amicsa’2006 a 0.13um cmos rad-hard proven technology with associated mixed mode circuit design...

26
AMICSA’2006 I I D D S S Integrated Systems Development S.A. A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1), Constantin Papadas (2) and Bill Sinnis (2) 1) ST Microelectronics, 12 rue Jules Horowitz, B.P. 217, 38019 Grenoble Cedex, France 2) Integrated Systems Development S.A., Atrina Center, Building B, 32 Kifisias Avenue, 15125 Marousi, Greece.

Upload: barnaby-ramsey

Post on 27-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design

approaches for space applications

Laurent Dugoujon (1), Constantin Papadas (2) and Bill Sinnis (2)1) ST Microelectronics, 12 rue Jules Horowitz, B.P. 217, 38019 Grenoble Cedex, France2) Integrated Systems Development S.A., Atrina Center, Building B, 32 Kifisias Avenue, 15125 Marousi, Greece.

Page 2: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

INTRODUCTION

New Telecommunications Satellites must offer:

• High data throughput

• Uninterrupted Service

• High Reliability

• Competitive costs

- The usage of Deep-Sub-Micron technology is now mandatory to keep-up with US manufacturers -

Page 3: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

KEY FUNCTIONS

Some functions are « key » to succes:

• Broadband Analog-Digital Converters: ADC & DAC

• High Speed Serial Links

• Digital Processing ASICs

- For these key components, only modern technology nodes (<=0.25um) can fulfill the specifications -

Page 4: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

TECHNOLOGY / FUNCTIONS

0.25um 0.13um 0.09um

DC-1GHz

Analog functions

1-2GHz Mixed

Analog & Digital

1-4GHz

HSSL

Page 5: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RH at PROCESS LEVEL

Page 6: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

HCMOS9 Core Process

4 or 6 Cu Dual Damascene Metal levels0.41µm pitch metallization, Low k dielectric

0.13µm Technology Platforms

Digital/Analog/RF convergence

HCMOS9 SOIBICMOS9

HCMOS9 SiGeHCMOS9 SiGe

HCMOS9 A

HCMOS9DRAM0. 39/ 0.53µm²

HCMOS9i

Page 7: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

HCMOS9 : Device list MOSFETs 1.2V HS 0.13µm CMOS (GO1 : 20A) 1.2V LL 0.13µm CMOS (GO1 : 20A) 2.5V CMOS (GO2 : 50A) 2.5V HS CMOS (GO2 : 50A) (option) DRIFT N & P MOS transistors (GO2:50A) NMOS SRAM (option)

RESISTORS Silicided N+ Poly; 10 Ohm/sq Unsilicided p+ Active; 135 Ohm/sq Unsilicided P+ Poly; 320 Ohm/sq Hipo; 1KOhm/sq (option) Unsilicided N+ Poly; 110 Ohm/sq

CAPACITORS 2 fF/µm² MIM capacitor (option) N+Poly/NWell capacitor (GO2:50A) P+Poly/PWell capacitor (GO2:50A) Interdigited Metal fringe capacitor (MOM) Intermetal capacitor (MEM)

JUNCTION DIODES N+/Pwell P+ /Nwell

Page 8: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

ST 130 & 90nm SRAMs are invulnerable to thermals

Thermal neutrons highly interact with Boron10

Highest concentration of Bo10 in today’s IC :

borophosphosilicate glass (BPSG) film : not used in ST technologies

Test on 130nm ST SRAMs at ILB, Paris : no SEU with a fluence >1011n/cm2

Test on a 90nm SRAMs at TRIUMF, Vancouver : no SEU variations with & without Cadnium shielding

Oxy

gen

10-3

10-2

10-1

100

101

102

103

104

Neu

tron

Cro

ss-s

ectio

n (b

arns

)

Tun

gste

nT

itani

umA

rsen

icC

oppe

rN

itro

gen

Alu

min

um

Bor

on-

11

Pho

sph

orus

Sili

con

BO

RO

N 1

0

7Li Recoil

- particle1.47 MeV

Low Energy Neutron

10B Fissio

n

0.84 MeV

Page 9: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

TID characterizations for 130nm MOSFETs & (r)SRAMs

Linear transistors 130nm (thin oxide) @ 30 MradSi - Tests performed by CERN

Threshold voltage shift < 10 mV : negligible Subthreshold swing variations : negligible Transconductance degradation of less than 10%

Linear transistors 130nm (thick oxide) @ 30 MradSi - Tests performed by CERN

Threshold voltage shift < 35 mV : negligible Transconductance degradation of less than 10%

Two 130nm 1Mb SRAMs, standard and rSRAM tested at BNL @ 1 MradSi :

No bit error detected for each memory cut at initial and after each exposure step (0, 100, 500 and 1000Krads(Si))

Full functionality verified for the 2 cuts after being exposed to 1Mrad(Si).

These experimental results confirm the strong robustness of ST 130nm MOSFETS, SRAM and robust SRAMs

CERN test report : “specifications should be met in terms of radiation requirements WITHOUT using enclosed transistors (with obvious benefits)”

Page 10: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

1.E-09

1.E-08

1.E-07

1.E-06

0 5 10 15 20 25 30 35 40 45 50 55 60LET [MeV/cm2.mg]

Cro

ss

-se

cti

on

pe

r b

it [

cm

2]

Standard SRAM

rSRAM (Cap.1)

rSRAM (Cap.2 > Cap.1)

Responses to HI of 130nm regular & robust rSRAMsExperiments performed at the BNL, NY, 01/2004

Std SRAM

rSRAM ref.

The rSRAM has both a lower LETth (x10) & X-section at sat. (/3) than the regular SRAM

No SEL recorded up to 80 MeV/cm2.mg for all tested SRAMs

Page 11: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RH at LIBRARY LEVEL

Page 12: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RHBD: Library Level

StandardGuardbands

NAND Gate

Page 13: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RHBD: Library Level

Or … • Trench capacitors• Drain degeneration by drain contact distance• Silicide protect• Salicide protect

Page 14: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RHBD: Library Level

Standard (6 xtors)

Redundant (14 xtors)

Redundant Latch

Layout

Page 15: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RHBD: Library Level

D

Vote

Q1

Q2

Q3

QN1

QN2

QN3CK

>

>

>

Reset

Reset

Reset

Q

QN

Latch1

Latch2

Latch3

Triple Voting Scheme

Page 16: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RH at DESIGN LEVEL

Page 17: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Memory Core

Addl. Cols.

EDAC

Flag

Error Code Correction

(eg Hamming)

ECC

RHBD: Architecture Level

Page 18: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

rSRAM validation Testchip in 130 nm

Chip micrograph

Content :•SRAM Standard 1Mb

memcell 2.5 µm2

•SRAM Standard 1Mb memcell 2.5 µm2 with Triple Well

•rSRAM 1Mb robust memcell 2.5 µm2

•rSRAM 1Mb robust memcell 2.5 µm2 - ver. 2 (lower capacitor value)

•50x164Kbrobust memcell 2.5 µm2

Package : •PBGA 27x27 276+16

1Mb

SRAM

1Mb

SRAM1Mb

rSRAM

1Mb

rSRAM

PLL, BIST, Laser Fusesscribes

Page 19: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

SRAM

Specifications

rSRAM

in %

SRAM ECC1,2

in %

tcycle (ns) 4.2 1.50 +5 % +1% 0 %

taa (ns) 3.7 0.95 +5 % +1% one cycle later

area (mm2) 3.6 0.4 0 0 +25%

power (µW/MHz) 160 50 +20 % +5% +40 %

leakage (uA, WC) 1016 400 0 0 +20-25%

Process Standard eDRAM option Standard

Wafer cost 1 1.10 1

Die cost

(10Mb/ 32-bit word) 1 1.10 >1.25

Note1 : pipeline architecture, Note2 : penalty induced by the additional parity bits (= +7 bits for a 32 bit-word ) and combinatonial logic (XOR stage)

Relative perf between a standard, robust and ECC SRAM130nm Single-Port SRAM - 32kx32 HCMOS9GP-LL, typical corner, 1V2, room temp.

90nm Single-Port SRAM - 8kx32 CMOS90-GP, typical corner, 1V, room temp.

rSRAM offers lower die cost than ECC with a similar robustness

Page 20: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Neutron accelerated results @ 1.2V Alpha accelerated results @ 1.2V

Alpha & neutron responses of the 130nm rSRAM

Experiments performed at Los Alamos and Crolles, 2003

Nominal Conditions

(1.2 V, room temp)

SRAM standard

cell area=2.5 µm2

rSRAM

cell area=2.5 µm2

Alpha fail rate 37,000 fails/min 0 after 23h, Th232

Neutron fail rate 1,195 fails after 6 h 8 fails after 6 h

Total SER FIT/Mb 1475 ± 6 6 ± 4

ST rSRAM provides a robustness enhancement by ×250 :

SER < 10 FIT/Mb @ 1.2 V + full immunity @ 1.32 V

Page 21: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

RHBD: Library Mapping (synthesis)

Page 22: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Robust Designs: PLL and Sense Amplifier

LOGO

UWBTBA

TA

P0

PLL

Sense amplifier

PLLTechnology: 0.13umLocking Frequency: 620MHzCtoC Jitter: 17psPower Consumption: 340mW

Sense AmplifierTechnology: 0.13umBandwidth: 4GHzGain: 12dbPower Consumption: 15mW

Page 23: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Robust Designs: 64x1bit ADC

64x1bit-ADCTechnology: 0.13umSampling Frequency: 3GHzPower Consumption: 500mW

Page 24: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Robust Designs: 10bit DAC

10bit-DACTechnology: 0.13umTopology: Current SteeringSampling Frequency: 15MHzSignal bandwidth~2.5MHzENOB: 8.73bitsImax=1.4mANoise: +/- 2LSB

Page 25: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

Robust Designs: 10bit ADC

10bit-ADCTechnology: 0.13umTopology: Interleaved SARSampling Frequency: 1.3GHzConsumption: 400mWENOB: in testNoise: in test

Page 26: AMICSA’2006 A 0.13um CMOS Rad-hard proven technology with associated mixed mode circuit design approaches for space applications Laurent Dugoujon (1),

AMICSA’2006 II DDSSIntegrated Systems Development S.A.

CONCLUSION

It is the CONJUNCTION of 3 main levels of efforts which can maximize the Radiations performances:

• Intrinsic good choices at Si process level (materials,...)• usage of validated mitigation techniques (libraries, options,...)• design for Rad-hard (architecture, registers,...)

We are able to manage all these levels with additional know-how from space industry trough contractual projects