ebis injector linac optics i

Post on 14-Jan-2016

48 Views

Category:

Documents

9 Downloads

Preview:

Click to see full reader

DESCRIPTION

EBIS Injector Linac Optics I. D.Raparia EBIS Review 2005/01/27-28. LEBT RFQ MEBT LINAC. Acknowledgements. Contributors: J. Alessi, E. Beebe, S. Pikin, A. Kponou , J. Ritter, C. Gardner, S. Y. Zhang, T. Roser B. Schlitt, U. Ratzinger. Requirements. - PowerPoint PPT Presentation

TRANSCRIPT

D. Raparia 2005/01/27-28EBIS Review

EBIS Injector Linac Optics ID.Raparia

EBIS Review 2005/01/27-28

•LEBT•RFQ•MEBT•LINAC

D. Raparia 2005/01/27-28EBIS Review

AcknowledgementsContributors:J. Alessi, E. Beebe, S. Pikin, A. Kponou, J. Ritter, C. Gardner, S. Y. Zhang, T. Roser

B. Schlitt, U. Ratzinger

D. Raparia 2005/01/27-28EBIS Review

Requirements• EBIS based linac should provide all the ions

species which presently Tandem provides

* Out of EBIS Linac scope

Z A Q Q/m Vext I(all ch states)

p* 1 1 1 1.00 17.0 10He3* 2 3 2 0.67 25.5 10

D 1 2 1 0.50 34.0 6C 6 12 6 0.50 34.0 10O 8 16 8 0.50 34.0 10Si 14 28 12 0.43 39.7 10Fe 26 56 16 0.29 59.5 10

Au 79 197 32 0.16 104.7 10

D. Raparia 2005/01/27-28EBIS Review

4 m 4.4 m

RFQ: 17 - 300 keV/u; 100 MHz

IH Linac: 0.3 - 2.0 MeV/u; 100 MHz

Proposed Linac –Based RHIC Preinjector

LEBTMEBTHEBT

Ion U - D

Charge 38 – 1 (q/m =.16-0.5)

Current 1.5 emA (for 1 turn inj)

Pulse Length

Rep. Rate

Duty Factor

10 s

5 Hz

0.0005 %

Emittance 0.7 mm rad (nor, 90%)

Energy Spread

1.8 keV/amu

D. Raparia 2005/01/27-28EBIS Review

Schematic of Ion Injection and Extraction from the RHIC EBIS (LEBT)

LEVA

HCIS

TOF

RFQEBIS

Cu +

Au 2+

d+

Au 2+ Cu +

Au 32+, Cu 11+ Au 32+,Cu 11+

d + SOURCE

d +

D. Raparia 2003/3/10-11MAC Review

LEBT Requirements-Inject into EBIS-Extract from EBIS-Acceleration-Diagnostics: Emittance Monitor, Current Monitor(2), TOF-Matching into RFQ Twiss parameters at beginning and end of the LEBT for Au+32

E = 17 keV/u=0.006017=1.000018

E = 5 keV/u=0.0033=1.000005

Parameters Beginning of LEBT (5 keV/u)

Middle of LEBT17keV/u

End of LEBT

Units

x -5.3 2.02 1.057  

x 0.800 6.04 0.064 mm/mrad

x (4 rms, unnorm) 152 85 85 mm mrad

y -5.3 2.02 1.057  

y 0.80 6.04 0.064 mm/mrad

y(4 rms, unnorm) 152 85 85 mm mrad

D. Raparia 2003/3/10-11MAC Review

Charge State DistributionComputer calculation of successive ionization of Au with a 20keV electron beam:

D. Raparia 2003/3/10-11MAC Review

Space Charge in LEBT

Envelope equation

0

4''

3

220

R

K

RRkR rms

Gen. Perv. (K)= QI/(2 0 m c3 33)

Debye Length(D) = 2 2rms/K

Current 10 mA, R=20 mm

Measurement for 1.7 mA Au+25 (n,rms) =0.1 mm mrad @ 20keV Simulated(n,rms) =0.125 mm mrad

Energy = 17 keV/u=0.006017=1.000018R= 20 mm

Z A Q Q/m vext EPS*(un) Perv(gen) ET SCT Ratio Debye Len ImaxP 1 1 1 1.00 17.0 80 0.00836 0.0019 0.4181 221.7589 0.000309 0.005

He3 2 3 2 0.67 25.5 80 0.00557 0.0019 0.2787 147.8393 0.000379 0.007D** 1 2 1 0.50 34.0 80 0.00251 0.0019 0.1254 66.52768 0.000565 0.010Si 14 28 12 0.43 39.7 80 0.00358 0.0019 0.1792 95.03955 0.000472 0.012Au 79 197 32 0.16 104.7 80 0.001358 0.0019 0.0679 36.02176 0.000767 0.030

*EPS(n, rms)=0.125 mm mrad ** I =6 mA

D. Raparia 2003/3/10-11MAC Review

LEBT Energy •Distance needed between two lenses for external ion injection (L) ~ 0.8 m.• Beam radius (R) ~ 2.0 cm, Lenses (solenoid) aperture radius 5 cm•Maximum beam current for SC dominated drift (L), maximum beam radius (R) and initial slop R’

0=-0.92 given by

Imax(A)=1.166*(mc2/30*q)*3 3 (R/L)2

Imax (mA)

E=8.5 keV/u E=17 keV/u

D 3.0 10.0

Au+32 10.0 30.0

L

2R

R’0=-0.92

D. Raparia 2003/3/10-11MAC Review

Investigated possible layouts for LEBT

Magnetic: Lower aberrations, need higher filed, separates charge estate

Electrostatic: Chromatic aberrations, screen reduce aberrations but also reduces intensity.

D. Raparia 2003/3/10-11MAC Review

Starting Conditions for LEBT

EBIS simulation by code TRAK (Kponou) generate input parameters for ion extraction/ acceleration for LEBT

E (keV)

(m)

(rms, norm)

mm mrad

Au+32 (10 mA) 970 -5.3 0.8 0.125

3He+2 (10 mA) 15 -3.6 0.6 0.123

E = 5 keV/u=0.0033=1.000005

DT12

e

ions

B=0.15 TStarting ConditionsR= 0.5 mmR’ () 2.5 Rad

D. Raparia 2003/3/10-11MAC Review

LEBT Simulation in Two Parts Extraction/acceleration and LEBT simulation has been done in two part(1) extraction/ acceleration and grid lens are electrostatic and are simulated with AXCEL with full space charge(2) Later part of the LEBT consist of solenoid lens is simulated with TRACE with linear space charge

Electrostatic

ElectrostaticAXCEL

MagneticTrace

D. Raparia 2003/3/10-11MAC Review

LEBT ElectrostaticV1 V2

V3

V4 V5 V6

Electrode Voltage (kV)Extraction/Acceleration  

V1 -8

V2 +76

V3 0

Grid Lens  

V4 0

V5 -21

V6 0

17 kev/u

4 keV/u

15 keV/u

5 kev/u

Au+32

D. Raparia 2003/3/10-11MAC Review

LEBT Solenoid

B=7.8 kGL=37.1 cm

R (mm)

Np

•Scrivens @ CERN has reportedhollow beam in solenoid transport(Reproduced this in our codes)• Codes did not show hollow beam for our case

R (mm)

Np

R (mm)

Np

TRACE2D

E=8.5 keV/u,I=2mA

D. Raparia 2003/3/10-11MAC Review

Beam Parameters at End of LEBTIons E

(MeV)Curr(mA)

Tran(%)

X-XP5 rms, Unnor, ( mm mrad)

Y-YP5 rms, Unnor, ( mm mrad)

        Au+32 3.2 10.0 100 1.06 0.063 125 1.06 0.06 125

Au+31 3.1 10.0 100 0.994 0.063 125 0.994 0.063 125

Au+30 3.0 10.0 100 1.111 0.094 125 1.111 0.094 125

Au+33 3.3 10.0 100 1.118 0.057 125 1.118 0.057 125

Au+34 3.4 10.0 100 1.432 0.119 125 1.432 0.119 125

He+2 0.68 10 100 1.06 0.064 125 1.60 0.064 125

Phase space ellipses at end of the LEBTFor different charge state of gold

D. Raparia 2003/3/10-11MAC Review

RFQ Parameters

Parameters BNL CERN Units

Type 4-rod 4-rod

Q/m 0.16-0.5 0.12

Energy in 17.0 2.5 keV/amu

Energy out 300 250 keV/amu

Frequency 101.28 101.28 MHz

Max rep rate 5 10 Hz

Length 4.37 2.5 Meters

# of cells 277

Aperture 0.005 .0045 Meters

Voltage 69 70 kV

E (surface) 20.8 23 MV/m

RF Power < 350 < 350 kW

Acceptance 1.7 > 0.8 mm mrad (nor)

Input Emit. 0.35 mm mrad, nor, 90%

Output Emit. (trans) 0.375 mm mrad, nor, 90%

Output Emit. (longit) 32.5 MeV deg

Transmission 91 93 %

Bravery factor 1.8 2 Kilpatrick

-Proven technology, No risks-Can accelerate He- Au(Present thinking- collaboration Frankfurt on a 4-rod RFQ

D. Raparia 2003/3/10-11MAC Review

RFQ Beam Dynamics DesignPARMTEQ

Transmission:Au+32 91% (10 mA)

4He+2 91 % (10 mA)

3He+2 88% (2 mA)P 65% (2 mA)

D. Raparia 2003/3/10-11MAC Review

Beam envelopes for Au+31

(example of neighboring charge state)

D. Raparia 2003/3/10-11MAC Review

RFQ TransmissionTransmission vs Input Emittance

0

20

40

60

80

100

0 100 200 300 400 500

emitt unnor, 90% (pi mm mr)

tran

smis

sio

n (

%)

Transmission vs. Input Energy

0

50

100

0 5 10 15

Input Energy Error (keV)

Tra

nsm

issi

on

(%

)

Transmission vs. Charge State

0102030405060708090

100

28 29 30 31 32 33 34

Charge State of Au

Tra

nsm

issi

on

(%

)

Transmission vs. Input Current

60

70

80

90

100

0 10 20 30 40

Input Current (mA)

Tra

nsm

issi

om

(%

)

RFQ transmission vs Input Emittance RFQ transmission for different charge state of gold

RFQ transmission vs input voltage error(Nominal operating voltage 100 kV)

RFQ Transmission vs input Current

D. Raparia 2003/3/10-11MAC Review

Long. Emittance Growth vs Energy Spread

Long. Emit Growth vs energy spread

0

0.5

1

1.5

2

0 5 10 15

Half energy Spread (kV)

Em

it.

Gro

wth

D. Raparia 2003/3/10-11MAC Review

Twiss Parameters at End of RFQIons Energy

(MeV)Curr(mA)

Tran(%)

X-XP5 rms, Unnor ( mm mrad)

Y-YP5rms,Unnor,( mm mrrad)

5 rms, MeV deg)

        (m)

 

(m)

 

(deg/MeV)

 

Au+32 62.00 10 91 1.8 0.180 24 -1.59 0.142 22.5 -0.22 13.3 32.5

Au+31 61.08 10 86 1.6 0.152 27 -1.25 0.138 20.5 -0.04 27.1 40.3

Au+30 62.08 10 55 1.6 0.162 30 -1.16 0.138 20 0.97 27.5 105

Au+33 61.87 10 58 1.5 0.164 26 -1.05 .108 21 -0.08 17.2 40.9

Au+34   10 0                  He+2 1.259 10 91 1.7 0.28 24.5 -0.86 0.117 25.5 -0.13 615.9 1.055

X-XP Plane Y-YP Plane Plane

Simulation show no emittance growth for Au+32

D. Raparia 2003/3/10-11MAC Review

Requirements for MEBT-Matching from FODO (RFQ) to axial symmetric IH structure with Solenoids-Diagnostics; Current monitor(2) , Emittance

Twiss parameters at beginning and end of the MEBT

Parameters End of RFQ Entrance of IH Units

X 1.8 1.802

X 0.18 1.01 mm/mrad

X (5* rms,unnorm) 24 24 mm mrad

Y -1.39 0.60

Y 0.142 0.59

Y (5* rms,unnorm) 22 22 mm mrad

Z 0.054 0.59

Z 0.0203 0.0009 deg/keV

Z (5* rms,unnorm)Au+32 34168 34168 deg keV

D. Raparia 2003/3/10-11MAC Review

Space Charge In MEBT

Energy = 300 keV/u=0.025272=1.000319R= 3 mmI=5 mA

Z A Q Q/m EPS*(un) Perv(gen) ET SCT Ratio Debye LenP 1 1 1 1.00 24 1.99351E-05 0.0196 0.0066 0.33916 0.0019

He3 2 3 2 0.67 24 1.32901E-05 0.0196 0.0044 0.226107 0.002328D 1 2 1 0.50 24 9.96754E-06 0.0196 0.0033 0.16958 0.002688Si 14 28 12 0.43 24 8.54361E-06 0.0196 0.0028 0.145354 0.002903Au 79 197 32 0.16 24 3.23819E-06 0.0196 0.0011 0.055092 0.004715

* EPS(N, rms)=0.125

D. Raparia 2003/3/10-11MAC Review

Transport from RFQ to Linac(5 quads, 1 buncher)

Q1 (pmq) 101 T/mQ2 (EM) 33 T/mQ3 (EM) 38 T/mQ4 (EM) 36 T/mQ5 (EM) 38 T/mB1 150 kV

EM quads same as SNS MEBT quads

Au+32

XI= 1.8*0.9 + 1.5*0.86 + 1.5*0.58* + 1.2*.55 + 0.8*.24=4.6 mAAu+32 Au+31 Au+33 Au+30 Au+29

D. Raparia 2003/3/10-11MAC Review

IH Linac

Main parameters of the IH linac Parameters BNL CERN Tank 1 Units

Q/m 0.18-0.5 0.12

Input energy 0.300 0.250 MeV/amu

Output Energy 2.0 1.87 MeV/amu

Frequency 101.28 101.28 Mhz

Max rep rate 5 10 Hz

length 4.0 3.57 Meters

Input emittamce 0.55 pi mm mrad, norm,98%

Output emittance 0.66 pi mm mrad, norm,98%

Output energy spread 20.0 keV/amu

transmission 100 %

IH Linac very similar to the first tank of the CERN Pb linac, is our baseline:,

(Present thinking – collaboration with GSI on an IH Linac)

D. Raparia 2005/01/27-28EBIS Review

IH linac optics codes LORAS used in this preliminary design

Transverse profiles in the IH linac

Longitudinal profiles in the IH linac

Au+32

Current = 4.6 mA

D. Raparia 2005/01/27-28EBIS Review

IH Linac Input and Output Emittances

Au+32

Input Output N, 98% N, 98% %X-XP( mm mrad) .55 .66 20Y-YP ( mm mrad) .54 .67 24(( ns/keV/u) .92 1.32 41

I=4.6 mA

D. Raparia 2005/01/27-28EBIS Review

Beam envelopes for Au+30

Longitudinal profiles in the IH linac

Transverse profiles in the IH linac

(example of neighboring charge state)

D. Raparia 2005/01/27-28EBIS Review

Twiss Parameters End of LinacIons Curr.

(mA)Trans.(%)

X-XPUnnorm, 5rms

( mmmr)

Y-YPUnnorm, 5 rms

(mmmr)

5 rms( MeV deg)

      (m)  

(m)  

(deg/MeV)  

Au+32 4.6 100 2.1 1.97 11.0 -1.59 3.45 10.3 -0.68 5.4 35.0

Au+31 4.6 55.8 1.01 0.60 41.0 0.025 1.47 31.3 5.21 14.5 90.72

Au+30 4.6 0                  Au+33 4.6 85 1.77 2.73 11.2 -1.12 3.61 10.0 0.71 3.5 54.8

Au+34                      He+2 10 85 1.56 1.0 10.44 0.28 1.5 9.7 0.8 1.2 15

X-XP Plane Y-YP Plane Plane

Current Out =1.8*0.9*1.0 + 1.5*0.86*0.56 + 1.5*0.58*0.85=3.1 mA

D. Raparia 2005/01/27-28EBIS Review

Emittance for LinacEnergy

(keV/u)

Accpt.

(N) ( mm mrad)

Transverse (N, rms) ( mm mrad)

Longitudinal

(5 rms)

Simulation

Input

Simulation

Output

MeV deg

kev/u

EBIS 5 0.0033 0.110 0.125 - -

LEBT 17 0.0060 0.125 0.125 - -

RFQ 300 0.025 1.7 0.125 0.125 32.5 3

IH Linac 2000 0.065 4.3 0.125 0.153 35.0 20

Inflector 2000 0.065 1.9 0.153 0.153 35.0 1.8*

(Au+32)

*Booster requirement 2keV/uMeasurements: 0.1 (N, rms) ( mm mrad)Au+25 (all charge states) 1.7 mA

Though simulations show only 22% transverse emittance growth, we have designed for 100% emittance growth from EBIS to Booster.

D. Raparia 2005/01/27-28EBIS Review

Continue Part II

D. Raparia 2005/01/27-28EBIS Review

Superconducting Linac Option-Allow acceleration of higher energies(> 6MeV/u for q/m=0.5) for higher q/m ions-Base on ALPI, ISAC-II and RIA, Technology-Two type of cavity ~0.04 and 0.08

The ALPI resonator

Optimization of for maximum energy gain per cavity

D. Raparia 2005/01/27-28EBIS Review

SCL ParametersParameter Values Units

Q/m 0.16-0.67

 

Input energy 0.300 MeV/amu

Output Energy 2-7.5 MeV/amu

Frequency 101.28 MHz

Max rep rate 10 Hz

Input emittance 0.55 mm mrad, norm,90%

Output emittance

~ 0.6 mm mrad, norm,90%

Transmission 100 %

-Accelerating Gradient 7MV/m-Helium Consumption >7 Watt at 4.2K / resonator-Energy gain 5MeV/charge/cryostat-Three cryostats to produce 15 MeV for the SCL

D. Raparia 2005/01/27-28EBIS Review

TRACE Simulation for SCL(AU)

4.000 mm X 15.000 mrad

5.000 Deg X 999.00 keV

4.000 mm X 15.000 mrad

5.000 Deg X 999.00 keV NP2= 78

5.00 mm (Horiz) 180.0 Deg (Long.)

5.00 mm (Vert)

NP1= 1

Length= 6308.40mm

1 2 G 3 4 G 5 6

7 SOL

8 9 10 G 11 12 G 13 14 15 G 16 17 G 18 19

20 SOL

21 22 23 G 24 25 G 26 27 28 G 29 30 G 31 32

33 SOL

34 35 36 G 37 38 G 39 40 41 G 42 43 G 44 45

46 SOL

47 48 49 G

50

51 G 52

53 54 G

55

56 G 57 58

59 SOL

60 61 62 G

63

64 G 65

66 67 G

68

69 G 70 71

72 SOL

73 74 75 G

76

77 G 78

H A= 0.0000 B= 0.30000 V A= 0.0000 B= 0.30000

Z A= 0.0000 B= 1.74800E-02

BEAM AT NEL1= 1 H A= 3.23052E-02 B= 0.88380 V A= 3.23052E-02 B= 0.88380

Z A= 0.90204 B= 2.67026E-03

BEAM AT NEL2= 78 I= 1.7mA W= 59.6543 507.8899 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 14.000 14.000 43.70 EMITO= 6.368 6.368*********

N1= 1 N2= 78 PRINTOUT VALUES PP PE VALUE 1 2 0.41468 2 2 -33.00000 2 4 45.60000 2 6 0.00000 2 8 0.00000 1 11 3.00000 MATCHING TYPE = 0

CODE: TRACE3D v66L FILE: ebislin8.txt DATE: 02/27/2004 TIME: 14:36:26

D. Raparia 2005/01/27-28EBIS Review

TRACE Simulation for SCL(D)

4.000 mm X 15.000 mrad

60.000 Deg X 999.00 keV

4.000 mm X 15.000 mrad

90.000 Deg X 999.00 keV NP2= 78

5.00 mm (Horiz) 180.0 Deg (Long.)

5.00 mm (Vert)

NP1= 1

Length= 6308.40mm

1 2 G 3 4 G 5 6

7 SOL

8 9 10 G 11 12 G 13 14 15 G 16 17 G 18 19

20 SOL

21 22 23 G 24 25 G 26 27 28 G 29 30 G 31 32

33 SOL

34 35 36 G 37 38 G 39 40 41 G 42 43 G 44 45

46 SOL

47 48 49 G

50

51 G 52

53 54 G

55

56 G 57 58

59 SOL

60 61 62 G

63

64 G 65

66 67 G

68

69 G 70 71

72 SOL

73 74 75 G

76

77 G 78

H A= 0.0000 B= 0.30000 V A= 0.0000 B= 0.30000

Z A= 0.28427 B= 0.94670

BEAM AT NEL1= 1 H A=-0.37302 B= 0.42335 V A=-0.37302 B= 0.42335

Z A= 122.94 B= 81.048

BEAM AT NEL2= 78 I= 0.0mA W= 0.6056 13.4873 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 14.000 14.000 90.00 EMITO= 2.962 2.962 90.00

N1= 1 N2= 78 PRINTOUT VALUES PP PE VALUE 1 2 0.41468 2 2 -10.00000 2 4 29.30000 2 6 0.00000 2 8 0.00000 1 11 3.00000 MATCHING TYPE = 0

CODE: TRACE3D v66L FILE: EBSLING9.txt DATE: 02/27/2004 TIME: 09:51:37

D. Raparia 2005/01/27-28EBIS Review

Slop =0.92

L

2R

top related