mass production (super-k)

Post on 15-Feb-2016

41 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Mass production (Super-K). K. Matsuoka. Setup of jnubeam 3 horn 250 kA 30-GeV proton beam of Gaussian distribution ( s x,y = 0.4243 cm) On center, parallel beam and no divergence. Proton generation upstream of the baffle Normalization for a file: 1.0 x 10 21 POT - PowerPoint PPT Presentation

TRANSCRIPT

Mass production (Super-K)• Setup of jnubeam

– 3 horn 250 kA– 30-GeV proton beam of Gaussian distribution (sx,y = 0.4243 cm)– On center, parallel beam and no divergence.– Proton generation upstream of the baffle– Normalization for a file: 1.0 x 1021 POT– 1 x 105 POT/file x 100 files– Only use 100 good random seeds.– Store only SK ntuple w/ nominal variables.

K. Matsuoka

Mass production (INGRID)• Nominal setup of jnubeam

– 3 horn 250 kA– 30-GeV proton beam of Gaussian distribution (sx,y = 0.4243 cm)– On center, parallel beam and no divergence.– Proton generation upstream of the baffle– ND3: 10.44 x 1.44 m2 ND4: 1.44 x 10.44 m2

– Normalization for a file: 1.0 x 1021 POT– 5 x 104 POT/file x 200 files– Only use 200 good random seeds.– Store only ND3 and 4 ntuple w/ nominal variables.1. Nominal2. Nominal but shifted beam by +2mm in y direction.3. Nominal but flat beam of f36 mm4. Same as 3 but horn 0 kA

K. Matsuoka

Repository• Neutrino flux files

login.cc.kek.jp:/nfs/g/t2k/beam/mc/beamMC/flux10a/(Mirror1) icrhome6:/kam/work2/kodai/jnubeam/data_10a/(Mirror2) http://www.icrr.u-tokyo.ac.jp/~kodai/jnubeam/– There is a README describing the contents in the directory.

• Ntuple variables description– http://www.t2k.org/beam/NuFlux/FluxRelease/10a/NtpDef

• Main change is addition of the proton vector information

K. Matsuoka

Plots for Super-K

K. Matsuoka

nm energy spectrum at Super-K

10a (250 kA)

K. Matsuoka

nm energy spectrum at Super-K• Comparison btw 10a (320 kA), 09c and 07a.

• Geometry update of the 1st horn (09a 09b) increased the peak flux by about 4%.

K. Matsuoka

nm energy spectrum at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

• Due to the less horn focusing w/ 250 kA, the lower energy neutrinos below 1 GeV decrease, while the higher energy neutrinos increase.

K. Matsuoka

q-p distr. of parent p+ at the target• Polar angle and momentum distr. at the production point in

the target for parent p+ whose daughter nm goes to Super-K..• Comparison btw 10a (250 kA) and 10a (320 kA)

10a (250 kA) 10a (320 kA)

• The horns comes to collect pions w/ lower momenta and larger angles when the current increases.

K. Matsuoka

ne energy spectrum at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

K. Matsuoka

Ratio of ne to nm at Super-K

ne/nm = 0.43% at the nm spectrum peak

10a (250 kA)

K. Matsuoka

• Comparison btw 10a (320 kA) and 07a.

Ratio of ne to nm at Super-K

10a (320 kA) 07a

n e/n m = 0.35% at the n m spectrum peakn e/n m = 0.38% at the n m spectrum peak

K. Matsuoka

Parents of n at Super-Km+ m– p+ p– KL

0 K+ K–

nm 10a (250 kA) 0.014% 95.06% 0.10% 4.83%10a (320 kA) 0.013% 95.01% 0.10% 4.88%07a 0.014% 95.18% 4.80%

nm 10a (250 kA) 7.2% 86.5% 1.2% 5.1%10a (320 kA) 8.0% 85.8% 1.3% 4.9%07a 7.8% 87.2% 5.0%

ne 10a (250 kA) 54.1% 1.0% 13.1% 31.8%10a (320 kA) 53.1% 1.0% 12.7% 33.2%07a 53.7% 13.0% 33.3%

ne 10a (250 kA) 6.7% 0.45% 76.6% 16.3%10a (320 kA) 7.6% 0.41% 77.7% 14.2%07a 7.9% 77.3% 14.8%

• Few difference btw different horn currents and different versions.• K+

m3, K–m3, K0

m3 and p e ne decays are included in 10a.

K. Matsuoka

Decay pos. of parent p+/– of n at Super-K

cf. ct = 7.8 m (PDG)

K. Matsuoka

Decay pos. of parent p+/– of n at Super-K

• Mean decay point: 41 m from the target• ct from the fitting: 6.3 m (peak energy at z = 40-90 m: 1.6 GeV g: 11.4)

K. Matsuoka

Decay pos. of parent K+/– of n at Super-K

cf. ct = 3.7 m (PDG)

K. Matsuoka

Decay pos. of parent K+/– of n at Super-K

• Mean decay point: 28.9 m from the target• ct from the fitting: 3.2 m (peak energy at z = 40-90 m: 6 GeV g: 12.2)

K. Matsuoka

Plots for INGRID

K. Matsuoka

nm profile at INGRID

The horizontal The vertical

10a (250 kA) 10a (250 kA)

RMS: 284 cm RMS: 285 cm

The difference of the peak flux btw ND3 and 4 is due to the difference of the z-position.(ND3 is located 4-m downstream of ND4; (230/234)^2 = 96.6%)

K. Matsuoka

nm profile at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA).

The horizontal The vertical

Peak flux (/cm2/1021 POT):• (4.98±0.01) x 1013 @ 250 kA• (5.89±0.01) x 1013 @ 320 kA

Ratio = 0.846

Peak flux (/cm2/1021 POT):• (5.09±0.01) x 1013 @ 250 kA• (6.11±0.01) x 1013 @ 320 kA

Ratio = 0.833

K. Matsuoka

nm profile at INGRID• Comparison btw 10a (320 kA), 09c and 07a.

The horizontal The vertical

• Magnetic field in the horn inner conductors (09c 10a) increased the peak flux by about 2%.

* ND2 is used for 07a, 09c* ND2 is used for 07a, 09c

K. Matsuoka

nm energy spectrum at INGRID

The horizontal The vertical

10a (250 kA) 10a (250 kA)

Peak: (1.37±0.01) x 1012 @ 0.9-0.95 GeV Peak: (1.42±0.01) x 1012 @ 0.95-1.0 GeV

K. Matsuoka

nm energy spectrum at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA) for the horizontal.

K. Matsuoka

Random number generation- H. Kubo-

• For mass production, we are already facing duplication problem of random numbers.

• In 10a version, 215 default(good-separated) seed pairs are used. -> We found that the separation is not enough. For the moment, another independent random number generator is implemented to avoid duplication of events.

• For the next mass production,– better way of seeds generation (already method is

proposed.)– save seeds for each event

Transfer matrix-K. Sakashita -

• With New ND-fill algorithm, it became easy to get a correspondence of parent pion/K for near detectors and Super-K. -> transfer matrix can be constructed easily.

NDn

ND

ND

ND

nnnnn

n

n

n

SKn

SK

SK

SK

N

NNN

MMMM

MMMMMMMMMMMM

N

NNN

3

2

1

321

3332231

2232221

1131211

3

2

1

ProspectMass production• Flux for Off-axis magnet region will be prepared soon as ND6• Flux for Off-axis basket region will follow.Development till April• Transfer matrix• Remaining geometry update• some technical upgrade

– random numbers– root output

Study till April• Clarify beam-related systematic errors based on the commissioning result.Next flux mass production would happen on ~April

supplement

q-p distr. of parent K+ at the target• Polar angle and momentum distr. at the production point in

the target for parent K+ whose daughter nm goes to Super-K..• Comparison btw 10a (250 kA) and 10a (320 kA)

10a (250 kA) 10a (320 kA)

K. Matsuoka

Mom. distr. of parents of n at Super-K• 10a horn 250 kA

Parents of nm Parents of nm

Parents of neParents of ne

K. Matsuoka

Mom. distr. of parents of n at Super-K• 10a horn 250 kA

Parents of nm Parents of nm

Parents of neParents of ne

K. Matsuoka

Mom. distr. of parents of n at Super-K• Comparison btw 10a (250 kA) and 10a (320 kA).

Parent p+ of nm Parent m+ of ne

p+ mean momentum:• 2.72 GeV/c (10a 250 kA)• 2.70 GeV/c (10a 320 kA)

K. Matsuoka

Mom. distr. of parents of n at Super-K• Comparison btw 10a (320 kA), 09c and 07a.

Parent m+ of neParent p+ of nm

K. Matsuoka

nm energy spectrum at INGRID• Comparison btw 10a (250 kA) and 10a (320 kA) for the

vertical.

K. Matsuoka

nm energy spectrum at INGRID• Comparison btw 10a (320 kA), 09c and 07a for the horizontal.

K. Matsuoka

nm energy spectrum at INGRID• Comparison btw 10a (320 kA), 09c and 07a for the vertical.

K. Matsuoka

top related