casimir e ect and boundary quantum eld theories zolt an bajnokbajnok.web.elte.hu/miami.pdfzolt an...

Post on 06-Mar-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

University of Miami, Miami, 19th of October, 2011

Casimir effect and boundary quantum field theoriesZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

in collaboration with L. Palla and G. Takacs

F (L)A = −dE0(L)

AdL = − ~cπ2

240L4

Planar Casimir energy E0(L) from finite size effects in (integrable) boundary QFT

1

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity!

2

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

micromechanicaldevice: pieces stickfriction, levitation

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

micromechanicaldevice: pieces stickfriction, levitation

Maritime analogy:

Aim: understand/describe planar Casimir effect

3

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

A

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

A

Lifshitz formula: QED, Parallel dielectric slabs (ε1,1, ε2)

∆E0(L)/A =∑i=‖,⊥

∫∞0

d2q8π2dζ log

[1−R1

i (ζ, q)R2i (ζ, q)e−2L

√q2+ζ2

]

R⊥(ω =√q2 + ζ2, q) =

√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

ALifshitz formula: QED, Parallel dielectric slabs (ε1,1, ε2)

∆E0(L)/A =∑i=‖,⊥

∫∞0

d2q8π2dζ log

[1−R1

i (ζ, q)R2i (ζ, q)e−2L

√q2+ζ2

]R⊥(ω =

√q2 + ζ2, q) =

√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Physics can be understood in 1+1 D QFT

L

integrability helps to solve the problem even exactly→ large volume expansion in any D

Plan of talkCylinder

4

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Boundary TBAE0(L) =

−∫mdθ4π

cosh θ log(1 + e−ε(θ))

Application

Casimir effect

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

5

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk multiparticle state: with n particles E(θ1, θ2, . . . , θn) =∑im cosh θi

��������

��������

��������

2vv

1 nv> > >...

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle state:

��������

��������

2v>v1

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

times develop

��������

��������

2v>v1

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

times develop further

��������

��������

v2

>

v1

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles Free, noninteracting out particles

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Minimal solutions: free boson S = ±1 sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp , Lee-Yang p = −1

3

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Minimal solutions: free boson S = ±1 sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp , Lee-Yang p = −1

3

Lagrangian: L = 12(∂φ)2 −µ(cosh bφ− 1) p = b2

8π+b2

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

6

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume, interacting particles

one particle eip(θ)L = 1;θ → p(k) = 2πkL

two particles eip(θ1)LS(θ12) = 1

p(θ1)L+ ϕ(θ12) = 2πn1 ; S = eiϕ

n particles p(θi)L+∑

j ϕ(θij) = 2πni

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume, interacting particles

one particle eip(θ)L = 1;θ → p(k) = 2πkL

two particles eip(θ1)LS(θ12) = 1

p(θ1)L+ ϕ(θ12) = 2πn1 ; S = eiϕ

n particles p(θi)L+∑

j ϕ(θij) = 2πni

0

1

2

3

4

5

0 5 10 15 20 25 30

Momentum quantization S(0) = −1������

2

L

π

���� ����������������2

L

π∼

Groundstate energy in finite volume

Groundstate energy E0(L) =

7

Groundstate energy in finite volume

Groundstate energy E0(L) =0

L

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

one particle quantization m sinh θ = 2πkR

∑k → Rm

∫dθ cosh θ

E0(L) = −m∫dθ cosh θ e−mL cosh θ +O(e−2mL)

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

one particle quantization m sinh θ = 2πkR

∑k → Rm

∫dθ cosh θ

E0(L) = −m∫dθ cosh θ e−mL cosh θ +O(e−2mL)

Ground state energy exactly: Al. Zamolodchikov ’90

E0(L) = −m∫ dθ

2π cosh(θ) log(1 + e−ε(θ))

ε(θ) = mL cosh θ −∫ dθ′

2πϕ′(θ − θ′) log(1 + e−ε(θ

′))0

L

Plan of talkCylinder

8

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Boundary TBAE0(L) =

−∫mdθ4π

cosh θ log(1 + e−ε(θ))

Application

Casimir effect

Integrable boundary field theory: Bootstrap

9

Integrable boundary field theory: Bootstrap

Boundary multiparticle state: with n particles����������������

����������������

v1 > v

2 > ... > vn > 0

Integrable boundary field theory: Bootstrap

Boundary one particle state:��������

��������

v1

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

times develop��������

��������

v1

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

times develop further��������

��������

v1

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle Free out particle

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Lagrangian: L = 12(∂φ)2−µ(cosh bφ− 1)− δ

[µB+e

b

2φ + µB−e

− b

2φ] √

µsin b2 cosh b2(η ±Θ) = µB±

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Lagrangian: L = 12(∂φ)2−µ(cosh bφ− 1)− δ

[µB+e

b

2φ + µB−e

− b

2φ] √

µsin b2 cosh b2(η ±Θ) = µB±

Integrability→factorizability: |θ1, θ2, . . . , θn〉B =∏i<j S(θi−θj)S(θi+θj)

∏iR(θi)|−θ1,−θ2, . . . ,−θn〉B

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

10

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =L

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log(e−E0(L)R)

L

R

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

quantization condition: m sinh θk = 2πR

∑k → Rm

∫dθ cosh θ

E0(L) = −∫ m cosh θdθ

4π R(iπ2 − θ)R(iπ2 + θ) e−2mL cosh θ; Z.B, L. Palla, G. Takacs ’04-’08

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

quantization condition: m sinh θk = 2πR

∑k → Rm

∫dθ cosh θ

E0(L) = −∫ m cosh θdθ

4π R(iπ2 − θ)R(iπ2 + θ) e−2mL cosh θ; Z.B, L. Palla, G. Takacs ’04-’08

Ground state energy exactly: E0(L) = −m∫ dθ

4π cosh(θ) log(1 + e−ε(θ))

ε(θ) = 2mL cosh θ − log(R(iπ2 − θ)R(iπ2 + θ))

−∫ dθ′

2πϕ′(θ − θ′) log(1 + e−ε(θ

′)) LeClair, Mussardo, Saleur, SkorikL

R R

Casimir effect: Boundary finite size effect

11

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

QED: Parallel dielectric slabs (ε1,1, ε2)

reflections E‖,⊥, B‖,⊥ −→ R‖,⊥ look it up in Jackson:

R⊥(ω, k‖ = q) =√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, k‖ = q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

QED: Parallel dielectric slabs (ε1,1, ε2)

reflections E‖,⊥, B‖,⊥ −→ R‖,⊥ look it up in Jackson:

R⊥(ω, k‖ = q) =√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, k‖ = q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Lifshitz

formula

Conclusion

12

Conclusion

Usual derivation:

summing up zero freqencies

E0(L) = 12∑k(L) ω(k(L)) ∝ ∞

Complicated finite volume problem

+ divergencies

Conclusion

Usual derivation:

summing up zero freqencies

E0(L) = 12∑k(L) ω(k(L)) ∝ ∞

Complicated finite volume problem

+ divergencies

as a boundary finite size effect

E0(L) = −∫ dp

2π log(1 +R(−p)R(p)e−2E(p)L)

Reflection factor of the IR degrees of freedom:

semi infinite settings,

easier to calculate,

no divergences

top related