combined effects aluminezed explosives

Post on 10-Nov-2014

77 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Combined Effects Aluminized ExplosivesDr. Ernest L. BakerL.I. Stiel, W. Balas, C. Capellos and J. Pincay

23 SEP 2008

Outline

• Combined Effects Explosives• Eigenvalue Detonation• Detonation Velocities• Cylinder Velocities• Equations of State• Conclusions

Combined Effects Explosive

• High Energy Explosive– High nitramine content– High early work output (before 7V/V0)

• High Blast Explosive– Typically aluminum and additional oxidizer– Later work output (after 7V/V0)

• Combined Effects Explosive– Nitramine with fine aluminum: micron & submicron– Aluminum reaction occurs very early and

contributes to early work

PAX-29: 77/15 Cl-20/AlPAX-30: 77/15 HMX/AlPAX-42 77/15 RDX/Al

8.00

8.10

8.20

8.30

8.40

8.50

8.60

0 10 20 30 40 50 60 70 80 90 100Aluminum Percent Reaction, %

C-J

Det

Vel

ocity

, Km

/s

ρ0 = 1.909 g/cm3

JAGUAR

Experiment

•C-J Detonation velocity decreases with extent of Al reaction•Experiments:

–Detonation velocity agrees with 0% Al reaction–Cylinder velocity agrees with 100% Al reaction @ 7V/V0

0%: 1.69Km/s, 100%: 1.90Km/s, Experiment: 1.88Km/s

Combined Effects ExplosivesPAX-30 (HMX, 15%Al)

Pre

ssur

e

Specific VolumeZND construction

Rayleigh line

Unreacted HugoniotReacted Hugoniot

Chapman-Jouguet State

larger D

smaller D

0)(2/1 00 =−−−= VVPEEΗ

0)/( 022

0 =−−= VVPDR ρRayleigh line (momentum)

Hugoniot (energy)

ZND Model

Pre

ssur

e

Specific Volume ZND construction

Rayleigh line

Unreacted HugoniotReacted Hugoniot

Chapman-Jouguet State

Principal Isentrope(products expansion)

Von Neumann Spike

ZND Model

DCJ Chapman-Jouguet state

Specific Volume (1/ρ)

(v0, p0)

00.5

1.0λ (reaction fraction)

D

Pres

sure

(v0, p0)

Reaction Zone

Distance

von Neumann point

Following flow -Taylor wave

Final CJ state

Hugoniot Curves

von Neumann point

ZND Model

Pres

sure

v=1/ρ

p0

1.0

λ (reaction fraction)

What if the reacted Hugoniot lay below the unreacted Hugoniot? (opposite of normal)

Eigenvalue Detonation

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy) Reacted Hugoniot (energy)

Eigenvalue State

larger D

smaller D

W-point (weak point)

100% reactionCJ State

Fickett 1979Tarver 2003

Eigenvalue Detonation

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy) Reacted Hugoniot (energy)

Eigenvalue State

W-point

W-point Isentrope(products expansion)

Eigenvalue Detonation

D

p

(v0, p0)

Al Reaction Zone von Neumann point

Following flow - Taylor

wave

Final W state

Organic Reaction

Zone

Eigenvalue point

Eigenvalue DetonationAluminized Explosive

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy)

Reacted Al Hugoniot (energy)

Eigenvalue State

W-point

W-point Isentrope(products expansion)

Von Neumann Spike

Inert Al Hugoniot (energy)

Eigenvalue DetonationAluminized Explosive

JAGUAR CalculationsPAX-29 (CL-20, 15%Al)

15

20

25

30

35

40

0.7 0.75 0.8 0.85 0.9 0.95Relative Specific Volume

Pres

sure

, GPa

Rayleigh Line0% Al Reaction50% Al Reaction100% Reaction

Eigenvalue State

W-point: 50% Al reaction

ρ0= 1.999 g/cm3

W-point: 100% Al reaction

Aluminum reaction produces lower Hugoniots

Eigenvalue Detonation Combined Effects Explosive

100

150

200

250

300

350

400

0.35 0.4 0.45 0.5VOLUME cc/gm

P, k

Bar

0% AL REACTION100% AL REACTIONRAYLEIGH LINE

JAGUAR CalculationsPAX-30 (HMX, 15%AL)

Eigen State

W-point

Detonation velocity controlled by 0% AL reaction Hugoniot!

Eigenvalue Detonation Combined Effects Explosive

Experiment Inert Al Reacting AlEXPLOSIVE Al% ρ0(gm/cc) D (Km/s) D (Km/s) D (Km/s)------------------------------------------ ------------- ------------------------------ ---------------------------------- ----------------------------- --------------------------------

HMX 5 1.84 8.71 8.66 8.53HMX 15 1.87 8.45 8.42 7.95HMX 25 1.95 8.55 8.35 7.32BTNEN 15 1.96 8.29 8.38 7.45BTNEN 15 1.91 8.06 8.16 7.24NG 15 1.74 7.94 8.07 7.93TNT 20 1.64 6.41 6.38 5.77TNT 30 1.84 6.74 6.63 4.92TNT 10 1.67 6.51 6.68 6.52PAX-3 18 1.87 7.96 8.05 7.65PAX-29 15 2.0 8.95 8.79 8.16PAX-30 15 1.91 8.51 8.43 8.09PAX-42 15 1.83 8.25 8.14 7.75

_________ _________

AVERAGE ERROR % 1.22 7.52

Detonation VelocityAluminized Explosives Data

JAGUAR Calculations

Detonation velocities agree with little or no aluminum reaction

( )1*1C*

*R*R

1A +−⎟⎠⎞

⎜⎝⎛ −++−∑ ⎟

⎠⎞

⎜⎝⎛ −= ω

ωλλλ V

VEVe

i VP i

ii

( )λ ωλ λλ≡ +∑ − +A i B i R

Vi

e Vi* *

JWLB Equation of State:

Gruneisen Parameter:

Analytic Model:• Reference Frame at

Detonation Velocity• Isentropic Products

Expansion• Constant Properties Along

Spherical Surfaces• New: Modified for Eigen

Detonation W-pointProvides excellent agreement with hydrocodes!

Cylinder VelocityAnalytic Cylinder Model

1.21.31.41.51.6

1.71.81.92.0

0 2 4 6 8 10 12 14 16 18 20AREA EXPANSIONS

Vcyl

, km

/s

EXPERIMENTAL0%AL REACTION100%AL REACTION

HMX with large particle size Aluminum: AL reacts late!

Cylinder Test ResultsPAX-3 (HMX, 18%AL - large)

1.30

1.40

1.50

1.60

1.70

1.80

1.90

1 2 3 4 5 6 7 8AREA EXPANSIONS

Vcyl

, km

/s

0% Al REACTION100%Al REACTIONW-POINTEXPERIMENTAL

HMX with small particle size aluminum: AL reacts early!

Cylinder Test ResultsPAX-30 (HMX, 15%AL - small)

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1 2 3 4 5 6 7 8AREA EXPANSIONS

Vcyl

, km

/s

0% Al REACTION100% Al REACTIONW-POINTEXPERIMENTAL

CL-20 with small particle size Aluminum: AL reacts early!

Cylinder Test ResultsPAX-29 (CL-20, 15%AL - small)

JWLB Equations of State

PAX-3 (Al INERT)

PAX-29 PAX-30 PAX-42

ρ0 (g/cc) 1.866 1.999 1.885 1.827 E0 (Mbar) 0.08223 0.14611 0.13568 0.13109 D (cm/μs) 0.8023 0.8784 0.8342 0.8137 P (Mbar) 0.2937 0.2599 0.2419 0.2339 A1 (Mbar) 601.643 400.407 406.224 400.717 A2 (Mbar) 3.9482 82.630 135.309 16.5445 A3 (Mbar) 0.9403 1.5507 1.311 1.45169 A4 (Mbar) 0.049688 0.006126 0.006772 0.006103 R1 13.6055 20.9887 26.9788 13.6945 R2 3.69901 9.6288 10.6592 8.67402 R3 24.9093 24.2441 2.52342 2.5320 R4 1.04285 0.328128 0.335585 0.33570 C (Mbar) 0.007691 0.014626 0.013561 0.014057 ω 0.27780 0.24286 .234742 0.242371

D and P are from W-Point (not C-J values)

JWL Equations of State

LX14 PAX-2A PAX-29 PAX-30 PAX-42 ρ0 (g/cc) 1.819 1.770 1.999 1.885 1.827 E0 (Mbar) 0.10213 0.09953 0.14714 0.135755 0.12994 D (cm/μs) 0.8630 0.8391 0.8784 0.8342 0.8137 P (Mbar) 0.3349 0.3124 0.2599 0.2419 0.2339 A1 (Mbar) 26.1406 27.0134 8.58373 7.19151 13.8484 A2 (Mbar) .763619 .762675 0.168261 0.097112 0.145102 R1 6.93245 7.22237 4.7726 4.59098 5.74864 R2 1.94159 1.95979 1.03613 0.84089 0.99404 C (Mbar) 0.010994 0.010919 0.014556 0.013492 0.015193 ω 0.384193 0.375812 0.242252 0.233665 0.253095

Combined effects explosives: note large blast energies!

• New combined effects explosives produce both high metal pushing (early) and high blast (late) work output.

• Detonation velocities agree with little or no Al reaction even with sub-micron particles

• However, with small particles, complete Al reaction is indicated during early products expansion

• Eigen detonation theory used for EOS development

Conclusions

top related