4. curcic -atomic and molecular

Post on 28-Mar-2015

229 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ATOMIC AND MOLECULAR

PHYSICS15 March 2011

Dr. Tatjana Curcic

Program Manager

AFOSR/RSE

Air Force Office of Scientific Research

AFOSR

Distribution A: Approved for public release; distribution is unlimited. 88ABW-2011-0752

2

2011 AFOSR SPRING REVIEW2301D PORTFOLIO OVERVIEW

NAME: Tatjana Curcic

BRIEF DESCRIPTION OF PORTFOLIO:

Understanding interactions between atoms, molecules, ions, and

radiation.

LIST SUB-AREAS IN PORTFOLIO:

Cold/ultracold quantum gases (atomic and molecular); precision

measurement; AMO-based quantum information science;

ultrafast/ultraintense laser science.

3

AMO Program: Overview

• Degenerate

quantum gases

• Strongly-interacting

quantum gases

• New phases of

matter

• Ultracold

molecules

• Precision

measurement

• Atom

interferometry

• Cold/ultracold

plasmas

• Relativistic

optics

• Attosecond

pulse generation

• Extreme light

diagnostics

• Filamentation

• Quantum simulation

• Quantum communication

• Quantum metrology and sensing

• Quantum control

4

Scientific and Transformational Opportunities

Scientific Opportunities Transformational Opportunities

Ultracold Molecules • Novel phases of matter

• Ultracold chemistry

Relativistic Optics • Compact affordable x-ray and directed particle

beam sources (“desk-top” FEL)

Quantum Memories and Interfaces • Long-distance quantum communication

Quantum Simulation • High-Tc superconductivity

• Novel phases of matter

Quantum Metrology and Sensing • Ultra-high-precision clocks

• High-resolution, high-sensitivity magnetometry

• High-sensitivity gravimetry

Atom Chips, Atom Interferometry • Precision inertial navigation in GPS-denied

environments

5

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

6

H2CO

OHH2O

HCO

QEDe- e-

e- e-

Quantum

dipolar gas

Precision

test

Ultracold

chemistry

Quantum

information

processing

Ultracold MoleculesFY09 MURI

Participating universities: U. Maryland/JQI, U. Colorado/JILA, U. Chicago,

Kansas State U., U. Connecticut, Yale, Harvard, MIT, Temple U., U.

Durham (England), U. Innsbruck (Austria)

7

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

8

Ultracold Chemistry

Collisions of atoms and molecules in

their lowest-energy internal states

Inelastic collisions between spin-polarized

or different spin-state fermionic molecules

in the rovibronic ground state of 40K87Rb

Reaction rates enhancement of 10-100X

observed depending on the internal

quantum state of the reacting species

S. Ospelkaus, et al, Science 327, 853 (2010)

9

Dipolar Collisions of Polar Molecules

mL = ±1

mL = 0

Effective intermolecular potential

• Modest applied electric fields can drastically alter

molecular interactions

• Strong spatial anisotropy in inelastic collisions observed

K.-K. Ni, et al, Nature 464, 1324 (2010)

10

Quantized Stereodynamics of

Chemical ReactionsM. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Chemical rate suppression by ~100x!

• Pathway towards quantum degeneracy

Loss rate constants

Collision potentials

11

0.00 0.05 0.10 0.15 0.20

10-12

10-11

10-10

10-9

3D

D

D(

cm

3s

-1)

Dipole moment (D)E

Chemical Reaction Rates

from 3D to 2D

Pathway to quantum degeneracy!

12

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

13

Laser Cooling of a Diatomic Molecule: SrF

Only 3 lasers needed to scatter >105 photons

(enough to stop cryogenic beam of SrF)

X 2S v=0

v=1

v=2663 nm

98%

A 2P v=0

1/50686 nm

1 v2500

685 nm

v=1

v ≥3

<1/105

t=25 ns

E. S. Shuman, et al, Nature 467,

820 (2010)

14

Experimental approach: 1D transverse cooling

• Long interaction region necessary for cooling with lowered scattering rate

• Laser-induced fluorescence (LIF) gives the spatial distribution of the

molecular beam

15

Laser Cooling of SrF

Laser-Induced Fluorescence─ without cooling lasers

─ with cooling lasers and red-

detuned pump laser

─ with cooling lasers and blue-

detuned pump laser

Transverse temperature of

SrF reduced to a few mK

First laser cooling of a molecule!

16

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

17

Quantum Networks

Quantum

Repeater

Site A

Site BEntanglement

Entanglement

Requirements

• Light-matter interface

• Quantum memory

• Elementary quantum gatesH.-J. Briegel, et al, Phys. Rev. Lett. 81,

5932 (1998)

18

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Demonstration of a long-lived (>0.1s) quantum memory

interfaced with telecom light

Quantum Memory with

Telecom-wavelength Conversion

19

Classical and Quantum Light Storage

931 nm:

lattice

lattice

1/e lifetime = 0.17 s!

07.00.0)ms60(

12.018.0)s1.0(

Storage of single photons

Storage of coherent lightStark shift compensated lattice

20

pItpIIs kkkk

Frequency Conversion to and from

Telecom Band

5S1/2 F = 1

6S1/2 F=1

5P1/2 F=25P3/2 F=2

pump II

1324 nm

telecom

1367 nm

signal

795 nm

pump I

780 nm

pItpIIs

1367 nm

795 nm

up

1367 nm

795 nm

down

21

Bandwidth

30 MHz

Semiconductor detector

Rb upconversion detector

High-Efficiency Low-Noise

Frequency Conversion

Telecom frequency conversion:

• Intrinsic conversion efficiency >50%

• Ultra-low-noise telecom single-photon detector

22

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

23

Atom Interferometry Based Precision Navigation

Atom versus light based interferometry

Cold atoms provide far more

sensitivity than light.

10105.6

photon

atom

• Cold atom INS: potentially provide

orders of magnitude better

performance than light based INS,

and accuracy comparable to GPS

for GPS-denied environments

• Miniaturization critical for certain

applications

24

• Standard lithography used to precisely place wires on chips for tailored magnetic fields. Also results in reduced power dissipation. Confinement has potential for compact devices.

• New RVBY developed atom chip substrate

– Uses standard direct bonded copper (DBC)

– Simplified, Rapid (10x), & Reduced cost (20-50x)

– Improved power handling (>10x)

– Improved electrical connections

• Atom chips installed in RVBY CA system

Atom ChipsKey In-house Developed AFRL Technology

RVBY designed atom chip

(RYHC fabrication)RVBY designed and fabricated DBC atom chips.

RVBY CA system

In-house atom chip development

25

Harmonic Chip Improvements

• Edges of chip are bent to

form leads better optical

access

• Harmonic Trapping Potential

uses dual layer chip to

improve harmonic purity

• AlN Substrate and direct

contact provide substantial

heat conduction

• Trapeze Wires are first step

in developing an optical

baffle

Harmonic Chip Experiment Overview

Transverse wires

Longitudinal wires

Origami Cuts

Completed Assembly

Trapeze Wires

http://arxiv.org/abs/1007.4851

26

Atom Interferometry Experiment

27

New CRDF (pending):Single Axis Unconfined Gyro/Accelerometer

AFRL Focus: Demonstrate exquisite accuracy and high

reliability at lower development and maintenance cost.

28

Interactions with Other Agencies

Agency/Group POC Scientific Area

ARO Peter Reynolds

Paul Baker

Cold Quantum Gases

(CQG)

TR Govindan Quantum Information

Science (QIS)

Rich Hammond Ultrafast/Ultraintense

Phenomena (UUP)

ONR Charles Clark CQG, QIS

Ralph Wachter QIS

DARPA Jamil Abo-Shaeer CQG, QIS

Jag Shah QIS

Matt Goodman QIS

NSF Bob Dunford CQG, QIS, UUP

DoE Jeff Krause CQG, UUP

IARPA Michael Mandelberg QIS

QISCOG >20 program managers from

~10 agencies/institutions

QIS

top related