nmems-16a

Post on 06-Apr-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 1/19

INTRODUCTION TO MEMS

EA C415

Dr. N.N. SHARMA

LECTURE 32

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 2/19

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 3/19

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 4/19

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 5/19

Dimensionless Numbers

Reynolds No. 1ReMEMSIn;Re <<→= µ 

 LU 

Mach No.

All flows are laminar !

C U C 

U  M  <<→=  MEMSIn;

flows are in sub-sonic region !

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 6/19

Dimensionless Numbers

Knudsen No. Characterizes Slip/No-Slip condition in

flow

1.0m.10pathfreeairroom-typical

 m,1gap MEMSIn

flowslip 1.0~slipno 1.0

channelsflowtheof gap

moleculesof pathfreeMean

=⇒

=

><<

=

kn

knkn

kn

 µ 

 µ 

In effect structure is too small to allow many collisions close

to the walls which is the requirement for no-slip condition

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 7/19

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 8/19

Rate of change of momentum

( )

( ) ( ) ∫∫∫∫

∫∫

++•−=•+

•+=

vssv

sv

gdvdsnPdsnU U Udvdt d 

dsnU U Udvdt 

dt 

dP

 ρ τ  ρ  ρ 

 ρ  ρ 

equation)(GoverningStokesNavier

Net pressure force

Net shear tangential to surface

Body forces

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 9/19

Navier Stokes Equation

( )( ) ( )

4 4 4 34 4 4 21

•∇∇+∇++−∇=•∇+

s

ds

U U gPU 

dt 

U d 

τ 

 µ  ρ  ρ 

3

2

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 10/19

( )

n

U knU U  w y

∂−=−

σ 

σ 2

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 11/19

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 12/19

ELECTROKINETIC-DRIVEN FLOW

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 13/19

Electrolytes & Electrokinetic effects:

Near the wall:

( )

 

  

 =

−=∝

−=∇

i

ii

 B

e

 L

 x

e

C  Z T k 

q

 L

 L

e d 

0,

22

0z

2

1

LengthDebye

ˆ ;ˆ

ε 

φ φ φ φ 

ε 

 ρ φ 

00,  ispotentialthehereposition wreferenceaationconcentratis re,temperatuabsoluteisT

constantBoltzmanis field,electricis where

φ 

ε 

i

 B

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 14/19

Ionic Double Layer:

Motion of diffusion layer drags the fluid and results in

electro-osmotic flow

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 15/19

Ionic Double Layer:

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 16/19

ELECTROPHORESIS

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 17/19

ELECTROPHORETIC SEPARATION with

ELECTRO-OSMOTIC FLOWAssume +ve diffusion layer

Flow is in the direction of applied voltage

Electro-osmosis (sample

plug carried down the sep.

channel

Different components separated

according to ep

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 18/19

DIFFUSION EFFECT:

Infinitesimal slab of sample will spread out in width due

to diffusion

 D xw

ss

S

S

 L E 

 DL

 L DW 

 Dt 

 Lt 

U  L

σ 

 µ ==

=

=

0

.min

0

0

 possiblebandNarrowest

sampleof Width

bygivenisesition timthen tranSpeed, channelseparationof Length

TO HAVE SHARPEST BAND

Short column

Large Electric field

Large LD (Low ionic strength)

Small sample width (possible

by MEMS technology)

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 19/19

PRESSURE EFFECTS IN MICROFLUIDIC

SEPARATION CHANNELS

In microfluidic separation channels, two differentionic species travels with two different speeds

Different velocities results in pressure drop

and consequently a Poiseullie like flow and

characteristic curved profile

So in case of extreme differences (upcoming highthroughput Microfluidic devices) the pressure driven

flow must also be accommodated in analysis

top related