eciv 520 a structural analysis ii

Post on 17-Jan-2016

91 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

ECIV 520 A Structural Analysis II. Stiffness Method – General Concepts. Engineering Systems. Lumped Parameter (Discrete). Continuous. A finite number of state variables describe solution Algebraic Equations. Differential Equations Govern Response. Lumped Parameter. - PowerPoint PPT Presentation

TRANSCRIPT

ECIV 520 A Structural Analysis II

Stiffness Method – General Concepts

Engineering Systems

Lumped Parameter

(Discrete)Continuous

• A finite number of state variables describe solution

• Algebraic Equations

• Differential Equations Govern Response

Lumped Parameter

Displacements of Joints fully describe solutionDisplacements of Joints fully describe solution

Matrix Structural Analysis - Objectives

UseEquations of EquilibriumConstitutive EquationsCompatibility Conditions

Basic Equations

Form

[A]{x}={b}

Solve for Unknown Displacements/Forces

{x}= [A]-1{b}

OR

Energy Principles

TerminologyElement:Discrete Structural MemberNodes:Characteristic points that define elementD.O.F.:All possible directions of displacements @ a node

Assumptions

• Equilibrium Pertains to Undeformed Configuration

• Linear Strain-Displacement Relationship

• Small Deformations

The Stiffness MethodConsider a simple spring structural member

Undeformed Configuration

Deformed Configuration

Derivation of Stiffness Matrix

1 2

P1

P2

Derivation of Stiffness Matrix

=

+

For each case write basic equations

22P

1

11P

222P

21P

Case A 0 ,0 21

1121 kkP Constitutive

Equilibrium1221 0 kPPP

2P

1

1P

Case B 0,0 21

2121 kkP Constitutive

Equilibrium1221 0 kPPP

2

2P

1P

Case A+B12 kP 11 kP A

21 kP 23 kP B

212 kkP 211 kkP

2

1

2

1

kk

kk

P

P

Stiffness Matrix

2

1

2

1

kk

kk

P

PKδP

1 2

P1

P2

Consider 2 Springs

2 elements 3 nodes 3 dof

Fix Fix

B

C

Fix Fix

1 2 3k1 k2

A

Fix Fix

Case A – Spring 1

111211 kkP

Fix

P1 P2

1

Constitutive

Equilibrium11

12

121 0 kPPP

0,0 321

Case A – Spring 2

02322

2 kP

Fix Fix

P2P3

1

Constitutive

Equilibrium 00 332

2 PPP

0,0 321

Case AFix Fix

P1 P2 P3

1

112

21

22 kPPP

0,0 321

For Both Springs (Superposition)

111 kP

03 P

Case B – Spring 1

211211 kkP Constitutive

Equilibrium21

12

121 0 kPPP

0,0 312

2P1

P1P1

Case B – Spring 2

222322

2 kkP Constitutive

Equilibrium2233

22 0 kPPP

0,0 312

2

P2

P3

Case B

P1 P2

P3

2

22212

21

22 kkPPP

For Both Springs (Superposition)

211 kP

223 kP

0,0 312

Case C – Spring 1

01211 kPConstitutive

Equilibrium 00 12

121 PPP

0,0 213

P1 P2 3

P1P1

Case C – Spring 2

322322

2 kkP Constitutive

Equilibrium3233

22 0 kPPP

0,0 213

P2 P3

3

Case C

322

21

22 kPPP

For Both Springs (Superposition)

01 P

323 kP

0,0 213

Fix Fix

Case A+B+C112 kP 111 kP 03 PA

22212 kkP 211 kP 223 kP B

322 kP 01 P 323 kP C

32

223

k

kP

21

111

k

kP

32

221

112

k

kk

kP

2-Springs

3

2

1

3

2

1

22

22

11

11

0

0

P

P

P

kk

kk

kk

kk

Use Energy Methods

Lets Have Fun !

Pick Up Pencil & Paper

Use Energy Methods

3

2

1

321

3

2

1

22

22321

3

2

1

11

11

321

0

0

000

000

0

0

P

P

P

u

u

u

kk

kk

u

u

u

kk

kk

2-Springs

3

2

1

3

2

1

22

22

11

11

0

0

P

P

P

kk

kk

kk

kk

Compare to 1-Spring

2

1

2

1

11

11

P

P

kk

kk

Use Superposition1

2

3

x x x

x x x

x x x

x x x

x x x

x x x

1 2 3

1

2

3

Use Superposition

x x x

x x x

x x x

x x x

x x x

x x x

1 2 3

1

2

3

1

2

3

X X

X X

11 22

11

22

1

2

3

1

2

3

X X

X X

11 22

11

22

X X

X X

11 22

11

22

1

2

3

X X

X X

11 22

11

22

1

2

3

1

2

3

X X

X X

11 22

11

22

X X

X X

11 22

11

22

Use Superposition

x x x

x x x

x x x

x x x

x x x

x x x

1 2 3

1

2

3X X

X X

11 22

11

22

1

2

3

1

2

3

1

2

3

1

2

3

Use Superposition

x x x

x x x

x x x

x x x

x x x

x x x

1 2 3

1

2

3X X

X X

22

22

33

33

Use Superposition

x x x

x x x

x x x

x x x

x x x

x x x

1 2 3

1

2

3

DOF not connected directly yield 0 in SM

0

0

1

2

3

1

2

3

Properties of Stiffness Matrix

SM is SymmetricBetti-Maxwell Law

SM is SingularNo Boundary Conditions Applied Yet

Main Diagonal of SM Positive

Necessary for Stability

Transformations

P

k2k1

u1

u2

u3

u4

u3

u4

u5

u6x

yGlobal CS

xLocal CS

Objective: Transform State Variables from LCS to GCS

Transformations

P1

y

P1x

x

yGlobal CS

P2xP2y

2

1

P1x

P1y P1x = P1xcosP1ysin

P1y = -P1xsinP1ycos

P1x

P1

y

=cos sin

-sin cos

P1x

P1

yP1 = T P1

Transformations

In GeneralIn General

P1 = T P1

P2 = T P2

u2 = T u2

u1 = T u1

Similarly for uSimilarly for uP1 = T P1

-1

or

P2 = T P2

-1

or

P1y

P1x

P2xP2y

xy

xy

xy 2

1

P1x

P1y

P1y

P1x

P1y

P1x

P2xP2y P2xP2xP2yP2y

xy

xy

xy 2

1

xy

xy

xy 22

11

P1x

P1y

P1xP1x

P1yP1y

TransformationsElement stiffness equations in Local CS

k =1 -1

-1 1

1

2

P1

P2

Expand to 4 Local dof

k

1 0 -1 00 0 0 0-1 0 1 00 0 0 0

u1x

u1y

u2x

u2y

=

P1x

P1y

P2x

P2y

P1x

P2xP2y

P1y

2

1

P1

P2

K u P

Transformations

y

x

y

x

y

x

y

x

u

u

u

u

TT

TT

TT

TT

u

u

u

u

2

2

1

1

2221

1211

2221

1211

2

2

1

1

00

00

00

00

Ruu

P1x

P2xP2y

P1y

P1xP1x

P2xP2xP2yP2y

P1yP1y

xy

xy

xy 2

1

xy

xy

xy 22

11

Transformations

y

x

y

x

y

x

y

x

P

P

P

P

TT

TT

TT

TT

P

P

P

P

2

2

1

1

2221

1211

2221

1211

2

2

1

1

00

00

00

00

RPP

P1x

P2xP2y

P1y

P1xP1x

P2xP2xP2yP2y

P1yP1y

xy

xy

xy 2

1

xy

xy

xy 22

11

SM in Global Coordinate System

Introduce the transformed variables…

K u = PRR-1

K : Element SM in global CS

K u = PR R

K u = PLocal Coordinate System…

Transformations

[T] [0]

[0] [T][R]=

Both R and TDepend on Particular Element

In this case (2D spring/axial element)

In General

i

k

l

j

m

Boundary Conditions

Pj

Pk

Pi

Apply Boundary Conditionskii kij kik kil kim ui

uj

uk

ul

kji kjj kjk kjl kjm

kki kkj kkk kkl kkm

kli klj klk kll klm

kli klj klk kll klm um

=

Pi

Pj

Pk

Pl

Pm

Kff

Kfs

Ksf Kss

uf

Pf

us Ps

Kffuf+ Kfsus=Pf

Ksfuf+ Kssus=Ps Ksfuf+ Kssus=Ps

uf = Kff (Pf + Kfsus)-1

Derivation of Axial Force Element

Fun!!!!!

Example

L2

3

L

1L

AE

Calculate nodal displacements for (a) P=10 & (b) da=1

P

da

In Summary

• Derivation of element SM – Basic Equations

• Structural SM by Superposition• Local & Global CS• Transformation • Application of Boundary Conditions• Solution of Stiffness Equations –

Partitioning

top related