEPTH / IMPACT DIAMETER (YID1)

FIG. 5. 17(c) MIN. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LeNGTHS

1i3 1i3 .,' .,' 1.40 ... ... ;:, ;:, , , )( c: 0

III ... ! :! 0

X 0

1.00 ri Q Q

~ ~ X

l- I-t{X

X u U X

! ! .600 clio , , Q Q

! ! lie:

~ ~ .200 X .... .... ~ ~ ~ ~

.000

FIG. 5.18 (a)

1.60

lie: U5 2: Q. 2! -.000 u u 2! 2! ~ ~ >.... .000 Q Q

0

0 0 X

lJt!< X

XX X X

111 0

0 X

0 X 0 0 0

0 X Xx>< X X

>sc II 0 0 0 0 X 00

~X 0

It<

* X - L - 725 - 1125 mm OX o - L - 2230 - 2630 mm

0 II 0 0

X 0 X

0 X

o X R X

>flo X X 0

0 00 0

0

2.00 4.00 6.00 8.00

POOL DEPTH / IMPACT DIAMETER

TOTAL PEAK AND MINIHUH HEAD AGAINST PLUNGE POOL DEPTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

0

0

~ Do

X X

~

oOx

0 o ~

2.00

X

X

o

o

o X o x

o

o

x 0 )(

4.00

X

x

00

o X ~ )Q

o

o

K - L - 725 - 1125 mm o - L - 2230 - 2630 mm

o ~ 00 X

o

X

o o

6.00 8.00

POOL DEPTH / IMPACT DIAMETER

0

10.0

(Y/DJ)

o

o

10.0

(Y/DJ)

FIG. 5.18 (b) DYNAMIC PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR 78 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

137

.... ~ U I-ot

~ U

Q . ~ {}

s i U)

z a:

.... ~ u

i U

Q . ~ {}

S ~ U)

z a:

.175

.125 X

0

.075

, .025 II

¥

X o

I

v

+

X -

o -, -tI -

v -

+ -

~

» II X

Uo em/a) 2.9-3.0 5.0-5.3

7.0 9.0

11.0 13.0

U11! /2g em) I 1.1-1.4 I 1.9-2.3 I 3.1-3.5 I

I 4.7-5.1

I 6.S-7.2 I 9.2-9.6

LEGEND FOR BOTH GRAPHS

+

v

, x

.000 2.00 4.00 B.OO 10.0

(Y/Do)

.175

.125

.075

.025

POOL DEPIH / OUTLET OIAMETER

FIG. 5.19(1)) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT I¥IIH (Y/Do) ( Do - 52.5 mill. L - 620 - 1020 mm )

X 0

+ 0

I v , + II

)(

x tI V

If

0 , 0

v x

, +

If

:(.

.000 POOL DEPIH / IMPACT DIAMETER (Y/Di)

FIG. 5.19 (b) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (Y/Di) ( Do - 52.5 mm. L - 620 - 1020 mm )

138

Uo (m/s) Uia /2g (m)

)( - 2.9-3.0 1.1-1.4

o - 5.0-5.3 1.9-2.3

f - 7.0 3.1-3.5

It - 9.0 4.7-5.1

v - 11.0 6.8-7.2

.900 + - 13.0 9.2-9.6 o

LEGEND FOR BOTH GRAPHS

.700 )( f

* o

f 0

)( v

.500 + f

o )(

.300

v , +

.100 I .000 4.00 B.OO 1 .0

POOL DEPTH I IMPACT DIAMETER (Y IDU

FIS. 5.20 (b) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (Y/D1) ( Do - 52.5 mm. L - 620 - 1020 mm J

I-

ffi 1-4 u 1-4

~ 0

~ I

B

~ ~ Q.

~ ~ ~ X

I-

ffi 1-4 u 1-4

~ U

I 0 B ~ III ~ en f3 If ~ ::II: 1-4

~ X

.700

.500

.300

.100

.000

FIG. 5.21 (a)

.700

.500

.300 0

I

.100 II ¥

.000

, R

II

v

+ + x •

x + 0 v

I , II V-

2.00 4.00 6.00 I

B.OO I

10.0 POOL DEPTH I OUTLET OIAHETER (YIDo)

CENTRE LINE HINIHUH PRESSURE HEAD COEFFICIENT WITH (YIDo)

x

( Do - 52.5 mm •

, 0 x

II

v

+ +

v tI'

41.00

L - 620 - 1020 mm )

0

Uo em/s) U12 /2g em) x - 2.9-3.0 I 1.1-1.4 o - 5.0-5.3 I 1.9-2.3 I - 7.0 I 3.1-3.5

I II - 9.0 I 41.7-5.1 v - 11.0 I 6.B-7.2 I + - 13.0 I 9.2-9.6

LEGEND FOR BOTH GRAPHS

x + v

ti, 0 x

B.OO 12.0

POOL DEPTH I IHPACT DIAHETER (YIDJ)

FIG. 5.21~) CENTRE LINE HINIHUH PRESSURE HEAD COEFFICIENT WITH (YID1) ( Do - 52. 5 mm. L - 620 - 1020 mm )

1/.1\

..... ..... l: l: • 111'111' 1.40 0 .... .... ~ ~ , , X X

* , )( C

0 II i III .... y

! ! t ~ 1.00

, + Q Q • ~ ~

, i l- I-

U u

i i , .600 , ,

0 0 t x

0

~ ; x * 0 lie

~ ~ .200 i C X X

~ ..J ..J

~ ~ e e 4.00 6.00 B.OO 10.0 .000 POOL DEPTH / OUTLET DIA~ETER (Y/Do)

FIG. 5.22 (a) CENTRE LINE TOTAL PEAK AND HINI~U~ PRESSURE HEAD RATIO tiITH (Y/Do). ( Do - 52.5 mm • L - 620 - 1020 mm )

Uo em/s) UiR /2g em) )( - 2.9-3.0 I 1.1-1.4 o - 5.0-5.3 I 1.9-2.3 I , - 7.0 I 3.1-3.5

I

* - 9.0 , 4.7-5.1 , y - 11.0 I 6.8-7.2 I .... .... + - 13.0 I

9.2-9.6 , !:II l: , 0 x ~ ,

IV IV 1.40 0 LEGEND FOR BOTH GRAPHS .... .... ~ ~ , , x x

* , )( c: 0 * +y 0 III .... y

! ! +y

* x 1.00

, + Q 0 .,jf

~ ~ ,

:x: t* l- I-

U u

i i ,

.600 , , 0

0 Q 't;. X

~ ~ X * 0 ~

~ :z ,0 x II' ....

.200 + 0. X X

Y *' 0

..J ..J +y

~ ~ 0 e I-

.000 B.OO 12.0

POOL DEPTH / I~PACT DIAMETER (Y/Di}

FIG. 5.22 (b) CENTRE LINE TOTAL PEAK AND ~INI~UH PRESSURE HEAD RATIO tiITH (Y/DiJ . ( Do - 52.5 mm . L - 620 - 1020 mm )

1/.1

, 01 0

01 X 1\1 1\1

ttl' ttl' 0 ... . .., 1.20 x If :l :l

t , , 0 v + v >: >: v , + X I I II Ie c: • 0 III ... ! ! .BOO ~ CI CI

, ~ ~ ,

:z: x l- I-U u

i ! 0

f .400 , ,

X II

CI CI

i i , +

!Ie

~ -.000 i I ~ X

Q. X u U .... .... X X ~ ~ 2.00 4.00 8.00 10.0 ~ ~ .000 CI CI POOL DEPTH / OUTLET DIAMETER (Y/Do)

FIG. 5.23(a} CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATID WITH (Y/Do). { Do - 52.5 mm • I. - 620 - 1020 mm }

Uo em/5) U12 /2g (m) x - 2.9-3.0 I 1.1-1.4 o - 5.0-5.3 I 1.9-2.3 , - 7.0 3.1-3.5

I * - 9.0 I 4.7-5.1 , v - 11.0 I 6.8-7.2 0 + - 13.0 I

9.2-9.6 01 01 X I 1\1 ~ ~, '" 0 ... ... 1.20 x * LEGEND FOR BOTH GRAPHS ::I ::I , , 0 v tI' +

+y V

>: >:: , + x tI I I ..... Ie c: 0 .., ...

! ! .BOO ttl , CI CI

i i , X

l- I-U U

0

i ! t-.... .400

....... , x tI

CI CI

i ~ + ~ , 0 Y

!Ie tI, + If * 0

~ 2: X 0 V X .... -.000 Q. X X U U .... .... X X

~ ~ B.OO 12.0

~ ~ .000 CI CI POOl. DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.23(b} CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH {Y/DiJ. {Do-52.5mm. I. - 620 - 1020 mm }

1, . ., ...

I-

ffi ... I.J ... ~ I.J

Q

~ . 13

S m ~ Ul

:z a:

I-

~ I.J ... ~ I.J

Q

~ ~ 13

m If Ul

:z a:

.225

.175

.125

.075

.025

.000

FIG. 5.24 (a)

.225

.175

.125 0

, .075

II

V +

.025

.000

x 0

f

II X

v

+

• 0 + II

0

x Uo Cm/B) Ui2 /2g Cml

x - 3.0-3.1 2.6-3.0

f o - 5.0-5.1 3.4-3.8 x f f - 7.0- 7.1 4.7-5.0

I II * - 9.0 6.2-6.6

II V - 11.0 I 8.3-8.7 v + + - 13.0 10.7-11.1

¥-

LEGEND FOR BOTH GRAPHS

2.00 4.00 6.00 B.OO 10.0

POOL DEPTH / OUTLET DIAMETER (Y/Do)

CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDo)

x

, II

.yI

( Do - 52.5 mm • L - 2126 - 2526 mm )

x o , x

V

+

V f o 0 +

B.OO 12.0

POOL DEPTH / IMPACT DIAMETER

x

1S.0

(YIDJ)

FIG. 5.24 (b) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDj) ( Do - 52.5 mm. L - 2126 - 2526 mm )

1 I ':)

I-

ffi ... u

i u Q +

~ B

~ iii

i ~ X ~ ~

I-

ffi ... tJ

i + u B Q

i:5 :r

S i ~ X ... >< ~

.900

.700

.500

.300

.100

.000

FIG. 5.25 (a)

.900

.700

.500 0

I

.300

* V

+ .100

.000

X

, X

0 tI

X X + v

0

v 0

I

I +

* v II

+ ~

4.00 6.00 B.OO 10.0

POOL DEP~ / OUTLET DIAMETER (Y/Do)

CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (Y/DoJ

x

,

* v +

( Do - 52.5 mm • L - 2126 - 2526 mm J

X

, 0

x 0 *

X + V

II I

Uo (m/s) I

U12 /2g (m)

v 0

x - 3.0-3.1 I 2.6-3.0 o - 5.0-5.1 3.4-3.8 I - 7.0- 7.1 4.7-5.0

I

+

* - 9.0

I 6.2-6.6

v - 11.0 B.3-B.7 + - 13.0 10.7-11.1

LEGEND FOR BOTH GRAPHS

POOL DEPTH / IMPACT DIAMETER 16.0

(Y/DJ)

FIG. 5.25 (b) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (Y/Di) ( Do - 52.5 mm. L - 2126 - 2526 mm )

.. , ,

I-

ffi .700 ... u ... ~ U I 0 & ~ .500

~ m If ~ .300 Z ... ~ Z

.100

.000

FIG.

I-

~ .700

L o If ~ .500

~ 0')

f3 If

~ .300

z

.100

.000

5.26 (II)

* v

, o

X

0

, II , v 0

x +

II

0 X

~ II , 0

v II V X + +

2.00 4.00 6.00 B.OO 10.0 POOL DEPTH / OUTLET DIAMETER (Y/Do)

CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (Y/Do) ( Do - 52.5 mm • L - 2126 - 2526 mm )

x Uo Im/s) U12 /2g 1m) x - 3.0-3.1 2.6-3.0

o o - 5.0-5.1 3.4-3.B f - 7.0- 7.1 4.7-5.0 II - 9.0 I 6.2-6.6 v - 11.0

I B.3-B.7 + - 13.0 10.7-11.1

+ , , v

o LEGEND FOR BOTH GRAPHS

x +

x v

f

* 0 v

x + +

4.00 B.OO 12.0

POOL DEPTH / IMPACT DIAMETER 16.0

(Y/Dj)

FIG. 5.26 (b) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (Y/Dj) ( Do - 52.5 mm. L - 2126 - 2526 mm )

1/. C

..... ..... 01 01 t\I t\I

n;' III' .... .... ::::. ::::. , , )( c: IV .... ! !

0 0

; 00(

~ l- I-II II

i ! ... , , 0 0

~ ~ :-:: z ~ ... Q. X

-J -J

i! i! 0 0 l- I-

1. 60 x

0

* 1.20 II V

+

.BOO

• 0

x

.400

-.000

x 0

* ~ +

+ v

II

* 0

x

v +

v

!

.000 2.00 6.00 8.00 10.0

(YIDe)

1.60 -- ..... f:f:

IV'III' ........ ::::. ::::. , , 1.20 >c c: IV ....

! !

FIG. 5.27 (a)

II V

+

o

f

POOL DEPTH I OUTLET DIAMETER

CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDe). (Do - 52.5 mm. L - 2126 - 2526 mm )

x

v II +

+ v

x

f

#

o

o

x

v +

x

o

* +

v

II f + 'tI

x

x -o -f -

* -v -

+ -

#

II I x

Uo em/a) 3.0-3.1 5.0-5.1

7'~~/'11' 11.0

13.0

m2 /29 em) 2.6-3.0

3.4-3.8

4.7-5.0 6.2-6.6 8.3-8.7

10.7-H.1

LEGEND FOR BOTH GRAPHS

o

x

o x

POOL DEPTH I IMPACT DIAMETER 16.0

(YIDi)

FIG. 5.27(b} CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDj). (Do - 52.5 mm. L - 2126 - 2526 mm )

... I '"

o 0 ~ oq J: ~ .... .... lJ lJ

~ ~ , , o 0 ; ;

1.60

1.20

.BOO

.400

x

o

f

If V

+

• o

x

x o

*

+ v

" f

o

v + v

x

=-::

~ ~ -.000

~ ~ IV' IV' .... ....

::J ::J , , ): ): I I )( c III .... ! ! 0 0

; oq

~ .... .... lJ lJ

i i .... .... , , 0 0

~ ~ J:

=-:: ~ ~

Q. 2:

lJ lJ .... .... 2: 2:

~ ~ 0 0

x

.000 2.00 4.00 6.00 B.OO

PDOL DEPTH I OUTLET DIAMETER 10.0

(YIDo)

FIG. 5.2B~) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDo). (Do - 52.5 mm. L - 2126 - 2526 mm )

Uo (m/s) U12 /2g (m)

X - 3.0-3.1 2.6-3.0 o - 5.0-5.1 3.4-3.8 , - 7.0- 7.1 4.7-5.0

* - 9.0 6.2-6.6

1.60 V - 11.0 B.3-B.7 X + - 13.0 10.7-11.1

0 LEGEND FOR BOTH GRAPHS X , 0 0

1.20 x I If I ,

If 0 v + If

II V V + + + V

X

.SOO

.... II, + V

0

x II

.400 *

0

+v II I + V If

* -.000 0 0 X X

X

.000 4.00 B.OO 12.0 16.0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.2B (b) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (Y/D1) . ( Do - 52. 5 mm . L - 2126 - 2526 mm )

1/.7

... ffi .... I.J .... It II.l 0 I.J

0

~ . 8

IIJ §

i I/)

x a:

... ffi .... I.J .... It IIJ 0 + I.J

8 0

~ IIJ § I/) I/)

~ 11.

:>< ~

... ffi .... I.J ....

~ I I.J 8 0

~ IIJ § I/)

f3 8: z ... x

·250 a

a x

.150 x a

a a x

Il a a x

.050 a x o ,

a a

a

x x x x

x a

a

x o a

a x

x x x

x - L - 620 - 1020 mm o - L - 2126 - 2526 mm

a

.000 4.00 B.OO 12.0

1.00

.600

.200

POOL DEPTH / IMPACT DIAMETER

FIG. 5.29~J R.M.S. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

a

x 0 a a

a .f- a x a 0 x x x

x x a a a

x a x x

a IS x a

a a x

a x x - L - 620 - 1020 mm Ox a a - L - 2126 - 2526 mm

t .000 4.00 B.OO 12.0 16.0

FIG. 5.29 (b)

.600

a x 0

.200 a a x

I

POOL DEPTH / IMPACT DIAMETER (Y/Di)

MAX. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

a

x a

x

x a a x

a x a

a

o a

a x x XX x

a \ a

x - L - 620 - 1020 mm a - L - 2126 - 2526 mm

a a

o Xx x

a

.000 12.0 16.0

(Y/Di) POOL DEPTH / IMPACT DIAMETER

FIG. 5.29kJ MIN. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

1/. Q

1.60 0

CI 01 X X '" '" 111'111' 0 0 X ... ... 0 0

::l ::l 0

0 , "- X X 0 0 0 1.20 x 0 R Xx X )( c: X 0 III .... 0 lS< 0

! ! 0 0 X

X oX 0 0

r x 0 0

~ ~ .800 \ l- I- o~ X - L - 620 - j020 mm

0 u u 0 " - L - 2j26 - 2525 mm

i "'" ~ x o If< 0 .... , , .400 0

0 0 X X

~ ~ X 0 X XX X X XX X

:.c o 0 Cb Xx 0 0 0 0

~ z 0 ... 0 :z -.000

-' ...J 0

i:! i:! ~ 0

I-4.00 B.OO 12.0 16.0 .000

POOL DEPTH / IMPACT DIAMETER (Y/DjJ

FIG. 5.30(8) TOTAL PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

1.60 01 1: 0

~ "-III III 0 X X .... ....

::a ::a 0

"- "- 0 0 X 0 1.20 X 0 ):: ):: 0 XD,(

0 0 X X I I 0 X 0 )( c: 0 0\

X 0 III .... f ! X OX 0 0 X

7fI< X 0

0 0 .BOO \ "'" ~ ~ X

l- I-O~

0 U U 0

i i X o lSc 0 X - L - 620 - j020 mm

.... .... - L - 2j26 - 2525 mm , .400 " "- 0

0 0 X

~ ~ 0 X J: X X X :.c z 0 Xci< X X" X

~ 0 X .... -.000 lb 0 0 0 :z

0 0 u u 0 ... .... :z :z "'" "'" 4.00 B.OO 12.0 1 .0 ~ ~ .000 0 0 POOL DEPTH / IMPACT DIAMETER (Y/DjJ

FIG. 5.30 (b) DYNAMIC PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR 52.5 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

1/.0

I-

ffi .... 0 .... It III 0 0

0 ; III § II)

fa If II)

z IX

II)

Z IX

8

.225

.175

.125

.075

.025

x 0 f

II

v +

v +

II

0

x

Uo (m/s) U12/2g (m)

X - 3.3-3.5 I

1.0-1.5 o - 5.0-5.3 I 1. B-2. 2 , - 7.0-7.2 I 3.1-3.5 I

I " - B.9-9.2 I 4.7-5.1 v - 10.9-11.11 6.7-7.0 + - 12.9-13.21 9.2-9.B

LEGEND FOR 80TH GRAPHS

x

.000 4.00 B.OO 12.0 16.0 20.0

(YIDo)

.225

.175

.125

.075

.025

POOL DEPTH I OUTLET DIAMETER

FIG. 5.31~} CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDo) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

II

V +

o f

x

v

f

" o

x

+ x x v * 0

II 0

* + V II

.000 4.00 B.OO 12.0 16.0 20.0 24.0

POOL DEPTH I If.lPACT DIAMHER (YIDi)

FIG. 5.31 (b) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDi) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

-1 r- 1\

.... ffi 1-4 c.J 1-4

~ c.J

c +

~ a §

i i 1-4 >< ~

-,

.500- l-

-I-

. 300- f-

-I-

.100- I-

.000

FIG.

.500

.300

.100

.000

U12/2g Ua (m/5)

• )( - 3.3-3.5 1.0-1.5 a - 5.0-5.3 I 1. 8-2.2 I

I 0 f - 7.0-7.2 I 3.1-3.5

I If - B.9-9.2 I .01.7-5.1

+ v - 10.9-11.11 6.7-7.0 + - i2.9-13.21 9.2-9.8

x LEGEND FOR BOTH GRAPHS

x

• + , , f

v +

I I

.01.100 B.OO

I 12.0 16.0

POOL DEPTH / OUTLET DIAMETER

5.32 (a) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH

v +

If 0 ,

4.00

+

x

( NOZZLE:

V If ,

o

x

8.00

00 - 25 mm • L - 513 - 913 mm )

+

V It o x , + o

v ,

If

16.0 20.0

POOL DEPTH / IMPACT DIAMETER

(m)

X

Ijl

e II

20.0

(Y/De)

(YIDe)

x

24.0

(YIDj)

FIG. 5.32 (b) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (Y/DiJ ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

1t:1

.... ffi .... u ....

~ u 0 I

"" & ~

§ II)

i ~ X .... 2: .... X

.... ffi .... u .... ~ 0 u 0 I

"" & ~

§ ~ ~ Q.

~ X .... 2: .... X

.500

A x , v *

.300

+ x

. 100

Uo (m/5) U12/2g

X - 3.3-3.5

I 1.0-1.5

o - 5.0-5.3 1.8-2.2 I - 7.0-7.2 I

3.1-3.5 I I

II - 8.9-9.2 I 4.7-5.1 I v - 10.9-11.11 6.7-7.0 + - 12.9-13.21 9.2-9.8

LEGEND FDA BOTH GRAPHS

x o

• "

(m)

x

o

, e

.000 4.00 8.00 12.0 16.0 20.0

(YIDo)

.500

.300

.100

POOL DEPTH I OUTLET DIAMETER

FIG. 5.33(8) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

+y

II 0 x ,

v ,

o

+ x

x x o

+ , o

V II , + Y If

.000 4.00 B.OO 12.0 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDj)

FIG. 5.33 (b) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDj) ( NOZZLE: Do - 25 mm. L - 513 - 913 mm )

Uo Im/s) U12/2g 1m)

x - 3.3-3.5

I 1.0-1.5

o - 5.0-5.3 1.8-2.2 , - 7.0-7.2 I 3.1-3.5 I

If - B.9-9.2 I 4.7-5.1 I v - 10.9-11.1/ 6.7-7.0 + - 12.9-13.2 I 9.2-9.8

.... .... If

Q Q V

1\1 ~ + 111'1\1 • .... ....

1.00 ¥- , ::J ::J X , ,

If )( c: 0 III ... ! !

c c x

~ ~ + x LEGEND FOR BOTH GRAPHS

l- I- .600 u u v x

i ""' i ~ 0 ... , , , J tf C c f ~ ~ 0 :J: • :.: z .200 x 0

~ x , ... I • X

..J ..J ¥ ~ ""' ~ V I-0 ~ I-

4.00 12.0 .000 POOL DEPTH I OUTLET DIAMETER (YIDo)

FIG. 5.34(a) CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDo) . ( NOZZLE: Do - 25 mm • L - 513 - 913 mm )

.... .... If V

Q Q

~ ~ + III 1\1 ,0 .... ...

1.00 +v , ::J ::J X , ,

If )( c: 0 III ... ! !

c c x

~ ~ + X

:J:

l- I- .600 u u v x ""' i ~ + 0

0 ... ... , , , *, v If

0 0 ,

x

~ ~ 0 + V If

:.: z .200 0

~ ... x x , X + 0 , 0

* I x If

..J ..J + V If + V

~ ~ v 0 0 l- I-

8.00 12.0 16.0 .000 4.00 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.34(b) CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDi) . ( NOZZLE: Do - 25 mm • L - 513 - 913 mm )

CI CI

'" '" 111'111' ........ ::l ::l , ,

o 0

; ~ ... ... tJ tJ

1.20

.BOO

II V + • ,

X II

0

+

v X

Uo (m/s) U12/2g (m)

X - 3.3-3.5

I 1.0-1.5

o - 5.0-5.3 1.8-2.2 I - 7.0-7.2 I 3.1-3.5 I

I H - B.9-9.2 I 4.7-5.1 v - 10.9-11.11 6.7-7.0 + - 12.9-13.21 9.2-9.8

LEGEND FOR 80TH GRAPHS

+ i i .400 ~ ~ , , • o 0 ; ; :..:

~ ~ tJ U

~ ~ ~ ~

~ ~ o 0

Q Q

'" '" 111'111' .... .... :::l ::l , , ): ): I I )( c:

'" .... ~ ~ 0 0 ~

~ ~ ... ... tJ tJ

i ~

i ~ ~ , , 0 0

~ ~

~ :..:

& 2: ~ Z

tJ tJ ~ ~ Z Z

~ ~

~ 0 0

o x

! X + , • • X 0 . 000

X 0

x

.000 4.00 B.OO 12.0 16.0 20.0 POOL DEPTH I OUTLET DIAMETER (YIDo)

1.20

.BOO

.400

.000

FIG. 5.35(a) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIOo). (NOZZLE: Do - 25 mm. L - 513 - 913 mm )

II V

+ +v '0 ,

X II

0

+

v x +

H, V 1+ , 0

0 X X + , 0 V

II X +

H f 0 + V f V If + V II f X 0

X 0

X

.000 4.00 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.35~) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDj). (NOZZLE: Do - 25 mm. L - 513 - 913 mm )

I-

ifi .... lJ .... It ~ lJ

0

~ . l: a ~

i I/)

X a:

I-

ffi .... lJ .... ~ 0 lJ

0

~ . a

§

i I/)

x a:

.225 -

.175

.125

.075

.025 -

.000

FIG.

.225

.175

.125

.075

.025

.000

a

, +

)(

X It

+ a v

v v

• + It + ,

a

x v

II

a

4.00 B.OO 12.0 16.0 20.0

POOL DEPTH I OUTLET DIAMETER (YIDa)

5.36 (a) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDa)

x

It

+ a

v v It , +

4.00

a

, +

v

B.OO

( NOZZLE:

x

+ ,

v

Do - 25 mm • L - 2018 - 2418 mm )

Ua em/s) U12

/2g em) x - 5.0-5.3 I 3.3-3.7 a - 6.9-7.3 I 4.7-4.9 f - 9.0-9.2 I 6.3-6.6 It - 11.0-11.2 B.2-B.7 v - 13.0-1S.1 I 10.6-11.2 + - 14.9-15.3 13.7-14.3

LEGEND FOR BOTH GRAPHS

a

x

I a x

24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.36~) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDi) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm )

I-

ffi ~ l.:I ~

It IU 0 l.:I

0

~ ... Q l.:I

§

i ~ ~ )(

~

I-

ffi ~ l.:I ~

It ~ l.:I

0 < ... ~ [:}

§ U) U)

~ ~ X ~ )(

~

X

.700

v +

0

.500 ~ , 0

M

v , 0

, M

+ .300 II

t v

x

" 0 .100

.000 4.00 B.OO 12.0 16.0 20.0 POOL DEPTH I OUTLET DIAMETER (YIDo)

FIG. 5.37 (a) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( NOZZLE: Do - 25 mm • L - 2018 - 2418 mm )

X

.700 Uo Im/s) U12

/29 1m) X - 5.0-5.3 3.3-3.7

v o - 6.9-7.3 4.7-4.9 + f - 9.0-9.2 6.3-6.6

0 II - 11.0-11.2 B.2-B.7 + x v - 13.0-13.1 10.6-11.2 .500 0 f

+ - 14.9-15.3 13.7-14.3 If 0

V ,

LEGEND FOR BOTH GRAPHS II ,

+

.300 If +v v

x

If I x 0

.100

.000 4.00 B.OO 12.0 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (Y fDi)

FIG. 5.37 (bJ CENTRE LINE MAXIMU/4 PRESSURE HEAD COEFFICIENT WITH (YIDi) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm J

... ffi .... u .... It IJJ 0 U

Q

~ I

a IJJ § U)

fa If

~ ~ ~

.700

.500

.300

.100

.000

v a

+

,

4.00

+ v If

,

a

x

B.OO

Uo (m/s) U12

/2g (m) x - 5.0-5.3 I 3.3-3.7 I a - 6.9-7.3 I 4.7-4.9 f - 9.0-9.2 I

6.3-6.6 I I

II - 11.0-11.2 I B.2-B.7 I v - 13.0-13.1 I 10.6-11.2 + - 14.9-15.3 13.7-14.3

LEGEND FOR BOTH GRAPHS

+

V

II , + a

x v

I

12.0 16.0 20.0 POOL DEPTH I OUTLET DIAMETER (YIDo)

.700

.500

.300

.100

FIG. 5.38~) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm )

v

+

+ v

If X

a

,

#

+

a

v x

If

o v x ,

a

.000 4.00 12.0

PDOL

FIG. 5.3B(b) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDj) ( NOZZLE: Do - 25 mm. L - 2018 - 2418 mm )

1 £;7

x

01 01

~ ~ 1\1 1\1 ..... .....

:::, :::,

...... ...... )( c: III ..... ! !

0 0 ~

~ ~ l- I-II II ~ i ~ ...... ...... 0 0

~ ~ :r :.:

1.20

.800

.400

• f II

, + o M

x

If

I + v

o

x

t

v

, ~ ~

a. z -.000 -J -J ~ i! I-0 ~ I-

..... ..... co ~ ~ ......

1\1 1\1 ... .... ;:, :::,

...... ...... )( c: III .... ! !

0 0

~ ~ l- I-II II

~ ~

z !f f-1 f-1

...... ...... 0 0

~ ~ :.:

~ 2: f-1 Z

-J -J

i! i! ~ ~

.000 4.00 B.OO 12.0 16.0 20.0

(YIDo)

1.20

.800

.400

-.000

POOL DEPTH I OUTLET DIAMETER

FIG. 5.39~} CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDo). (NOZZLE: Do - 25 mm. L - 20j8 - 24j8 mm )

t 0 Uo em/a) U12 /2g (m) , x - 5.0-5.3 3.3-3.7 v If

If tv x o - 6.9-7.3 4.7-4.9 , 0 x f - 9.0-9.2 6.3-6.6

+ If - U.0-11.2 8.2-8.7 v v - 13.0-13.1 10.6-11 .2

+ - 14.9-15.3 13.7-14.3

If , LEGEND FOR BOTH GRAPHS

0

I +

v x + 0 If ,

X Vlt 0

+v It , ! v +d' If • I x 0 X

X X

.000 4.00 12.0 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.39 (b) CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDi) . ( NOZZLE: Do - 25 mm • L - 2018 - 2418 mm J

1 c: C

01 01

~ ~ III III

~ .... .... ::;, ::;, 1.20 "'- "'-

f * ~ $

>- >-I I

!l + >c c: IQ .... ~ ~

.800

v

Q Q

~ ~ • l- I-U u

i i .... .... .400 "'- "'-

, 0 +

+ v

Q Q

~ ~ :r ~

x »

¥ R ~ -t 2:

I

~ ~ -.000 x 0 ~ U U .... .... X X -t -t s: s: Q Q

01 01

~ ~ III III .... .... ::;, ::;,

"'- "'-

>- >-I I )( c: IQ .... ~ ~ Q 0 -t -t

~ ~ l- I-U u

i -t g; .... .... "'- "'-0 0 -t ~ ~ :r ~

2:

~ .... X

U U .... .... X X

~ ~ Q Q

.000

FIG.

1.20

.800

.400

-.000

.000

x x

4.00 8.00 12.0 16.0 20.0

POOL DEPTH I OUTLET DIAMETER (YIDo)

5.40 (a) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDo). (NOZZLE: Do - 25 mm, L - 2018 - 2418 mm )

+ 0 Uo (m/s) U12

/2g 1m) x - 5.0-5.3 I 3.3-3.7 I o - 6.9-7.3 I 4.7-4.9 , - 9,0-9.2 6.3-6.6 M - 11.0-11.2 I 8.2-8.7 I

v I * * +v X ,

0 x + v - 13.0-13.1 I 10.6-11.2 + - 14.9-15.3 13.7-14.3

v

* I LEGEND FOR BOTH GRAPHS

, 0 +

+ v x

# v* 0

+I

+v * o x #

+ * I v x Ov ~ x

# x o x

4.00 B.OO 12.0 16.0 20.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDj)

FIG. 5.40~) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATID WITH (YIDi). (NDZZLE: Do - 25 mm, L - 2018 - 2418 mm )

1~Q

.... ~ lot u lot

~ 0 U

0

~ . 8-

IU ~ II)

f3 If II)

X

a:

.... ffi lot u lot

It 0+-

~ 8-U

0

"" !i! §

~ >c ~

.... ~ ... u ... ~ I

0 8-u 0

~ IU §

m If z ... X

·225 0

x x - L - 5j3 - 913 mm lP o - L - 2018 - 2418 mm

0

X 0

0

.135 0 0 X x

x X 0 0 00 x 0

0

0

.045 XQ( X X 0 X 0 X ~ X Ox X x 0 0

.000 4.00 8.00 12.0 16.0 20.0 24.0

.600

.200

POOL DEPTH / IMPACT DIAMETER (Y /Oi)

FIG. 5.41(a) R.M.S. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

0

x - L - 513 - 913 mm

0 o - L - 2018 - 2418 mm

X X A

0 0 X 0

0

lb 0 0

0 0

0 X X~ X 0

X x X 0

~ 0 0

xX X S! X

X X

.000 4.00 8.00 12.0 20.0 24.0

.600

.200

POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.41 (b) MAX. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

0

0

X o

X

0

X X

o 0

0 0

Xx

X

o

X

X 0 X

o

o

o X

0( X

x - L - 513 - 913 mm o - L - 2018 - 2418 mm

x

o o o X X X X o

X

o

.000 12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y /Dj)

FIG. 5.41 (c) MIN. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

..... ..... 01 til

0

1\1 1\1

111'111' 1. 20 0 0

0 8 K - L - 513 - 913 mm .... .... 0 X

RX ::I ::I o - L - 2018 - 2418 mm 0 0 , , x x

xX x )( C III ....

X 0

! ! x

.BOO 0 0 0 0

~ ~ x 0

l- I- 0( U U

"" "" x x x

i i CJc

x .... .... .400 Xx X 0 X , , o X 0 Ox 0

0 0 X X 0

~ ~ 00 X

o 0 X X X X

l'b X X • X X ~ X

~ ;c: 0 D oX 0 0

~ 0 X ell 0 .... X -.000 0

..J ..J

~ ~ ~ ~

4.00 B.OO 12.0 16.0 20.0 24.0 .000 POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.42 (a) TOTAL PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

01 til

~ ~ 0 III III .... ....

1.20 0 0 x - L - 513 - 913 mm ::I ::I 0 0 , , x o 0

.,px a - L - 2018 - 2418 mm

"> "> XX x x 0 0

I I )( C X III .... 0

! ! x

.BOO x

0 0

"" "" 0 ~ ~ x 0

l- I-0( 0 u u

"" i i x .... .... .400 Xx , , IX X X X

0 0 o X 0

"" ~ 00 0 OX

~ X X X 0 0 x

X 0 0 ~ ;c: 0 x X Xo ~ .... 0 x cP

is x x • oX x n. X -.000 0

x X X

0 0 u u 0 x 0 .... .... X X

~ "" s: .000 16.0 20.0 24.0 0 0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.42 (b) DYNAMIC PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR 25 mm NOZZLE FOR THE TWO DIFFERENT FALL LENGTHS

1 t.1

II)

x a:

... ffi .... lJ .... It III 0 lJ

0

~ l1J

~ II)

~ Q.

:.c "' x

+ &

.250-

.150

.050

.000

If If

* J'O

0' xf°~: , +

*

'

x x"o, ... v * +* XOIf+ Xr

* + X + ~ o *'V V,

CIt- V V, + +V + +

o J Xo Oy , , " + o 'x

o * It ,.M~ OIX

X/X / if "

4.00 B.OO 12.0

+ V V +

*

V + + V V

V V ¥

16.0 20.0

POOL DEPTH / IMPACT DIAMETER

+

24.0

(Y/Di)

FIG. 5.43(a) R.M.S. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

1.00 *

I o * * 0 +

# *1 * If * # 0 # I

.600 I' x x'O x * +If ,~v t

0* +X +o~ V , + + 0 0 IE~ *V+ +

o i x+ ,

+ V;e V + o 0 O,.M~ It , V V V +

.200 ¥ + }/~ V~ V , V + V V

.000 4.00 B.OO 12.0

POOL DEPTH / IMPACT DIAMETER (Y /Di)

FIG. 5.43 (b) MAX. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

1.00 - LEGEND FOR ALL GRAPHS

.600

.200

X - Do - 78 mm. L - 725 - 1125 mm o - Do - 78 mm. L - 2230 - 2630 mm I - Do - 52.5 mm. L - 620 - 1020 mm 1/ - Do - 52. 5 mm. L - 2126 - 2526 mm v - Do - 25 mm. L - 513 - 913 mm + - Do - 25 mm. L - 2018 - 2418 mm

* + ,., * V V..., V f(

+ + + V V

V

+

.000 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/DjJ

FIG. 5.43 (e) MIN. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

1.60

1.20

o Q

~ ~ .BOO

.... .... I..) I..)

~ ~ " " .400 o Q

~ ~ ~ :z ~ ...

% -.000 -J -J

~ ~ ~ ~

v + v ,

+ +

v

,

+

v i;, v v

+

v II V

V +

+ + v v v

+ v ¥- v

v

+ v +

v

+ v

+

.000 4.00 B.OO 16.0 20.0 24.0

(Y/Di)

5:' >: I I )( c: IQ ...

! !

I..) I..) ... ...

1.60

1.20

POOL DEPTH / IMPACT DIAMETER

FIG. 5.44 (II) TOTAL PEAK AND HINIMUH HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

OM I, +

V

+

II

II

, +

v

LEGEND AS FIG. 5.43

M

+

i;, V V V +

+ +V V

V

V ¥

V +

V

V

+

+ % ~ ~ ~ .000 B.OO 12.0 16.0 20.0 24.0 4.00 o 0 POOL DEPTH / IMPACT DIAMETER (Y/Di)

FIG. 5.44(b) DYNAMIC PEAK AND HINIHUM HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND FALL LENGTHS

1L.':l

... ~ ..... u ..... 1L.

~ u a

~ IU

~ 8-III III

~ 11.

III

:I:

a:

.225

.175

.125

.075

.025

V If , x

v + If

*

o

x

+

v

* A + l(

.000 4.00 B.OO 12.0 16.0 20.0

(YIDa) POOL DEPTH / OUTLET DIAMETER

FIG. 5.45~) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YIDa) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

v Ua Im/s) ... .225-

U12/29 1m)

x - 3.0-3.4 I 1.6-1.8 ~ u .....

+ If o -, -

I 5.3-5.4 I 2.4-2.B I

6.9-7.3 I 3.5-4.0 I

I It 8 .175-If - B.9-9.0 I 5.1-5.4 I v - 10.8-11.2 I 7.3-7.4

I

a

~

III

a:

+ - 12.9-13.0 I 9.6-10.1 + a

v 0

.125 If , + LEGEND FOA BOTH GRAPHS

x

v .075

x

v o x x .025

I o

.000 24.0 32.0

POOL DEPTH / IMPACT DIAMETER (Y/DjJ

FIG. 5.45~) CENTRE LINE R.M.S. PRESSURE HEAD COEFFICIENT WITH (YID1) ( ORIFICE: Do - 25 mm. L - j020 - j420 mm J

11..1.

·900 -I-

ifi + a

>-4 u >-4

~ .700 • v

0 +

* II U

0 V + 'III:

~ II

+ II I

~ B- .500 -II) a ffi f v

I ~ .300-:z >-4 >c a ~

II x

.100 it

.000 41.00 8.00 12.0 16.0 20.0

POOL DEPTH I OUTLET DIAMETER (YIDa)

FIG. 5.46 (a) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( ORIFICE: Do-25mm. L - 1020 - 1420 mm )

.900 -

I-

~ u

Ua em/5) Ui 2/2g em) + x - 3.0-3.4 1.6-1.8 a

a - 5.3-5.4 2.4-2.8

~ .700

u

v , - 6.9-7.3 3.5-4.0 If f

If - 8.9-9.0 5.1-5.4 + + II X V - 10.8-11.2 7.3-7.4 o

~ +' ~ 8- .500

I

v + v x + - 12.9-13.0 9.6-10.1

II * LEGEND FDA BOTH GRAPHS a

I v

.300

a

x .100

, a x

.000 8.00 16.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.46 (b) CENTRE LINE MAXIMUM PRESSURE HEAD COEFFICIENT WITH (YIDi) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

.... ffi ~ lJ ~

It w 0 lJ

0

~ UJ

I

~ B-U)

fa If ~ X >-I ~ >-I X

.... ffi >-I lJ >-I

It IU 0 lJ

0

~ IU

I

~ B-U) U)

~ X ::l X >-I Z >-I ::E

f

.700

~ +

V

.500

If

* .300 x 0

+ x

~ x . 100 • i

.000 4.00 B.OO 12.0

POOL DEPTH I OUTLET DIAMETER

FIG. 5.47 (a) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDo) ( ORIFICE: Do - 25 mm • L - j020 - j420 mm )

-Nil

.700

* ~ Uo (m/s) Ui 2/2g (m)

x - 3.0-3.4 I 1. 6-1. 8 I 0 - 5.3-5.4 I 2.4-2.B I , - 6.9-7.3 I

3.5-4.0 I I

V

.500

If - 8.9-9.0 I 5.1-5.4 I v - 10.8-11.2 I 7.3-7.4 + - 12.9-13.0 I 9.6-10.1

If LEGEND FOR BOTH GRAPHS

, .300 x

0

+ v x x x If

'+ 0 0 v

If * .100

.000 B.OO 16.0 24.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.47~) CENTRE LINE MINIMUM PRESSURE HEAD COEFFICIENT WITH (YIDi) ( ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

...... ...... Co Co

'" '" 111'111' ... ..... ::;, ::;, , , >< c: III .... ~ ~

0 0 ~

~ ~

~ .... .... II II ~

~ ! .... , , 0 0

~ ~ :z: :..:

~ ~ a. X

..J ..J

~ ~ ~ 0 ....

CI 01

'" '" 111'111' .... .... ::l ::l , , )< c: III .... ~ ~

0 0

~ ~ .... .... II II

~ ~

i .... .... , , 0 0

~ ~ :z: :z: :..:

2:

~ .... X

..J ..J

~ ~ 0 0 .... ....

1.40

1.00

.600

.200

.000

FIG.

1. 40

1.00

.600

.200

.000

5. 4B (a)

, +

o

+ If , D

x

,

+ , x

+

V

M

*

D

X

• 12.0 16.0

POOL DEPTH / OUTLET DIAMETER

+

v

x

x j ..

20.0

(YIDo)

CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDo). (ORIFICE: Do - 25 mm. L - 3,020 - 3,420 mm )

UD (m/5) Ui 2/29 (m)

x - 3.0-3.4 I 1.6-1.B I 0 - 5.3-5.4 I 2.4-2.8 I

I - 6.9-7.3 I

3.5-4.0 I I

M - 8.9-9.0 I 5.1-5.4 I V M * D

V - 10.8-11.2 I 7.3-7.4

+ - 12.9-13.0 I 9.6-10.1 +

x v x LEGEND FOR BOTH GRAPHS

v

0 x X

D M , , X

v* 0 M' D

+ +v X +v * D

M ~+ OM X V

B.OO 16.0 24.0 32.0

POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.4B~) CENTRE LINE TOTAL PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (YIDi). (ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

o 0

~ ~ I- l­II II

~ ~

1. 60

1.20

.BOO

" " .400

o 0

~ ~ I- l­II II

~ ~

1.60

1.20

.BOO

+ K , o

x

, , *

4.00

+

II •

x

B.OO

+

v

,

o

x

• o x

12.0 16.0

POOL DEPTH / OUTLET DIAMETER

+

v

20.0

(Y/Do)

FIG. 5.49(a) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (Y/Do). (ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

+ vI! , +

o V If,

+

x

o

v

I! x + ,

v

Uo em/5) U12/2Q em)

x - 3.0-3.4 I 1.6-1. B I o - 5.3-5.4 I 2.4-2.B I , - 6.9-7.3 I

3.5-4.0 I I

If - B.9-9.0 I 5.1-5.4 I v - 10. B-11.2 I 7.3-7.4 + - 12.9-13.0 I 9.6-10.1

LEGEND FOR BOTH GRAPHS

" " .400-0 , I!

0 , X 0 X vI! II ,

0 + +v x + V If 'x+ V II 0 * 0

x x

B.OO 16.0 24.0 32.0

POOL DEPTH / IMPACT DIAMETER (Y/Dj)

FIG. 5.49(b) CENTRE LINE DYNAMIC PEAK AND MINIMUM PRESSURE HEAD RATIO WITH (Y/DJ). (ORIFICE: Do - 25 mm. L - 1020 - 1420 mm )

I/)

x IX:

.... ifi .... u ....

~ u 0

~ ~ II)

i >< ~

.... ~ u .... ~ 0 tJ

0

~ ~

i ::z .... :z

+ 8

I

8

.250 - x x

.150

.050

o

o o

~

x x

\>fC xXxlx ~

X

xd' Xx X X X X X X

o 0 Xx x X xx X 0 X X X X X o~

X x'l<x X X >x X x

x X X

x

X ~ Xx\ X X X xOx X X X X X X It

XC,*, I~ XIX

jf "

o x >k

LEGEND FOR ALL GRAPHS

x - ALL NOZZLES o - 25 mm ORIFICE

x

x x °xo X

X 0 X

4---+-~r--+--~--~--+---r-~---+--~--+---r--~ .000 4.00 B.OO 12.0 16.0 20.0 24.0

1.00

.600

.200

POOL DEPTH / IMPACT DIAMETER

FIG. 5.50~) COMPARISON OF R.M.S. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

X

X X X X

X o OX X

X X~ X

0 X X ~ 0 X X X

0 ., ,*x X 0 XX 0 X X X 0

o x* x Ie X X 0 X X XxX X X X

0

X 0 X f Ox XX x'S<

X 0 X Xx X X

X X;' X X X x x X)( X X X X ox ,lx /' ~ Xx

~/~ 0

~ X

X X

(YIDJ)

X

0

.000 4.00 B.OO 12.0 16.0

1. 00

.600

.200

POOL DEPTH / IMPACT DIAMETER (Y/DJ)

FIG. 5.50(0) COMPARISON OF MAX. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

X

X

X'" X

.000 12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/DJ)

FIG. 5.50{C) COMPARISON OF MIN. PRESSURE HEAD COEFFICIENT AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

169

01 01 C\I C\I N' N' ........ :J :J , , I( C III ....

% ~ o 0

1. 60

1. 20

~ ~ .BOO

I- I-Col Col

~ ~ , , .400

2: .... X -.000

x

x

x

x

x

o X 0 0

X

X

IX x X

x

x

o X

LEGEND FOR BOTH GRAPHS

X - ALL NOZZLES o - 25 mm ORIFICE

o X

X a x x X

X

~ x o X

x

X

o x

o x

.000 4.00 B.OO 12.0 16.0 20.0 24.0

(YIDi)

1.60

Col Col .... ....

POOL DEPTH / IMPACT DIAMETER

FIG. 5.5j(a) COMPARISON OF TOTAL PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NOZZLES AND 25 mm ORIFICE

x

x

x X o

X x a o

x

x

>sc x X

X

x

x

o

x

x •

x

X

ox

o x

X ~ ~ ~ .000 4.00 12.0 16.0 20.0 24.0 8.00 o 0 POOL DEPTH I IMPACT DIAMETER (YIDi)

FIG. 5.51 (b) COMPARISON OF DYNAMIC PEAK AND MINIMUM HEAD AGAINST PLUNGE POOL DEPTH FOR ALL NDZZLES AND 25 mm ORIFICE

171\

U) I-

ffi ~ 0 ~

.... ::>-

..,J I-.... I-t -.I I-t m ~ m 0 a: Q

8.00

KURTOSIS 0

6.00-+- I 0

4.00

2.001 .JV"0

~ SKEWNESS

I 0

.000- - - - - - --.- - - - - - - - - - -

-2.00 I I I 1--+-2.00 6.00 10.0 14.0

POOL DEPTH / IMPACT OIA.

- -

I 18.0

-

( Y /Di )

Fig. 5.52 SKEWNESS AND KURTOSIS WITH PLUNGE POOL DEPTH ( Ui2 /2g = 4.7-5.6 )

~

..J

..,)

.800-.- it p)

(A) NORMAL DISTHTBUTION

.600

o

00

.~oo

.200

o o

o

f(P)= _1 e­.ffi

.000 I~a I I o~ 10 "'I""'" I .000 1.00 2.00 3.00 4.00 5.00

...... a. ........ -

19 o -I

PRESSIJR£ HEAD (N)

.000-"

0 0 0 0

o 0 0 ODOOOOoO

o 0 Do gO 0 0

(B)

_l/ -4.00"'-o 0 0

00 a 0 DOu O o

o

-6.00-

0" DATA POINTS

-8.00 I I I I 1.50 2.50 3.50 4.50

PRESSIRE HEAD (H)

5.50

Fig. 5.53 PROBABILITY DENSITY FUNCTION OF PRESSURE FLUCTUATIONS

AT CENTRAL MEASUREMENT POINT COMPARED WITH NORMAL OISTHIBUTION

- 2 ( h-Hm) 2d2

Ui 2/29 ~ 6.35 m

Y/Di = 11. 4

Fiin = 1. 4810 m

Cp' 0.0755

SKEWNESS ~ 1. 211 7

KUfHOSIS = !j. 8017

TABLES & FIGURES FOR CHAPTER 6

...

.J :--

Do (mm)

78

78

52.5

52.5

25

25

ori fice 25

Notes

LlLB

L Uo Uo (mm)

3 m/s 5 m/s

725-1125 0.09-0.14 0.06-0.10

2230-2630 0.27-0.32 0.20-0.23

620-1020 0.11-0.18 0.08-0.13

2126-2526 0.37-0.44 0.27-0.32

513-913 0.17-0.31 0.13-0.22

2018-2418 0.68-0.82 0.49-0.59

970-1370* 0.42-0.59 0.36-0.51

(i) LB - 41.2 Uo O.62S Do0.g - Nozzles

(ii) LB = 16.1 UO O. 31 Do°·62 - Orifice

(McKeogh, 3% Tu)

Uo 7 m/s

0.05-0.8

0.16-0.19

0.06-0.10

0.22-0.26

0.10-0.18

0.4-0.48

0.32-0.46

(iii) * - Droplength from Vena Contracta.

Uo 9 m/s

0.04-0.07

0.14-0.16

0.05-0.09

0.18-0.22

0.09-0.16

0.34-0.41

0.3-0.42 --

Table 6.1 Estimated ratios of L/LB for nozzles and orifice.

Uo Uo 11 m/s 13 m/s

0.04-0.06 0.035-0.055

0.12-0.14 0.11-0.13

0.05-0.08 0.04-0.07

0.16-0.19 0.15-0.175

-0.08-0.14 0.07-0.12

0.3-0.36 0.27-0.33

0.28-0.40 0.27-0.38

.. ,J n

Ci (Initial mean air concentration)

Do L Uo Uo Uo Uo Uo (mm) (mm) Uo

3 mls 5 mls 7 mls 9 mls 11 mls 13 mls

78 725-1125 0.19-0.26 0.24-0.30 0.27-0.33 0.296-0.35 0.31-0.36 0.32-0.37

78 2230-2630 0.39-0.42 0.40-0.43 0.425-0.45 0.44-0.46 0.45-0.47 0.46-0.48

52.5 620-1020 0.19-0.28 0.26-0.33 0.296-0.36 0.32-0.38 0.34-0.40 0.35-0.41

52.5 2126-2526 0.42-0.46 0.45-0.48 0.47-0.49 0.48-0.5 0.49-0.52 0.50-0.525

25 513-913 0.22-0.34 0.31-0.40 0.36-0.43 0.38-0.46 0.40-0.47 0.41-0.48

25 2018-2418 0.53-0.56 0.55-0.58 0.57-0.59 0.58-0.6 0.59-0.61 0.59-0.62

ori fice 25 970-1370 0.6-0.65 0.61-0.66 0.62-0.66 0.63-0.67 0.63-0.67 0.63-0.673

-- ---~ --- -- - ------ -----_.

Notes : (i) Ci = (ji/(1+(ji) (iii) Umin = 3m/s (nozzles)

Umin = Imls (orifice)

(vi) K = 0.2 (nozzles)

(ii) (ji = K (L/Do)1/ 2 (l-Umin/Ui)

K - 0.3 (orifice)

Table 6.2 Initial air concentrations in plunge pool.

I

I

\ Air lwater \

jet v' ~

+-~q(d r \ u \

d \+-Outer edge \ of jet , I

Fi g. 6,' GROWTH OF SURFACE DISTURBANCES (Ervine & Falvey)

Nozzle

Water

1

Fig.6·2 GROWTH OF SURFACE DISTURBANCES.

( Hecker)

176

r-'" ...

Jet helical swirl

Fig.6·3 GROWTH OF SURFACE DISTURBANCES.

( Hoy t )

\

,~ \ Solid jet core \ \

~ = ~w I Air , Q < Qw Plunge pool I ~

-~ de ;../ ~

di

Normal probability distribu tion of encountering water

~

fig.6·4 IDEALISATION Of JET CONDITION AT IMPACT

Atmosphere

Plunge pool

Fig.6·S CONDITIONS IN PLUNGE POOL FOR IMPINGING TURBULENT JET

177

Water

1.00

Q -\: \ x -AU nozzles ~ ~: ~~ "x v a - 25 mm orifice I-

~ .800 Q ~ 01 ~ (\J

,,~

~:s .600

J: "

~ ~ t .. Xo ~ x~ ~ ~ xx O ~ >- Ie:· 400 x X

Q ~ X X <::

~ ~

.200

-.000

.000 4.00 8.00

x x

12.0 16.0 20.0 24.0

o

x

POOL DEPTH / IMPACT DIAMETER (Y /Di)

Fig.6·6 COMPARISON OF MEAN DYNAMIC HEAD VALUES WITH SUBMERGED JET CASE

Mal W 5 - £1 ~'::--L

Top of octlr' cons,rreMn spoc/! - £1 7160 -..L~_

-£1 7168 92

: " I

- I -'" . I .

r~Got' hOist U £1, 716',"

" '

" Gate "fer,nee plan, I I

"

<,:

, , .

, . '" .

• '. ".: .?

..... , "

" "

I' 'i , '

.:>, I, . ! ~.

"

I"'--~ £1, "38,'0

, ' r . .. • •• ciI'. ~ .:

..... 4,'. , •.

, ' Alis of dam ' ' , ' ot ( bIDet ',;,

. " .. " , "

, .

WeD ther door

Fig.6'7 DETAIL OF MORROW POINT OUTLET STRUCTURE

Shearing vortices

. '. Recirculating

eddy ", Sluice

Y' ~ ':::" gate , " 0' ... . .. . ,~, .. ~:. ,~, '~:\:;).::

Lower boundary layer

Fi g. 6· 8 EFFECT OF PARTIALLY OPEN SLUICE GATE

179

~

(])

0

. u.s. B.R. TEST

~ 1 Orifice plute 5 + Half angle of jet spread with no upstream / flow struightener

0/0

It u 4 t 62/ L 0/0

3 + Y • • U.S.B.R. TEST Orifice plate

/1+ with upstream flow s trai gh tener

2 + / . )l( u 0

1

o --r-+- -+-+- -____ t +

o 5 10 15 20 25 30

Jet velocity u (m/s) II U

Fig.60 9 Degree of jet spread in the atmosphere with outlet condition

Univ. of Glasgow Lon 9 smooth nozzle wi th ups trea.m flow stra.ightener

Velocity components

l

Turbulence /. \-dis tri bu tion \ / ExternQI profile

[%] \ L

19 \ \ \ \

\ I \

lUi \

I

Ie Oi ~I

-

Fig.6·10 JET SPREADING CONCEPT (Bo.sis of co.lculo.tions)

Ul1

100

80

60

40

20

o

Ca1cula ted Oi (mm)

o 20 40 60

,- Do=7Bmm I L=725-1125mm

.- Do=52·5mm,L=620-1020mm

+ - 00= 25 mm , L= 513- 913 mm

Measured Oi (mm)

80 100 120

£ - 00=78 mm I L:2230-2630 mr

0- 00=52·5 mm, L= 2126 - 2526 mn

X - Oo=25mm IL=201S-2418 mJ

c - Orifice I L: 1020 -1420 mm

Fi g. 6·11 Comparison of measured and calcuta te d je t diome ter

at impac t.

182

Vi

L

Plunge pool surface

Core Diffused region

Fig.6·12 Spreading jet condi tion at various cross sections.

L1

R

.. I I~ rc r

P (r ) = e -U r- rc )21 [2d 2 J

Fig. 6·13 Probability of encountering water outwith solid core and notation.

183

Fig.6·14 Condition of plunging jet once core has diminished.

10

20

30

40

50

LB60

70

80

90

100

110

120

130

Pic ture of profile Flow: 0·00245 m3/s

Dia. : O' 025 m Tu. : 1 0/0

1

I I I I I I I

!~ , I , I I , I I I I I

2 rc/Ro

R/Ro

/ Jet contraction due to gray i ty and continui ty only

R ~/Ro

Fig.6·15 GRAPHICAL REPRESENTATION OF CORE DIAMETER CALCULATION.

1A/.

3

-CJ) U1

,.'\

H

I

La (m)

12

10

8

6

4

2

Tu -x- Mckeogh (0'3°,:, 1°'~ 3% as noted) [O;=2Smm] ---e--- Au thor (0-30

,:, 1°/~ 3% as no ~e d)

Chen and Davi s+

--A-- Baron ./

_____ ....--- _-7,co -0.30/ T

/"" ...- ____ /. 0 U ·····0······· Average of methods

,,/'/ ."" O' 30

/0 Tu /' ........ ··0····

.r .........

/ / II -l%Tu

marked thus +

-30f0Tu

-- - - --e--10f0Tu

o r > Uo (m/s) o 2 4 6 8 10 12 14 16 18 20 22

Fig.6·16 Comparison of jet break-up lengths.

LB/Do

150

100

SO

0

0

.-. Mckeogh's experimental curves for Uo = 4 m/s

Au thor's theoretical X-X model

Baron

I ncreasin g Flow (Uo=4 m/s)

goes to zero

---]-Baron's theory

2·5 5

Long. Tu °/0

7·5 U'/Uo

Fig.6·17 Jet break-up length with turbulence intensity

186

Lencistre [ x-x Y J b = 0 .-. YJ b = 5·7 j-j YJ b = 10·6

H.R. Ltd. - ,---, YJ 0 = 8' 7 I Ui2J 2g = 2· 63

Author1s centre line values [Ref. Fig.4·3(b)]

* -YJDo =1'28 I • - Y/ Do =2·56 - YJDo=1·3-6·4 ... - YJ Do =4·49 Range of

0·8

..,. - YI Do =6·41 author1s data at radial 0·4-

O:-Jt~~~==~~~~~~~~'~~~~J~~IOrc_~t_io~n_s~RP/b Rp/Do

1·0

I o

I 1

I 2 3

Fi g. 6·18 Comparison of radial variation of mean dynamic pressures for plunging jet impingement.

Nozzle to surface} spacing (Y I Oi ) N.A.S.A. (TND-56 90)

x-x 4

- .-. 7 A-j 20

0·8 -

0·6 - Author's data values

* - Y/Di = 1·48 0·4 - [Ref. Fig.4·4(b)]

0·2 -

0

.. -Y/Di=2'92

.. -Y/Di= 5

..,. - YI Di = 7 -1==~=:::~~~~;;!::~=='_......-JIE=--!R1P/Di

0 I 1

I 2

Fi g. 6·19 Mean dynamic pres sure head variation wHh radius

compared wi th sUbmerged jet values.

187

1-0

0-8

0-6

0-4

0·2

o o

Hm-Y Hs

,

N.A.S.A. data as Fig.6·19

Kamoi and Tanaka:- + - + YI b = 8 (Slot)

Author1s data values (Fig.4-4 )

* -YI Oi =1-15 - ,·48 .. -Y/Oi= 6-6-44

Rp/Oi

2 3

Fig. 6·20 (a) Mean dynamit pressure head relative to centre line value wi th Rp/Di.

,·0

0·8

0·6

0·4

0-2

o o

'Hm-Y Hs

0·1

N.A.S.A. da ta as Fi g. 6·19 (Combined with slot jet volues-Y/b= 8)

Do to values (Fi g. 4·4 ) * -Y/Di = 4·1-5 .. -Y/Oi= 6-7

0·2

Rp/Y

0·3

Fig_ 6'20(b) Mean dynamic pressure head relative to centre

line value wi th Rp/Y.

188

1-0

0-8

0-6

0-4

0-2

o o

Fim-Y Hs

1

Data values (Fig.4-4)

* -Y/Di=1-15-1·75 .. - YI Di = 2-32- 3-45

2

Rp/Di

3

Fig. 6-21 (a) Expressions for radial distribution of mean dynamic

pressure head_ (Y = 100 and 200 mm)

1- 0

0-8

0-6

0-4-

0·2

o o

Hm-Y Hs

0·' 0·2

Data values (Fig_4·4) .

* - Y/Di=4·1-5 +-Y/Di=6-7

Rp/Y

0·3

Fig. 6·21 (b) Expressions for radial distribution of mean dynamic

pressure head. tY: 350 and 500 mm)

189

.... o :>

a

~ l­II

~ I-t 01

C\J ,,~ a .... ~ ::,

~ " l.l --.. I-t >-: ~

~ >-IE Cl ~ <= ~ ~

1.00

.800 limi ts of Hausler's data

. (Oo=40,60&90mm,L=1·3m)

.600

.400 X,D - Author's data (Ref. Fig.4.23(b))

.200

x o -.000

x

.000 4.00 8.00 12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

Fig.6·22 Comparison of centre line mean dynamic pressure head results

with Htiusler~ data.

-a C) ....

a ~ J: ..-. t.l

~ I-f 01

C\.I "-~ a "P1 ~ ::;,

~ "­~ ~ ~ ~ I :::z: )-I E a ~ :::z: ~ ~

1.00

.600

.400

.200

-.000

.000

x

t-+ - Lencastre's data (Slot jet)

I - Morrow Point (Prototype) data

x

-,.-I 0 I x

_L

-T-I - H.RLtd. data (Slot jet) _1_

X,D -Author's data (Ref. Fig.4.23(b))

x x x

x

16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y /Di)

Fig. 6· 23 Comparison of centre line mean dynamic pressure head results

with Lenca.stre's data. etc.

..... o ..,

'"

~ <t rI1 :: .999

~

'" ::> , .799

~ <t ~ :: .590 o .... E <t z: )c .399 ~

z: <t ~ E .190

~ ;p X~:O oX

)( - L/Lb < 9.29

o - 0.2 < L/Lb < 0.6

o X~~ \ Fig.6·24 Mean dynamic pressure head

:at< 'II \ variation wi th plunge pool depth 'JCP 'i 0 \ at various L/Lb ratios.

x~ 00\ Circular submerged jet

"'5lX~ \, /

~t~~~ )0( f)X g. X

fJ 0 0

g ~~

)(

~o-~ Xo 00 0 XOIh X 0 0 00 o 0 U'"

POOL DEPTH / IMPACT DIAMETER (Y/Di)

"0 o cu

..r:::. ~ -u a -~ ...... "0 o OJ

..r:::. 1...1

E d c: ~ "0

c: 'I;j OJ

L

'-0

o-a

0-6

0-4

0-2

o o

~ Submerged slot jet

----"""-... '"

~ (Albertson)

.......... / ........................................

Fi t of rec tangular jet data "",,-""'-(Castillo :-L/Ls=O·65-0·65) " __ _

2-5 7-5 12-5 17-5

(YI Oi )

22.5 [h/Bl

. Fig.6-2S Comparison of mean dynamic head for rectangular jet (L/Ls= 0-65-0-85) \lith submerged slot jet case_

~

..0 ::-

Q « ~ :z::

~ ~ ::>

.990

, .190

~ « ~ :z:: (,) .590 to4

:E <r:: Z )t ~ .399

z (C

~ :E .199

9.19 < Ci < 9.40 + Cb°lr~o ~~+,

x -() - 9. 49 < C i < 9.50

+ Xv.o+ \ X ')f:O '

X

X \ + - 9.59 < Ci < 9.10 +, -\

)( 10 1i, \ \ fig _ 6-26 Mean dynamic eressure head

)0(1" ~ 8 t) \~ variation with plunge pool depth o X I~ at various air concentrations . .x& '.f)

,.. XXh \ >< Circular submerged jet values f( ~, ~\ (f ,

., + \ .. lt~. 0 «Ci = 29:1. \ )0(, X~ . ~

Ci = 79:1. ., t ...v 0 .... . ----ICi = 59,. . ~~ .... ~

---:», , -0 ..... 9-- ~ ..... ~ ... /...~ ....... + 0....... L.-'" '-.- "'3~::""~o."" __ -~

-+ - .... - ::I- -"1! - - X + --------+

POOL DEPTH I IMPACT DIAMETER (V~Di)

FIGURES FOR CHAPTER 7

1Q~

0·08 DEVELOPED Fr. • 5-98

0·06 Cpl

0·04

0-02

o 0 4 8 12 16 20 24 Fi g. 7·1 RMS pressure fluctuation ((pi) versus position in the

hydraulic jump {Toso].

0·12

0·10

o-os

0·06

0·04

0·02 Rouse et ale - Fr1 = 6

ViI IU,

X/Y1 o -+----~ ____ ~ ____ _L ____ _L ____ ~ ____ ~_

24 4 8 12 16 20 .

Fig. 7·2 Components of turbulent velocity in hydraulic jump {Rousel

---Flow --u,

Pressure pulse

Fig. 7· 3 Large scale flow s.tructures in the hydraulic jump.

2 2 C 0 -N

X ""'-"" I-t.a..

It) 0 0 , 0 2 - E Ref. X IY1 w 0 C H} ~ t- O 10·4 Fr.=6 z C) E 17·2 ~ 0

0 8 16 24 FREQUENCY (HZ)

Fig.7·4 Power Spec tra versus location in hydraulic jump. ( Toso )

--- FLOW

y

Ur = 0 at this point

'.2 , Fig.7·S Recirculation Velocity

0.5 ~--r---"-T--""-----"":'---r---"-----r--'---"

0.4

0.3

0.2

0.1

o 0···

~ ••• ,. D... NEGATIVE ..... ~ 0 •••••• ~ FLUCTUATIONS

". O '. o _ ••

0 ·•·· '. .... 0 '·0 o 0 ". '. '. -··8

POSITIVE ••••

O~~~----L---~--~~--~--~----~--~

o 4 8 . 12 16

X/Y1

20 24 28 32

Fi g. 7, 6 Maximum pressure fluctuations beneath hydraulic jump. [ Toso 1 .

Q Falling t water

,-, droplet

l < < < Q < Sptld <s~rfa(e

Pressure AM pulse ~ ean

( a)

Flow

Pressure pulse at

A

__ \+--+-C __ Mean

V ( b)

Fig.7·7 Situations for cause of pressure flue tuations.

198

droplet ejec ted from roller

\

roller ) ~ ... _//~

-...---,---- - -~ --..I _ _ _ ~ _ :) -~- ~ expansion

..> ---...: -If!' .;J ................

,.)

Max. production Xfl2= 1

Max. convection X/~=1·5

Max. dissipation X/Y2 c!2

fig.7·S Mechanisms for fluctuations in hydraulic jumps.

III

:i a:

x X 0 X

0 X X x - ALL NOZZLES

o - 2S mm ORIFICE 0

x x

X>sc x x x

x X l)( X

Xx )( x x x x It

~ ,x I'

l I(

x

x

.000 4.00 B.OO 12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

Fig.7·9 Mean value of je~ centre line r.m.s. pressure fluctuations.

1QQ

E o '-

4-

u. ~!~ .' \ Iy

, \. \ .

Intensi ty

/ /

/ /

/~ --.Jl~ \ --=;;;F"/ \7""1

!mpinging I \ ~ Y free Jet / \ Mckeogh

Submerged )/ free jt?t Corrsin Fig_ 7-10 Turbulence intensity along

4Di

y

jet centre line.

Ui l jet

I

luO'" . t I +

4 \ \

1

large scale eddies

Fig.7·11 Vortex structures 10 plunge pool.

__________ 200 __ _

Ui -y

o o

o

5

10

20 Xx

X 30

x

40

45

Dominon t frequency (Hz)

5

X

X

x X

10

X - Exp. results

0- Morrow Pain t

x X

Prototype

15

fOOM = 0·25 JJl / y

x x

Fig.7·12 Relation of dominant frequency wi th Ui IY .

__ __ lQt_. __ . _______ . _______ -----

Cp

0·8

/ Cp+

0·6 Cp-

\: ........ , , I, \

:' I ... \

! / .... \

Averaged values of pre ssure C oe ffic ien ~ s

0·4

0·2

: I '. \ .: I ... \ : '. \

:,: I ..... \ ./ 3.Cp' . I . '\ ~

./ / ..... \ / .... / ". , . . "-

.' / --.... .... "-" " .. ........... I. // /'...... ..... ........_--. / Cpl/" ............ - ...... ---" -- .......

/ ----~~ o

o 4 Y/Di 8 12 16 20

Fi g. 7·13 Comparison of maximum and minimum instan taneous fluctuations in plunge pool wi th Cpl.

I~I ~'II------...........

. :, " I 't 1'1 I . \ , I \

'1 i ' I 'l I I \

_ ... ~ I "-_ I -

" " "" '" '"'''' "

Fig.7·14 Recirculating eddy at boundary.

Ui Vertical

Flow

1 I /\

I I \

Core 1/0 \ Y/Di=4

Y/Di> 4 I A

!, I "'-

Jet centre line

Fig.7·15 Predominant anti-clockwise eddies

Ui l !.J ~i.: ...... :ii\-. ~I~~~;: '::.~':': >U' / - \

•• I. •• • ,

. c~r~:. './ . \ . . . . / I

: .' .• '/i "-. .... \

.' :.: .. / Shear --A ..... :::.'1 layer .: 'I ./

Jet centre line

\/,Edge of \ shear layer

\ \ \

\

in plunge pool.

Outer region

---P\--­\ \

\

\

Fig.7·16 Likely flow struchJres in plunge pool.

Region 3

A---

Outer jet edge ~

I ,/

/ \ / \

Region 1

----AI

~----t~ .......... "1 U:nner core

Region 2 %i Fig.7·17 Radial distribution of axial turbulence intensity

(I P

0·2

0·1

o

Jet centre line

R/D.IlfO·S

Zone of established fkJw

YI Oi > 4

Non-dimensional radius

Fig.7·18 Radial pattern of pressure head fluc tuations.

Cp'

0·2

0·1

o o

Presenf expo dafa • _ YI Do = 2.56 -{

x - YI Do = 1·28

(Ui = 6·3-6,9 m/sl ,_ YI Do = 4.49

+

1

• x j

+ -Y/Da = 4·4 (H.R.Ltd. -Ui = 6·6m/s)

+ I Rp/Do

2 3

Fig.7·19 Comparison of radial disfribution of Cpl wi~h H.R.Ltd. dafa.

HfTlax -Y ,Hmin -Y Ui2/2g Max. Min.

1·2 X Y/Da = 1·28 * ',0 • YI Do = 2·56 ... 0·8

, YI Do = 4·49 .... , Y/Do:: 6·41

""" . 0·6 Ui = 7-95 - 8·43 m/s

0·4 y • j

0-2 x , 0

-0,2 l t Rp/Do ..

0 , 2 3

Fig.7·20 Distribution of dynamic peak and minimum head of

plunge pool floor.

205

@ L A ~7

00

Em

Fig.7·21 Experimental set- up and acquisition system [Castillo].

0

= 8(1/,,) N · 0

tD -· 0

N ... · ---- Author's 0

c- o W 0 · 0

dutu (mean val ue )

'<t 0 · 0

:;) :;) · 0

0 4 8 12 16 20 24 28 32 36 40

[ h / B ] (y/ Oi)

Fig.7·22 Variation of Cpl with pool depth [CastilloJ:

I Author's data \ Cp-

I/) --- Cp-· 0 I Cp+ _._0-..to I + •

c- o

I I u r-W) · 0

I N

I · 0 c-

/ u ... •

0

0 4 8 12 I' 20 24 Z8 52 36 40 [h/81 (YI Oi)

Fig.7-23 Variation of Cp+ and Cp-.\t'ith pool depth [Castillo 1.

Maxima 0 . ... III

"0 • dO

Media

OJ .&:.IQ . . Minima co ~ c. - . 0 -.= N ~o

... '0

)( . do ~

0 4 8 12 16 20 24 21 32 36 40

[ h I B ] ( YI 0 i )

Fig.7·24 Maximum I minimum and mean dynamic pressure envelope_ [Castillo 1

2

Cpl

0.3 Cpl resul ts - - - Cpl based on turbulence data from Mckeogh and Corrsin

0·2

0·1

o o

(Do= 52'5mm , L=2126-2526mm ) 0- U j = 8·2 - 8· 6 m/s x- Ui =12,7-13 m/s

o

2 4 6

o

Y/Di

8 10 12

Fig.7·25 Comparison of centre line Cpl result's with values computed from jet turbulence data.

Hydraulic

Front face

Fig.7·26 Baffle block wi thin hydraulic jump.

0·4 0·3 0'2 0·1

Cpl

Max. value of Cpl at front face -e- _ _ / (Average max.· 0'2 ) --.... -- ... -- .. -- .... -.. -

O~--+-__ ~ __ ~ __ ~ __ -+ __ -+ __ ~ __ ~F~ , 2 3 4 5 6 7

Fig.7·27 Cpl values at front face of baffle block

208

0·2

0·1

o

0·2

0·1

o

A (pi { O-Fri~17 Exp. Resul ts X - Fri ~ 8

o

x o

x (Frif!17) Expansion-Boundary wall " ---....... ~-

o Cen tre line - Bounded je t (Fri~17 )

Jump (Fri = 3·7 )

/ Jump (Fri = 8 l ----- I--- ----- -- -- -- - - --- -- --- ---- - - - - - - ,=Tu. Boundary layer --

.....................................................................................................................................................................

2 4 6 8 10 12 Y/Di

Fig. 7' 28 Comparison of centre line (pi results with values obtained at 0 ther hydraulic s true ture s.

o

Cpl

o}J , : " .:

, ... 0 0 06

4

.. , x .6

All nozzles-small droplength ( L = 513-'125 mm)

If . 0, \ 2 , '~ -x- Ui 12g= 1-1,5

~ , Ui2/2g=3'1-3'7 c 'l ········· .. 0····· .. Ui2/2g=6·7-7·3

\~ low impact veloci ty

..... x I /

.....• ~)flf-----D ... A

High impact ........... "0. A

velocity Y/Di

8 12 16 20 24

Fig.7·29 Comparison of (pi results at tow droptength.

209

All nozzles -large dropleng th

0·2 x (L = 2018-2630 mm) p.j............ -x- Ui2/2g = 2·6 -3,1

x ri \ /Low ~:': "Ui2/2g = 4·7 - 5· 6 .:' ~ veloti ty jjo o~ ® .. · .... 0 ........ Ui2/2g=8·2- 10·4

~! ~ )C

. . 0"

!... Orifice:

jA lri........ ............ (l=10~}-'420mm~2 c. \.~ j ~ Same U'/2g ~ .t. 6 High ...... 0 as nozzles -0"0 velocity "b~ ~

. ®

o o 4 8 16 24 Y/Di 20

Fig.7·30 Comparison of Cpl results a~ larger dropleng~h.

0·4

Tu % 0.3

Jet cen~re line

0,2

210

0-3 Tu %

je~ centre line 0-2

0-1

o o 0·2

Smooth nozzles

0-4 0-6 0'8

• 78 mm nozzle

X 25 mm nozzle

1

Fi g. 7, 31 (b) Jet centre line ~urbulence near nozzle outlet .

Uo (m/s) . Ui2 /2g (m)

x - 3.0-3.2 I 1.3-1.5

5.0 I

2.0-2.~ o - I I , - 7.0-7.2/ 3.4-3.7

M - 9.0 I ~.8-5.2 SMOOTH NOZZLE I

.225 v - :~~~~~~ I 7.0-7.3

+ - 9.1-9.7 x

.175

o

, v" Uo=11-13 m/s o

.000 2.00 6.00 B.OO 10.0

POOL DEPTH / IHPACT DIAHETER (Y/DJ)

Fig.7·32 (p' with Y/Di (00=78 mm I L=725 -1125 mm)

211

I-

~ ..... II .....

~ 0 II

0

~ Lu

~ til

fa It til

x a:

I-

~ .... II .... It ~. II

0

~ ~ ~

~ til

X

a:

. a

. a

.225

Uo = 5 m/s 0

'" .175

+

L .125 I

v v II' +

.075

'" Uo=13-15m/s

.025

.000 4.00 B.OO

Uo em/5) Ui2 /2g em)

x - 5.0-5.3 I 3.3-3.7 o - 6.9-7.3 I 4.7-4.9 f - 9.0-9.2 I 6.3-6.6 I II - 11.0-U.2 I 8.2-8.7 I v - 13.0-13.1 I 10.6-11.2 + - 14.9-15.3 13.7-14.3

SMOOTH NOZZLE

v '* __ , x~x 12.0 16.0 20.0

POOL DePTH / IMPACT DIAMeTeR 24.0

(Y/Di)

Fig.7·33 Cpl with Y/Di (Do=25mm, L=2018-2418mm)

.225

.175

.125

.075

.025

.000

Uo 11-13 m/s

\ v

1\ ' Uo

5-7mls

Higher velocity

ORIFICE Ue em/51 U1 2/2g em)

x - 3.0-3.4 I 1.6-1.8 I

e - 5.3-5.4 I 2.4-2.8 I , - 6.9-7.3 I 3.5-4.0 I

* - 8.9-9.0 I 5.1-5.4 I

v - 10.8-11.21 7.3-7.4 + - 12.9-13.0 I 9.6-10.1

/ Lower velocity

Uo= 3-5 rnls x--_____ -x

,- o

8.00 16.0 24.0 32.0

POOL DfPTH / IMPACT DIAMfTfR (Y/Dj)

Fi g.7·34 (pi with Y/Di (Orifice: 00= 2S mm, L= 1020 -1420 mm)

'1'

." '

(pi

0,2

0'1

o o

Corrsin Cpl = 10 (Tu )2 Su bmerge d free je ~

Mansoori Cpl = 10 ( Tu)2 Bounded submerged free jet

Wi ~hers data: Do = 78 mm , Uo = 11-13 m/s

/ /

/

-- .... /' , •••• 1. • • • • ,

.' I .... \

,,/ '. '''y''

J \~""" / \

/ \ / \

/ \

J /

/

5

Y/Di 10

Fig.7·35 Comparison of fluctuations for intact plunging jet wi th submerged je ts.

, Tu J

I ,

~78mm-, I

\ I

Je t boundary layer

, , Poor I ~ Hig~ :IOC~

Fig,7'36 Growth of boundary layer and jet condition ot impact for high velocity jet (Do=78mm).

213

Uneven--. jet edge

\ \ I I I

Thicker boundary layer

Fig.7·37 Growth of boundary layer and jet condition at impact for low veloci tyjet (Do = 78 mm )

Fig.7·38 Turbulence intensity o.long centre line of orifice jet.

0·25

0·2

0·15

0,'

0·05

o

(pi

.. ...... . '

o 2 4

2Smm Orifice I L/Do=41-S7 / L/Ls=0·3-0·4 I TUi(~)=40f0

--78 mm Nozzle I LIDo = 9~3-14·4 L/La= 0·04 I TUi(t) = 0·4%

6 a 10 12 14 Y/Di

Fig.7·39 Variation of (pi for constant high impact velocity (Ui2/2g=9-10) for 78mm nozzle, 25mm nozzle and 25 mm orifice ..

------.~ ....... . '11:;

Cpl

0·25

0·2

0·15

~, 25 mm Nozzle, L/Do=81- 97 . / " L/LB = 0·55 .... ~ .' . / "', ,T U', ( rl-) = 1 % :/ ..... \ 1:

"

0·1

/'---78 Nozzle, L/Do=9·3-14·4 (}OS ......... L/LB=0·1,Tuj{f)=0·40J0

25 mm Orifice . L/Do=41-57

o

.,' L/LB = 0·4 ,.'

TUi(~)< 10/0

o 2 4 6 B 10 12 14 Y/Di

Fi g. 7· 40 Varia tion of Cpl for a constant lower impac t vetocUy (Ui2/2g = 3,3-4) for 78 mm nozzle, 25 mm nozzle' and 25 mm orifice.

16

NOZZLES

00 r I R. 1·0

Tu LI D = 0

Tu

1% I 1% 0 0

Tu Tu

1%1 1%

0 0

L1D=5)(~ Tu Tu

1% 10/ 0

ct. jet development in nozzle jets at high velocity

o r/R. ',0

°t 0-0 ..........

Tu LJD=17.2 i\ Tu 1°1 ' 1%

I Fig.7·41 (a)

Typical grow th in boundary layer in smooth nozzle jets plunging through atmosphere.

217

ORIFICE

0 r/R. 1

TUo~ L--13mis---" I I LI D =2

Jet centre line

o r IR. 1 o r----~__, .. 7·rr;/5· .... ·· ...... · 1 ....... ..---,. 1

" Tu Ofo :,... .... 13 mls· 2 2

3

1

'---------..II 3 LID =10

I

1. 1 I

I o r I Ro 1 o .-----------,0 1 ·· .. yc~·~~·~~~.,· 1

/ 2 f 2

Tuo,o I

3 Uo= 13 m/sl 3 \ /

4~_;4' 4

LID ~ 17 Fig.7·41(b) Turbulence levels in plunging orifice jet at two veloci ties.

'-ffi .... (.) .... \&. In 0 (.)

0

~ + fr

~ til

~ a:

; ).(

~

Uo Im/s)

x - 3.0-3.2

o - 5.0 , - 7.0-7.2

.900 II - 9.0

v - 11-11.1

+ - 12.8-13

.700

, o

.100 V If

V'-- .... . 000

Ui2 /2g 1m)

1.3-1.5

2.0-2.4

3.4-3.7

4.8-5.2

7.0-7.3

9.1-9.7

4.00

SMOOTH NOZZLE

x /UO =-3 m/s

0 I * 0

"" Uo= 13 m/s

6.00 B.OO

POOL DEPTH / IMPACT DIAMETER

10.0

(Y/Di)

Fig.7·42 Cp+ withY/Di (Do=78rMl" L=72S-1125mm)

x SMOOTH NOZZLE Uo=S-7m/s

.700 "- Uo em/5) U12

/2g (m)

x - 5.0-5.3 I 3.3-3.7 6.9-7.3 I 4.7-4.9 o -

f - 9.0-9.2 6.3-6.6

".0-".2 I B.2-B.7 M -v - S3.0-S3.1 10.6-11.2 .500 f + - 14.9-15.3 13.7-14.3

+ .300 +v \

v\ UO= 13-1Sm/s II f x

0 .100

.000 4.00 B.OO 12.0 16.0 20.0 . 24.0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

Fig.7·43 Cp+ with Y/Di (00=25 mm, L= 2018 - 2418 mm)

?1A

.900 -I- Uo 'em/5) Ui 2/2g (m)

~ + 3.0-3.4 1.6-1.6 1-4 UO=13X/~

x -lJ o - 5.3-5..4 2.4-2.6 ... It .700 \ I v " I - 6.9-7.3 3.5-4.0 ~

, I 'l II - 6.9-9.0 5.1-5.4

lJ ,+-+ I II

0 I v - 10.6-11.2 7-.3-7.4

~ v I + + - 12.9-13.0 9.6-10.1 v x ,\ :t .. / II Lu 8 .500 / § ..... /

~

~/\ ~ v\ 0;

~\ ~ ~ .300 \ ORIFICE >< Uo= 3-Sm/s \ ~ 0 ,

" II ........ ............. -x

.100 , -o-------x

.000 8.00 16.0 24.0 32.0

POOL DEPTH / IMPACT DIAMETER (Y/Dj)

Fig.7·44 Cp+ \li~h Y/Di (Orifice: Do=25mm, L=1020-1420 mm)

1·0

0·8

0·6

0-4

(}2

o

2Smm Orifice LI Do =41-57, L/La= O' 3-0'4

Tui rt)=4 %

r-- ... .... / ... "

.. ' ./ ' 2Smm Nozzle ;/ '\

'-... \ /./' ~.". ..

L/Do=81-97 ."" L/Ls= O' 3 ........

Tui (t) = 1 % .. ····--78 mm Nozzle .'

................. L/Do=9'3-14'4,LlLs=O'04, Tui{t)=O'40f0

o 2 4 6 8 10 12 14 Y/Di

Fig.7·45 Variation of Cp+ for a fixed high impact velocity (Ui2/2g: 9-10) for 78 mm nozzle, 25mm nozzle and orifice.

?1Q

1·0

0·8

0·6

0,4

0·2

o

... ffi 1-4 u

i U

Q

~ ... I Sf}

~-§ ~

~

o

Cp+

. . ,.

.. p' .' .. ' ...... ~

....... '-.......78 mm nozzle

/

.' .' LlDo=9·3-14·4 I L/LB= 0,1 .' Tui {V = 0,4 %

2 4 6 8

25 mm Orifice LJDo=41-57, L/LB= 0·4

'~ I Tui ({)<1 0/0

'" , }"''''-. 25mm Nozzle

L/Do=81-97, L/LB =O'55 Tui (<<!) = 1%

Y/Di

10 12 14

Fig.7·46 Variation of Cp+ for a fixed lower impact velocity (Ui2/2g= 3· 3-4) for 78 mm nozzle I 25 mm nozzle and orifice.

Uo= 3m/s x~x

\ 0

.500 "'r+" f v

0 +

f x, II

.300 0

Uo Im/s) U12 /2g 1m) x f

/ x - 3.0-3.2 I 1.3-1.5

5.0 I 2.0-2.4 o - I I

* f - 7.0-7.21 3.4-3.7 0 I

II - 9.0 I 4.B-5.2 .100 I

f v - 11-11.11 7.0-7.3 * _______ 11 + - 12.8-13 9.1-9.7

.000 2.00 4.00 6.00 B.OO 10.0

POOL DEPTH / IMPACT DIAHETER (Y/D1J

Fig.7·47 Cp· with Y/Di (Do=78mm I L=725-1125mm)

??n

... ~ .... t.J .... It 0 t.J

0 -~ I

8 IU §

.... U)

13 If ~ X

~ ~

... ~ .... t.J .... It ~ t.J

0 ~ :c -§

I

8 I/)

fa If

....

~ ~ ~

.700

.500

.300

.100

.000

v/ higher velocity

I

Uo=13-15 m/s

Uo (m/s) U12 /29 (m)

x - 5.0-5.3 I 3.3-3.7 o - 6.9-7.3 I 4.7-4.9 I - 9.0-9.2 '6.3-6.6

I M - 11.0-11.2 I 8.2-B.7 v - 13.0-13.1' 10.6-11.2 + - 14.9-15.3 I 13.7-14.3

SMOOTH NOZZLE

/ Uo = 5-7m/s

, ---;:0----- x

12.0 16.0 20.0 24.0

POOL DEPTH / IMPACT DIAMETER (Y/Dj)

Fig.7·48 Cp- with Y/Di (Do=25mm l L=2018-2418mm)

.700

.500

.300

.100

.000

\

Uo = 13 m/s

/ \ \ \M \ x~

i:\.0

" of ........

/ v ...... x __

UO= 13 m/s

ORIFICE Uo (m/s) U1

2/2g 1m)

x - 3.0-3.4 I 1.6-1.8 I o - 5.3-5.4 I 2.4-2.B I

I - 6.9-7.3 I 3.5-4.0 I ,

* - B.9-9.0 I 5.1-5.4 v - 10.8-11.2, 7.3-7.4 + - 12.9-13.0 9.6-10.1

Uo= 3- 5 m/s / x -_ _x o --0---,

B.OO 16.0 24.0 32.0

POOL DEPTH / IMPACT DIAMETER (Y/DJ)

Fi g. 7 ·49 Cp· wi th Y IOi (Orifice: Do = 2 5 mm I L = '020 -1420 mm )

.,.,1

Cp-O'B

0·6

______ 25 mm Orifice L/Do=41-57 L/L = 0,3-0,4

-~ I B /~ TUi(()=4 0f0

/

0·4

0'2

....... ~ .' ~

.... ~ .' : .' ~,25mm Nozzle

~ L/Do=81-971 L/La= 0·3

"" '" Tui(t) = 1 °/0 :'" " I .... 78mm Nozzle ~_

........... L/Do=9-3-14·4,L/LB=0·04 I TuH()=0·4°/0 ::---

o o 2 4 6 8 10 12 14

Y/Di

Fig.7·50 Variation of Cp- for a fiXed high impac t velocity (Ui2/2g= 9-10) for 78 mm nozzle, 25 mm nozzle and orifice.

0·8

0·6

0-4

0·2

o o

25mm Orifice L/Do=41-57, L/LB=O'4, Tui{()<1°/0

~, 2Smm Nozzle ~ L/Do=81-97, L/LS: 0·55

.................. ", ....... .

....... '" ...... 78 mm Nozzle

" . .... ... ~ Tui (t) = 1°1o

'~ ...

......... LIDo = 9·3 -14'4, L ILs= 0'1, Tui tV = 0·4 °/0

2 4 6 8 10 12 Y/Di

14

Fig. 7· 51 Variation of Cp- for a fixed lower impac t velocity (Ui2/2g:

3'3-4) for 78 mm nozzle ,25 mm nozzle and orifice.

'"

1.60 ~ ~ fII' fII' .... .... ::l ::l , , ):: ):: 1.20 I I l( c: III ... ~ ~ Q Q

~ ~ .BOO

.... .... U U 00(

~ i loot , , .400

~ ~ :x: !Ie

~ ~ a.; X -.000 U U Uo= 3m/s loot ~ ~

~ ~ .000 ).; ); Q Q

2.00 4.00

Uo Im/5) Ui2 /2g 1m)

x - 3.0-3.21 1.3-1.5

0 - 5.0 I I I

2.0-2.4

I - 7.0-7.21 3.4-3.7 I

If - 9.0 I 4.B-5.2 I

v - 11-11:11 I

7.0-7.3

+ - 12.B-13 I 9.1-9.7 -x

o x

SMOOTH NOZZLE

....... X---- --x_ - ---I

6.00 B.OO

POOL DEPTH / IMPACT DIAMETER 10.0

(Y/D1)

Fig.7·52 Extreme pressures with Y/Di (Do=78 mm, L=72.5-1125 mm)

Uo (m/s) U1a /2g 1m)

)( - 5.0-5.3 I 3.3-3.7 o - 6.9-7.3 4.7-4.9

+ o /Uo=5-7 m/s

f - 9.0-9.2 6.3-6.6 If - H.0-11.2 B.2-B.7 v - 13.0-13.1 10.6-11 .2

/ + - 14.9-15.3 13.7-14.3

Uo=13-15m/s I

SMOOTH NOZZLE

0 0

~ ~ :.:

~ -.000 ~ a.; u u ~ loot

X

~ v\ \ 0

'~+v If jUO =13-15 rnls' x ~"",,-f +

x ... -:v- -IL -I-v- ~ , U 5 7 I "' 0 - - - -x - _0 -0= - m s/ - - -x - - - - --.)(-.

~ ~ .000 ); );

0 0 4.00 12.0 16.0 20.0 24.0 B.OO

POOL DEPTH / IMPACT DIAMETER (Y/D1J

Fig.7·S3 E~treme pressures with Y/Oi (Oo=25mm"L=2018-2418 mm)

??':2

1.60 01 01

'" '" 111'111' :; ....

::l , , >: >: I I )( c: III .... e ! ~

+~ Uo=13 m/s Ua em/5) Ui 2/2!1 em)

x - 3.0-3.4 1.6-1.B

<~ a - 5.3-5.4 2.4-2.B

1.20 f - 6.9-7.3 3.5-4.0

f 0 II - B.9-9.0 5.1-5.4

+ v - 10.B-11.2 7.3-7.4

+ - 12.9-13.0 9.6-10.1 0 0 x ~ ~ :t J:

.BOO

.... .... I.J I.J

"" "" ~ ~ ORIFICE

.... ....

" " .400-0 0

~ ~ :t :t ~ :c:

Uo= 3- Sm/s 'M~ t'I • II X_a /I _x

.... ~ X -.000

v ~_ II f 0 / -+/- - ·+v-~ -......t~- ...JI_I.~-v II

--lL 0' a I.J I.J .... .... x x

Uo = 13 m/s - - - - - - x - - - - - --x

"" ~ ~ .000 B.OO 16.0 24.0 32.0 0 0

POOL DEPTH / IMPACT DIAMETER (Y/Di)

Fig.7·54 Extreme pressures with Y/Di (Orifice, L=1020-1420mm)

1·2

0·8

0·4

o

25 mm Orif ice

--~'''~ , .' ~ . ...... ....... ...........

.... ··f·· ~

·····r·······... r '", 25mm Nozzle '~ '--- ...... !

~-.. ... ----------- ..... ---

78mm Nozzle

t --25 mm Orifice

Note:·Parameters LiDo etc. as Fig.7·39

-0' 4 '----I---_I----....-.----I----.f------I---~ o 2 4 6 12 14

Y/Di 10 8

Fi g. 7· 55 Variation of ex ~reme pressures for a fixed high impact vel. (Ui2/2g::9-10) for 78mm nozzle, 25mm nozzle and orifice.

,)"1

Hmax-Y I Hmin-Y

Ui 2/2g Ui2/2g

',2

0·8

0·4 25 mm Orifice

25 mm Nozzle ~, ~

f ~,~-:o--............. T ...... r. ••• .-~.:: .... .... 78 mm Nozzle

............. ...1

o ~.. I ~.

--~-===----~---------~--Ir-" N-o-~e-:'-P-ar-a-m-e~-er-s-L-l-0-0 -e-tc-. -a-s-F-ig-.7-·-4---,O I 2~ mm Nozzle

-0' 4 ~--t------il------it----lt----It-----+--~ o 2 4 6 8 10 12 14

Y/Oi fig. 7·56 Varia~ion of extreme pressures for a fixed lower impac ~ vel.

(Ui 12g =3-3-4) for 78 mm nozzle I 25 mm nozz Ie and orifice.

Cpl

0·2

0·15

0·1

0-05

./0 'e-o•

0 0 2

{o 52'5 fi = 0·6

NOZZLES • 78.0 r3=0.5 Reo =7x105

Reo = 7·S x 195

L/LB= 0·04 - 0·07

. Y/Di 4 6 8 10 12

Fig.7·57 Pressure fluc~uations (Cpl) for L1Ls= 0·04 -0,07

725

14

{

X 25mm/0= 0·8 Re.=3x105

NOZZLES 0. 52·5mm,O=O·42 Re.=2·9x105

7Smm, 0= 0·29 Re.=2·6x105

0,2

0·15

0·1

I LlLa=0·08-0·14 I 0'05

x

Y/Di o

o 2 4 6 B 10 12 14

Fig.7·58 Pressure ftuc~ua~ions (Cpl) for L/LB= 0·08 - 0·14

(pi

0·2

0·15

0 0·1

• 0·05 • 0

0 2

Fi g.7·59 Pressure

;,.-' --

X

{

X 25mm I (3= 0·66 ·Re.=1-Sx105

NOZZLES 0 52·5mm,O=0·31 Reo=1'7x105

• 78mm 10= 0·84 Reo= 8x 105

o 'x

0

I L/ Ls= 0·11- 0·18

Y/Oi 4 6 8 10 1i

flue ~ua~ions (Cp I) for LI LB= 0,11- 0·18

226

x_

14

0'2

0·1

0·05

o

I NOZZLES I X-25mm n=1·5 Re.=3·5x105

- . 0-52'5mm n=0·85 Re o=2'8x105

.-78mm (3=0·67 Reo=2'5x105 0

o --, • x

x

x

L/LB=- 0,27-0,32

o

x

Y/Di o 2 4 6 8 10 12 14

Fig.7·60 Pressure fluctuations ((pi) for L/LB=0'27-0'32

(p' X-25mm (3=1·33 Reo=2)(105 0-52'5mm r3 = 0·8 Re.=1·7)(105

0·2 I NOZZLES I

0·15

0·1 x L/La= 0·41

0,05

o Y/Di o 2 4 6 8 10 12 14

Fig.7·61 Pressure fluduations ((pi) for L/LB= 0·41

227

0-25

0-20

0-15

0·10

0·05

o o

NOZZLES ONLY Tu :t 1 0/0

. .,

: ... ::.: .. :.:: .. ;~ ..... :;. ""L/L 0 04 :.' - .,' ." . B= . . ... . . .,

• ..' I" I •• '. • : ........... . . .. ' . " .. .. '.

2 4 6 8

Fig.7·62 The influence of jet break-up

flue tuations in a plunge pool.

228

Y/Oi

10 12

( LI La) on pressure

+ L/LB= 0,04- 0·07

{~ L/LB= 0,08- 0·14 LI Ls= 0·11 - 0·18

(pi NOZZLES ONLY. {~ L/Ls= 0·27 - 0·32 YI Di = 4 L/Ls= 0·41

0·20 ---.,

......... X. '0 " ....... 0·15

0·10

• "" 'ba " " " 0' " ........ -- A

" --- U X, -=--- 0 ........ -X - -'.~ .---

" ... . '+, .... -

0·05

Air/ Water o

0·2 0·4 0·6 0'8 1·0 1'2 1·4 1'6

Fig.7·63 Varja~ion of Cpl with air/water ratio (~i) for a

pool dep th of Y/Oi = 4

229

0'2 (pi

0·1

o o 2 4

--, , X,

\

78 mm nozzle

\ 25 mm nozzle, Fro =14· 3 " L/Do= 21-36 "" Reo = 1·8x 10

5

" "-........... ........ ......... Fr. =14'3, L/Do=29-34

6 Re.=10 --X

6 8 10 12 14

Fig.7·64 An impinging je~ Froude comparison I Fr.=14.31

0·2

0·1

o o 2

.~.

~/'-'<:" /,1 \

X \ ..1 \

/ \ \ ''x 2S mm nozzle I Fr. = 6· 8

........ L/Do=21-36, Reo=(}8x105

76 mm nozzle Fro = 6'6, L/Do=29-34

Reo= O'5x106

4 6

........

8

......... --

10

------X

Y/Do

12 14

Fig.7·65 An impinging jet Froude comparison I Fro = 6·8 I

Hmax-Y I Hmin-Y

Ui 2/2g Ui2/2g

1· 0 /Maxi mum ex~reme

----, \

"-"-

"-"- " . Mean dynamic

0·2 " / ~ --__ Minimum -----0

-0·2

0 4 8 12 16 20

Fig.7-66 Envelope of maximum and minimum dynamic

discharge

.,rSma{( discharge

pressure head

--Y/Di

24

head.

Fig.7·67 Proposed stilling basin design below free-falling jets. ! Hor tung and Hausler)

731

~ I

/Example loadings

,

(a)

AAII...4 "A A It. ~ --,,- ~T'lme n~ F ·:·";"

'." T r-":""

J------,.----i

(b) Pressure trace

Fig.7·68 Load combinations for downward and upward pressure application.

Structure

f (Hz)

Fig.7·69 Overlap of fluid and structures natural frequency .

.,';l.,

. .",..

1· 6

1·2

0·8

0·4

o

!L ~ /\ ,': ';' \

/ \ .\ / :;:;\ I;::', / :" .\ /" .\ /':~":·': V'::: " '\

. , \ / , ' . ,'" ':;' :.: " .,','. \ / ' . v· .. · \ /' ':~,~:.:::: ~,:, :.: " \ / . '.' .. . \ . / " " ":'::-::.: '. '\

/ '. '. ' . . : : .: : . / " " ,, ' ,

~7-7"7"'-17"T"'~7r-' --;/....-. ""'7>-7""T' ->-r---l.\,-r- 77' >::;. 'j "j :; .. ) 7

Fig.7·70

DclDi~1'0 Dc/Di~O·375

Pressure reduc tion at same pool depth due to

highly diffused jet in the atmosphere. .

233

top related