effects of entrainment and temperature increase on

Post on 22-Jan-2022

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

EEffects of Entrainment and Temperature ffects of Entrainment and Temperature Increase on Phytoplankton: Increase on Phytoplankton:

A Novel Use of HPLC Pigment and A Novel Use of HPLC Pigment and Particle Size Analyses. Particle Size Analyses.

CENTER FOR COASTAL CENTER FOR COASTAL ECOLOGYECOLOGY

Big Bend Big Bend FacilityFacility

⇒⇒

Hillsborough Bay

Big Bend Big Bend FacilityFacility

Local Watershed

MethodsMethods

1998 1999

May September December March

Sampling Sites

1) Intake Canal,2) Discharge Canal3) Thermal Area of the mixing zone,4) North Apollo Bay5) South Control Area

Methods Methods -- continuedcontinuedHigh Pressure Liquid Chromatography (HPLC) Pigment AnalysisParticle Size Analysis

- Multisizer IIe (1.0 m - 25 m )

- Coulter LS laser analyzer (2 m - 2000 m)

Total Suspended Solids (TSS/TVS)–20 samples per station per quarter

Effects of Facility on PlanktonEffects of Facility on Plankton

–Thermal, rapid temperature riseEntrainment Effects

–Mechanical, cell breakage

Post Entrainment Effects–Thermal, elevated temperature area

ObjectivesObjectives

To Measure- Change in Particle Sizes

- Change in Phytoplankton Composition

–biomass–community composition

- Relate to Temperature regime

Near Discharge

Thermal I Area

Apollo Bay

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27-5

0

5

10

15

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27

Diff

eren

ce fr

om B

otto

m In

take

Tem

pera

ture

(C)

-5

0

5

10

15

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27-5

0

5

10

15

Temperature RegimeTemperature Regime

South Control

Thermal II

North Control

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27-5

0

5

10

15

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27

Diff

eren

ce fr

om In

take

Bot

tom

Tem

pera

ture

(C)

-5

0

5

10

15

Sep 29 Oct 06 Oct 13 Oct 20 Oct 27-5

0

5

10

15

Temperature RegimeTemperature Regime

DischargeApollo Bay

Particle Size (µm)

0 1 2 3 4 5

Par

ticle

Abu

ndan

ce

0

5000

10000

15000

20000 September 1998

Thermal So. Ctrl Intake

Particle Size DistributionParticle Size Distribution

September 1998

DischargeApollo Bay

Particle Size (µm)

5 6 7 8 9 10

Par

ticle

Abu

ndan

ce

0

250

500

750

1000

1250

1500

Thermal So. Ctrl Intake

Particle Size DistributionParticle Size Distribution

September 1998DischargeApollo Bay

Particle Size (µm)

10 11 12 13 14 15

Par

ticle

Abu

ndan

ce

0

25

50

75

100

Thermal So. Ctrl Intake

Particle Size DistributionParticle Size Distribution

September 1998DischargeApollo Bay

Particle Size (µm)

15 16 17 18 19 20

Par

ticle

Abu

ndan

ce

0

10

20

30

40

50

Thermal So. Ctrl Intake

Particle Size DistributionParticle Size Distribution

September 1998

DischargeApollo Bay

Particle Size (µm)

20 21 22 23 24 25

Par

ticle

Abu

ndan

ce

0

2

4

6

8

10

Thermal So. Ctrl Intake

Particle Size DistributionParticle Size Distribution

SEPTEMBER 1998

Thermal

So. Ctrl.

Intake

Discharge

Apollo

Particle Size

02468

101214

02468

101214

Perc

ent

02468

101214

02468

101214

0.0

0.5

0.7

1.0

1.4

2.0

2.8

3.9

5.5

7.8

11.0

15.6

22.1

31.0

44.0

62.5

88.0

125.

017

7.0

250.

035

0.0

500.

071

0.0

1000

.014

10.0

2000

.0

02468

101214

Particle Size Particle Size Distribution Distribution Coulter LSCoulter LS

DECEMBER 1998

Thermal

So. Ctrl.

Intake

Discharge

Apollo

Particle Size

02468

101214

02468

101214

Perc

ent

02468

101214

02468

101214

0.0

0.5

0.7

1.0

1.4

2.0

2.8

3.9

5.5

7.8

11.0

15.6

22.1

31.0

44.0

62.5

88.0

125.

017

7.0

250.

035

0.0

500.

071

0.0

1000

.014

10.0

2000

.0

02468

101214

Particle Size Particle Size Distribution Distribution Coulter LSCoulter LS

MARCH 1999

Thermal

So. Ctrl.

Intake

Discharge

Apollo

Particle Size

02468

101214

02468

101214

Perc

ent

02468

101214

02468

101214

0.0

0.5

0.7

1.0

1.4

2.0

2.8

3.9

5.5

7.8

11.0

15.6

22.1

31.0

44.0

62.5

88.0

125.

017

7.0

250.

035

0.0

500.

071

0.0

1000

.014

10.0

2000

.0

02468

101214

Particle Size Particle Size Distribution Distribution Coulter LSCoulter LS

HPLC - Photosynthetic Pigment Analysis

Eleven pigments differentiated by HPLC methodology ( g/l values)

– chlorophyll a –alloxanthin

–9'-CIS-xeoxanthin– chlorophyll b

–lutein– diadinoxanthin

–peridinin–diatoxanthin

–violoxanthin–fucoxanthin

–zeaxanthin

Similarity LevelArea Rep (high) (low)Apollo 14 ---------I-I I ISo. Ctrl. 2 ---------I I--I I ISo. Ctrl. 7 ----I-----II I I ISo. Ctrl. 8 ----I II I-I I IThermal 11 ----------I I I I ISo. Ctrl. 19 --------------I I I I

I I IIntake 4 ----------I I I IIntake 6 ----I--I I----II--I I---IIntake 17 ----I I-II II I IIntake 14 -------I II II I IIntake 7 ----I---II II I IIntake 16 ----I II II I IIntake 8 ----II I I I IIntake 19 ----II--I I I IIntake 20 -----I I I I-I

I I I ISo. Ctrl. 5 -------------I-I I I ISo. Ctrl. 15 ---------I---I I I ISo. Ctrl. 16 -----I---I I I IThermal 15 -----I I I I

I I IIntake 9 ------I--------------I I IIntake 11 ------I I I

I IApollo 11 -----------I-------------I IApollo 17 -----------I I

IIntake 3 -----I-------I IIntake 5 -----I I--I IIntake 13 -------------I I---I IIntake 12 ----------------I I------IIntake 18 --------------------I

SeptemberSimilarity Level

Area Rep (high) (low)Apollo 1 ---I--IApollo 2 ---I I--IApollo 3 -----II I--IApollo 13 -----I I IApollo 7 -----I---I IIApollo 18 -----I IIApollo 5 ---------I-III-IApollo 15 ---------I III IApollo 11 -----------I I IApollo 6 --------I----I I-IApollo 10 --------I I I

I IApollo 8 -------I--I I IApollo 19 -------I I--I I IThermal 6 ----------I I-I I-IThermal 12 -------------I I

I Intake 1 ---------I----I I Intake 10 ------I--I I I Intake 15 ------I I I

I I So. Ctrl. 4 --------I I--I So. Ctrl. 10 -----I-III I So. Ctrl. 18 -----I IIII I So. Ctrl. 20 -------I II I Thermal 14 ---------II---I So. Ctrl. 6 ------I ISo. Ctrl. 11 ---I-II---Io. Ctrl. 17 ---I IISo. Ctrl. 12 -----I

March

Level of SimilarityArea Rep High Low

Apollo 1 ----------I----IApollo 11 ----------I IApollo 6 -----I-------I I-IApollo 7 ---I-I I I IApollo 8 ---I I-I I

I IThermal 6 ----II I IThermal 7 ----II-------I I-----IThermal 9 ---I-I I IThermal 16 ---I I I

I IApollo 17 ------I--I I IIApollo 18 ------I I-------I IIApollo 19 -------I-I IIApollo 20 -------I II----I

II IApollo 5 -----------------I-----II IIntake 4 -----------------I I IApollo 4 ---I-------------I I IApollo 14 ---I I-----I IThermal 1 ------------------I I

March

Apollo 3 -------I--I IThermal 3 ------II I IThermal 15 ------I I I

I IDis 2 -------I II IDis 13 ----I-III II IDis 14 --I-I III II IDis 15 --I III II IIntake 15 ---I--I I-II-I IThermal 4 ---I I I I I ISo. Ctrl. 15 ------I I I I IDis 5 --------I I II IThermal 14 -----------I II I

II I

MarchDis 17 -----I--I II IThermal 10 ----II I II IThermal 19 ----I I----II----I IThermal 18 ------I-I I I IThermal 20 ------I I I I IThermal 17 --------I I I I

I I IApollo 13 -------------II I I----IApollo 15 --------I-I II I I IThermal 13 --------I I--I I---I I IIntake 11 --------I-I I I I IThermal 12 --------I-I I I I I

Dis 1 ---------I------I I I I IIntake 12 ---------I I-II I I IDis 4 ----------------I II I I I

II I I IDis 12 -----------------III I I IDis 16 -----II II I I IDis 18 -----II---I II I I IIntake 16 ----I-I I-I II I I IIntake 17 ----I I I I II I IIntake 13 ------I---I I I II I IIntake 14 ----I-I I I II I ISo. Ctrl. 14 ----I I----I II I IDis 19 ------I-I I II I IDis 20 -----II I--II II I IIntake 6 -----I I II II I IIntake 18 -------II II II I IIntake 20 -------I I II I ISo. Ctrl. 5 -----------I

Phytoplankton Composition - SeptemberDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

Intake

5%

6%7%

82%

0%

Discharge

8%9%11%

0%

72%

Phytoplankton Composition - SeptemberDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

Thermal

0%

11% 7%

72%

10%

North Apollo Bay

11% 5%

5%0%

79%

Phytoplankton Composition - SeptemberDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

South Control

12%9%11%

0%

68%

Intake

5%

6%7%

82%

0%

Phytoplankton Composition - MarchDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

Intake

10%

46%

23%

17%

4%

Discharge

16%

48%

23%

10%

3%

Phytoplankton Composition - MarchDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

Thermal

12%31%

10%

4%43%

North Apollo Bay

11%26%

14%

46%3%

Phytoplankton Composition - MarchDiatoms, Chlorophytes, Cryptophytes, Cyanobacteria, Dinoflagellates

South Control

9%14%

14%

4%

59%

Intake

10%

46%

23%

17%

4%

Tota

l Sus

pend

ed S

olid

s B

iom

ass

(µg/

l)

NA

Mar 1999

Dec 1998

Sep 1998

May 1998

NANA

02468

101214

02468

101214

02468

101214

Apollo

Discha

rge

Intak

e

So. Ctrl.

Therm

al

02468

101214

Total Suspended Solids – All Months

SummaryPhysical Disruption Hypothesis

- Supported by the size distribution data

MayShift in the percentage of particles in the larger sizes to smaller sizes after passage through the plant.

Summary - continued

Physical Disruption

SeptemberLarge size particle shift was not evident.

May and SeptemberSmall size range (10 - 20 um) showed a reduction of particle numbers after plant passage.

Summary - continued

Physical Disruption

December - North Apollo Bay & Thermal Sites

- Elevation of particle size percentages in the 30 to 40 um range.

- Particle size distribution below 20 um were greater than the Intake and South Control.

Summary - continued

Pigments

- Some pigments decreased from intake to discharge,

- Other pigments showed no marked decrease from intake to discharge

Summary - continued

Pigments

May & September

Decrease (30 to 50%) of chlorophyll a, peridininand fucoxanthin from Intake to the Discharge (dinoflagellates, diatoms, prymnesiophytes and chrysophytes).

- Physical disruption of cells deemed a likely cause of this effect

Summary - continued

Pigments - March - Elevated green alga pigments at the north Apollo Bay site.

- - Warm water might be supporting this typically warm weather class of phytoplankton during a typical cool water month.

Summary - continued

Pigments – March continued

- Little evidence of physical disruption for green alga .

North Apollo Bay and Thermal sites

- Enriched particle size percentages at 30 to 40 um (diatoms)

- enhanced particle numbers at 5 to 15 um (green algae).

Summary - continued

Pigments – December

- Slight elevation of fucoxanthin and chlorophyll

- Indicating a possible thermal enhancement of diatoms, prymnesiophytes or chrysophytes

Conclusions

Shifts in phytoplankton communities were not extreme,

Primary production in the vicinity of the plant was not significantly altered.

No algal classes that were present at one site were completely eliminated at another.

A large portion of the phytoplankton population passes through the plant intact.

Conclusions

Warm Months

Intake to Discharge Reduction of phytoplankton by as much as 50%

Beyond Discharge No reduction evident - indicating rapid recovery

Conclusions

Cool Months

Enhanced growth of some components of the phytoplankton community by 50 to 400% over the control site.

Conclusions

Nutrients

Nutrient availability cannot be ruled out as a contributing factor to this enhanced growth within north Apollo Bay

Sarasota Pine Island Florida Keys

top related