analysis of cross-polarization modulation in dispersion-managed dwdm systems marcus winter,...

Post on 05-Apr-2015

104 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Analysis of Cross-Polarization Modulation in Dispersion-Managed DWDM Systems

Marcus Winter, Christian-Alexander Bunge, Dario Setti, Klaus Petermann

LEOS Annual Meeting 2007

Hochfrequenztechnik-Photonik

TECHNISCHEUNIVERSITÄTBERLIN

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Basics ofCross-Polarization Modulation

(XPolM)

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

birefringence alters signal polarization

signal polarization can be described by Stokes vectors or SOPs (states of polarization)

XPolM results from birefringence modulation due to Kerr nonlinearity

XPolM manifests as rotation of Stokes vectors / SOPs and the PMD vector(rotation axis is the sum of all WDM Stokes vectors)

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

gold: probe channel, green: WDM channels, silver: Stokes sum

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

in WDM systems, each transmitted symbol experiences a quasi-unique sequence of elementary rotations

SOP / PMD vector diffusion

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

SOP evolution of 213 bits

span 1

DOP = 0.987

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

SOP evolution of 213 bits

span 2

DOP = 0.967

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

SOP evolution of 213 bits

span 3

DOP = 0.948

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

SOP diffusion (signal depolarization) can be detrimental for PolMUX systems

PMD vector diffusion can adversely affect PMD compensation

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Are these effects relevant for my system(s)?

1. measure - too late

2. simulate - WDM + PMD = tens of CPU days (per configuration)

3. analytical model - has to be sufficiently accurate

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Deriving the Model

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

XPolM rotation axis (sum of many Stokes vectors) is a Gaussian random process

assuming isotropy, it is fully parameterized by the axis variance

the variance of a stochastic process is determined by (double) integration over its covariance function

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

present model describes the covariance function of the Stokes sum taking into account - pulse profile (shape, length, magnitude) - attenuation - walk-off between channels - polarization decorrelation between channels

not included: - intrachannel linear and nonlinear distortions - depolarization in neighboring channels

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

from the axis variance can be derived:

- the resulting SOP statistics (Roberts-Ursell distribution)

- a simple relation for the DOP DOP = exp (− ²/3 · σ²)

DOP/SOP statistics are well suited to test the model

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Verification of the Model

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

10 × 10 Gbit/s NRZ + DC probe at center wavelength 50 GHz channel spacing 5 mW/ch SSMF full inline dispersion compensation DPMD = 0.5 ps/km0.5

split-step Fourier + coarse-step method 100 iterations (~8 CPU days on a 2.67 GHz Core2 PC)

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

due to interaction ofSPM/XPM, PMD, XPolM

in copropagating channels

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Influence of Various System Parameters

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

Summary / Outlook

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

first-order model for XPolM has been developed

simple / usable in a non-numerical way symbol rate transparent approximation of the impact of XPolM comparison of system parameters/mitigation methods orders of magnitude faster than numerical simulations

(post-compensation) PMD vector statistics can also be derived

actual transmission penalties must still be derived

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

http://www.marcuswinter.de/publications/leos2007

top related