nmems-16a

19
INTRODUCTION TO MEMS EA C415 Dr. N.N. SHARMA LECTURE 32

Upload: vaibhav-deshmukh

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 1/19

INTRODUCTION TO MEMS

EA C415

Dr. N.N. SHARMA

LECTURE 32

Page 2: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 2/19

Page 3: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 3/19

Page 4: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 4/19

Page 5: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 5/19

Dimensionless Numbers

Reynolds No. 1ReMEMSIn;Re <<→= µ 

 LU 

Mach No.

All flows are laminar !

C U C 

U  M  <<→=  MEMSIn;

flows are in sub-sonic region !

Page 6: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 6/19

Dimensionless Numbers

Knudsen No. Characterizes Slip/No-Slip condition in

flow

1.0m.10pathfreeairroom-typical

 m,1gap MEMSIn

flowslip 1.0~slipno 1.0

channelsflowtheof gap

moleculesof pathfreeMean

=⇒

=

><<

=

kn

knkn

kn

 µ 

 µ 

In effect structure is too small to allow many collisions close

to the walls which is the requirement for no-slip condition

Page 7: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 7/19

Page 8: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 8/19

Rate of change of momentum

( )

( ) ( ) ∫∫∫∫

∫∫

++•−=•+

•+=

vssv

sv

gdvdsnPdsnU U Udvdt d 

dsnU U Udvdt 

dt 

dP

 ρ τ  ρ  ρ 

 ρ  ρ 

equation)(GoverningStokesNavier

Net pressure force

Net shear tangential to surface

Body forces

Page 9: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 9/19

Navier Stokes Equation

( )( ) ( )

4 4 4 34 4 4 21

•∇∇+∇++−∇=•∇+

s

ds

U U gPU 

dt 

U d 

τ 

 µ  ρ  ρ 

3

2

Page 10: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 10/19

( )

n

U knU U  w y

∂−=−

σ 

σ 2

Page 11: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 11/19

Page 12: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 12/19

ELECTROKINETIC-DRIVEN FLOW

Page 13: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 13/19

Electrolytes & Electrokinetic effects:

Near the wall:

( )

 

  

 =

−=∝

−=∇

i

ii

 B

e

 L

 x

e

C  Z T k 

q

 L

 L

e d 

0,

22

0z

2

1

LengthDebye

ˆ ;ˆ

ε 

φ φ φ φ 

ε 

 ρ φ 

00,  ispotentialthehereposition wreferenceaationconcentratis re,temperatuabsoluteisT

constantBoltzmanis field,electricis where

φ 

ε 

i

 B

Page 14: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 14/19

Ionic Double Layer:

Motion of diffusion layer drags the fluid and results in

electro-osmotic flow

Page 15: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 15/19

Ionic Double Layer:

Page 16: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 16/19

ELECTROPHORESIS

Page 17: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 17/19

ELECTROPHORETIC SEPARATION with

ELECTRO-OSMOTIC FLOWAssume +ve diffusion layer

Flow is in the direction of applied voltage

Electro-osmosis (sample

plug carried down the sep.

channel

Different components separated

according to ep

Page 18: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 18/19

DIFFUSION EFFECT:

Infinitesimal slab of sample will spread out in width due

to diffusion

 D xw

ss

S

S

 L E 

 DL

 L DW 

 Dt 

 Lt 

U  L

σ 

 µ ==

=

=

0

.min

0

0

 possiblebandNarrowest

sampleof Width

bygivenisesition timthen tranSpeed, channelseparationof Length

TO HAVE SHARPEST BAND

Short column

Large Electric field

Large LD (Low ionic strength)

Small sample width (possible

by MEMS technology)

Page 19: nmems-16a

8/3/2019 nmems-16a

http://slidepdf.com/reader/full/nmems-16a 19/19

PRESSURE EFFECTS IN MICROFLUIDIC

SEPARATION CHANNELS

In microfluidic separation channels, two differentionic species travels with two different speeds

Different velocities results in pressure drop

and consequently a Poiseullie like flow and

characteristic curved profile

So in case of extreme differences (upcoming highthroughput Microfluidic devices) the pressure driven

flow must also be accommodated in analysis