the anomalous dibs in the spectrum of herschel 36 ii. analysis of radiatively excited ch + , ch,

Post on 13-Jan-2016

42 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

The anomalous DIBs in the spectrum of Herschel 36 II. Analysis of radiatively excited CH + , CH, and diffuse interstellar bands. Takeshi Oka , Daniel E. Welty, Sean Johnson , Donald G. York, Julie Dahlstrom, and Lew Hobbs Department of Astronomy and Astrophysics, University of Chicago. - PowerPoint PPT Presentation

TRANSCRIPT

The anomalous DIBs in the spectrum of Herschel 36II. Analysis of radiatively excited CH+, CH,

and diffuse interstellar bands

Takeshi Oka, Daniel E. Welty, Sean Johnson, Donald G. York,Julie Dahlstrom, and Lew Hobbs

Department of Astronomy and Astrophysics, University of Chicago

August 13, 2012, DIBs Meeting, O’Hare Hilton

1937 Birth of Molecular Astrophysics

Theodore Dunham, Jr. 1897-1984 Walter Sydney Adams, 1876-1956

T. Dunham, Jr. PASP 49, 29 (1937) PAAS 9, 5 (1937)

W. S. Adams, ApJ, 93, 11 (1941)

P. Swings & L. Rosenfeld, ApJ 86, 483 (1937)

A. McKellar, PASP 52, 187, 312 (1940) 53, 233 (1941) CH CN

Pub. Dom. Astroph. Obs. 7, 251 (1941) Tr = 2.3 K

A. E. Douglas and G. Herzberg, ApJ 94, 381 (1941) CH+

Andrew McKellar 1910 -1960

CN and the cosmic blackbody radiation

W.S. Adams, ApJ, 93, 11 (1941)

A. McKellar, PASP, 51, 233 (1940)

R(0)

R(1) P(1)

A. McKellar, PDAO, 7, 251 (1941)

Te = 2.3 K (= Tr)

CN

Goto, Stecklum, Linz, Feldt, Henning, Pascucci, Usuda, 2006, ApJ, 649, 299

AV ~ 4

AV ~ 6

The three temperaturesKinetic temperature Tk Collision Maxwell 1860 Phil. Mag. 4, 19

Excitation temperature Te Observed Boltzmann 1871 Wiener Berichte 63, 712

Radiative temperature Tr Radiation Planck 1901 Ann. d. Physik 4, 564

If Tk = Tr, thermal, Boltzmann Te = Tk = Tr

If Tk > Tr, collision dominated thermal Te = Tk

radiation dominated thermal Te = Tr

intermediate non-thermal −∞ < Te < ∞

''

( ')exp ( ) /

( )J

J J eJ

gn JE E kT

n J g

2

22

3

4v

dn N v e dv

3

5

8 1

1ch

k

hE

e

α2 = 2kTk/m

θ = Tr

CH+, CH, CN DIBs

CH+ in the J = 1 excited rotational level and radiative temperature of dust emission

CH+ 40.1 K

μ = 1.7 DebyeA = 0.0070 s-1 τ = 140 sncrit = 3 × 106 cm-3

Te = Tr = 14.6 K

0

2

1

2

1

0

R(0)R(1) Q(1)

CN 4.9 K

HD 213985

Bakker et at. A&A, 323, 469 (1997)

CH in the J = 3/2 excited fine structure level

Te = Tr = 6.7 K < 14.6 K

~ 25.6 K

CHCH+

Effect of radiation on DIBs toward Her 36

Extended Tail toward Red ETREast Turkestan Republic

(B’−B)J(J +1)

P. Thaddeus, M. C. McCarthy, Spectrochimica Acta A, 57, 757 (2001)

Collision dominated

Radiation dominatedA ~ ν3

Simulation of DIB velocity profiles with high Tr and the 2.7 K cosmic background radiation

1 1( ) ( 1)J Jn J C n J C

11

11

( ) 2 1 2exp( ) exp( )

( 1) 2 1J e J

J Je J kJ

C n J g J hBJE E

n J g J kTC

1

1 1

( 1)( ) (0) (2 1)exp

Jm

m k km

C NhB hBJ Jn J n J

kT kTC

Collision only

Radiation and collision

1 1 1 1( )( ) ( 1)( )JJ J J Jn J A B C n J B C Einstein 1916

,

1 1/ /

1 2 1 1( ) 1 ( 1)

1 2 1 1r r

J JJ Jh kT h kT

Jn J A C n J A C

e J e

4/3 2

2 /

41 /3 2

2 /

1 2 1

2 1 1 2 1( ) (0)1 2 1

12 1 1 2 1

k

r

k

r

hBm kTJ hBm kT

m hBm kThBm kT

m mB C e

m e mn J nm m

B C em e m

Goldreich & Kwan 1974

Principle of Detailed Balancing Boltzmann, 1872 H-theorem Wiener Berichte 66, 275

4/3 2

2 /

41 /3 2

2 /

1 2 1

2 1 1 2 1( ) (0)1 2 1

12 1 1 2 1

k

r

k

r

hBm kTJ hBm kT

m hBm kThBm kT

m mB C e

m e mn J nm m

B C em e m

Rotational distribution n(J)

Spectrum Rotation of linear molecules

)1(ˆ2

ˆˆ

2

222

JhBJJHJEI

JH

I

PE

I

hB

28

i

ii zmI 2

Rotational constant

Moment of inertia

CH+ 417,568 MHz 20.04 K

HC5N 1,331 MHz 0.06390 K

R(J) J + 1 ← J ν = ν0 + B’(J + 1)(J +2) – BJ(J + 1) = ν0 + 2B’(J + 1) + (B’ – B)J(J + 1)

Q(J) J ← J ν = ν0 + B’J(J +1) – BJ(J + 1) = ν0 + (B’ – B)J(J + 1)

P(J) J ˗ 1 ← J ν = ν0 + B’(J + 1)(J +2) – BJ(J + 1) = ν0 – 2B’J + (B’ – B)J(J + 1)

1

2 t

Simulated spectra

Tr, Tk, B, μ, C, β, Γ CHCH+DIBs

Reservation λ6613

Sarre et al. 1995, MNRAS 277, L41

Kerr et al. 1996, MNRAS 283, L105

Other possible mechanisms

Linear molecules B’ – B μ

General moleculesA’ – A, B’ – B, C’ – C μa, μb, μc

Special group of molecules: Non-linear ← linearCH2 (B3Σu

- - X3B1), HCO (A2Π – XA’) and NO2 (E2Σu+ - X2A1)

100 %

Vibrational excitation?

ConclusionsFirm conclusions

λ5780.5, λ5797.1, and λ6613.6, which show strong ETR are due to polar molecules. Non-polar molecules such as carbon chains (Cn) or symmetric hydrocarbon chains(HCnH, H2CnH2, NCnN, etc.), symmetric PAHs (benzene, pyrene, coronene, ovalene etc.), or C60, C70 etc. and their cations and anions cannot be the carriers of those DIBs.

λ5780.5, λ5797.1, and λ6613.6 which show strong ETR and λ5849.8,λ 6196.0, and λ6379.3 which don’t, cannot be due to same molecules

Likely conclusions

λ5849.8, λ 6196.0, and λ6379.3 which do not show strong ETR areMost likely due to non-polar molecules although very large polar molecules with small β

And many more

I am scared

Short column length L ≤ 1000 AU

High radiative temperature Tr ~ 80 K

I am scaredShort column length L ≤ 3000 AU

High radiative temperature Tr ~ 80 K

1 in 200

Something must be wrong about the subtraction

HD 29647 E(B-V) = 1.00 W(5780) = 70 ± 7

top related