slide 1 of 34 esa amicsa 2006 mixed-signal asic design for space communications presented by dr....

34
Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Upload: juliet-barton

Post on 25-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 1 of 34ESA AMICSA 2006

Mixed-Signal ASIC Design for Space Communications

Presented by Dr. Rajan Bedi

Page 2: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 2 of 34ESA AMICSA 2006

Mixed-Signal ASIC Design for Space Communications

UK EXPORT CONTROL SYSTEM EQUIPMENT & COMPONENTS RATING: 3A001a1a, 3A001a2, 3A001a5a1, 3A001a5a2, 3A001a5a3, 3A001a5a4, 3A001a5b, 3A101a, 3C001a, 3C001b, 4A002b2, 4A002b1 & 5E001c1.

 UK EXPORT CONTROL TECHNOLOGY RATING: 3E001, 4E001 5E001b1 &

5E001c2e. Rated By : Rajan Bedi with reference to UK Export Control Lists (version

INTR_A12. DOC 13 August 2003) which contains the following caveat: “The control texts reproduced in this guide are for information purposes only and have no force in law. Please note that where legal advice is required, exporters should make their own arrangements”.

 Export licence : Not required for EU countries. Community General Export authorisation EU001 is valid for export to : Australia, Canada, Japan, New Zealand, Norway, Switzerland & USA.

Page 3: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 3 of 34ESA AMICSA 2006

Presentation Overview

Introduction & Motivation

Research into mobile payload ADCs

Research into broadband payload ADCs

Research into space-grade DACs

Mixed-Signal Processing

Conclusion

Page 4: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 4 of 34ESA AMICSA 2006

Introduction

Increasing amounts of analogue circuitry and digital logic are now being integrated on die and flown.

The availability of:

– Low-power, high-performing BiCMOS technologies, fT (peak

cut-off frequency) ~ 300 GHz!

– The inherent total-dose tolerance of the SiGe HBT.

– The addition of a SOI layer to SiGe BiCMOS.

– The ability to individually size of NPNs and PNPs with trench

isolation.

– Integrated EDA tools and common design & verification flows.

All of these offer the potential to advance mixed-signal microelectronics for space applications.

Page 5: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 5 of 34ESA AMICSA 2006

Motivation

The benefits of integrating analogue circuitry with digital logic include:

Higher performance Lower power consumption Less mass Reduced costs Improved reliability Greater levels of reusability Enhanced system testing and quality

All of these benefits contribute to the spirit of “Faster, Better, Cheaper”!

Page 6: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 6 of 34ESA AMICSA 2006

Motivation

Telecommunication satellites with on-board digital processors require ADCs at the receiver to digitize the IF/baseband carrier information.

Future mobile missions will be required to digitize information bandwidths around 50 MHz – this will necessitate baseband sampling at a rate greater than 100 MSPS.

Future broadband missions will be required to digitize information bandwidths around 500 MHz – this will necessitate baseband sampling at a rate greater than 1 GSPS.

Page 7: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 7 of 34ESA AMICSA 2006

Motivation

This performance will only be delivered by advances in mixed-signal processing.

Experience has shown that accessing the latest deep sub-micron technologies is difficult due to the low volumes required by space companies.

When the major semiconductor vendors are willing to develop hardware, the NRE costs are exorbitant.

Moreover, the suitability of the fabrication technology for space flight first needs to be assessed, with vendors often adopting a low-risk approach to radiation testing and qualification.

As a satellite manufacturer, how do we support the development of future digital payloads for our customers?

Page 8: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 8 of 34ESA AMICSA 2006

Motivation

This variation in the range of sampling frequencies greatly impacts the micro-architecture, the circuit design, the resolution and power consumption of mixed-signal converters that can be considered for use on satellite payloads.

This range of payload types, limited power budget, restricted fabrication options and operation in a harsh environment, all combine to make ADC/DAC design for space communications extremely challenging.

This objective of this presentation is to share with vendors current research on low-power, high-performance, space-grade converters for use with future mobile and broadband payloads.

Page 9: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 9 of 34ESA AMICSA 2006

ADC Design

The design of low-power ADCs capable of sampling around 150 MSPS differs from those required to sample above 1 GSPS.

The development of an ADC involves a number of trade-offs, e.g. as the required sampling frequency or dynamic range increase, so does the complexity, size, weight, cost and power dissipation of devices.

As a general rule, effective resolution decreases by one bit for every doubling of the sampling frequency.

Page 10: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 10 of 34

ESA AMICSA 2006

Low-Power Narrowband ADC

For low-power ADCs, a sampling frequency of 150 MSPS is achieved by implementing micro-architectures that combine elements of the successive approximation and flash techniques with pipeline-type signal processing.

Page 11: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 11 of 34

ESA AMICSA 2006

Pipelined ADC Micro-Architecture

First stage of the pipeline performs a coarse quantisation on the input while subsequent stages are concurrently processing previously acquired input samples.

STAGE 0 STAGE 1 STAGE N-1 STAGE N

LATCH LATCH LATCH

+

+

+ +

++

ANALOGUE PIPELINE

DIGITAL PIPELINE

INPUT

Page 12: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 12 of 34

ESA AMICSA 2006

Pipelined ADC Micro-Architecture

Each stage comprises a S&H, low-resolution ADC and DAC and a subtractor.

--

DACADC

SAMPLE & HOLD

A+VIN

Page 13: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 13 of 34

ESA AMICSA 2006

Pipelined ADC Micro-Architecture

High-throughput, concurrent design.

For pipelined ADCs, power dissipation can be minimised through the appropriate choice of per-stage resolution and selection of suitable op-amp architectures.

Thermal noise, comparator offsets, sample-and-hold offsets, gain errors and non-uniform levels within the interstage DACs all affect the performance of pipelined ADCs.

Simulations and circuit design are continuing that investigate trade-offs between thermal noise, speed, linearity and power dissipation.

Page 14: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 14 of 34

ESA AMICSA 2006

Pipelined ADC Micro-Architecture

For low power operation, CMOS converters are preferred as digital consumption scales with sampling frequency.

Bipolar converters developed to operate at a particular frequency but used at lower rate, will incur a fixed penalty and dissipate the same power as clocking at the higher frequency due to constant current structures.

Page 15: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 15 of 34

ESA AMICSA 2006

Pipelined ADC Micro-Architecture

The digital capability of CMOS easily allows the inclusion of error correction, calibration and other computational features to improve overall converter performance and accuracy.

Fabrication using deep submicron CMOS results in higher performance due to reductions in parasitics.

However, concomitant with the migration to smaller feature sizes, lower supply voltages make it more difficult to maintain input SNR – Continual technology scaling impacts ADCs!

Page 16: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 16 of 34

ESA AMICSA 2006

Low Power Broadband ADC

For low-power broadband ADCs, sampling frequencies above 1 GSPS are achieved by implementing interleaving micro-architectures or variations of Flash techniques:

· Folded Flash

· Folded & Interpolative Flash

· Pipelined, Folded & Interpolative Flash

Page 17: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 17 of 34

ESA AMICSA 2006

Folded Flash ADC

INPUT

COARSEADC

FOLDINGCIRCUIT

FINEADC

DIGITAL ADDER &CORRECTION CIRCUIT

DIGITAL OUTPUT WORD

Folding is a technique that reduces hardware while maintaining the one-step nature of a full Flash ADC.

An analogue pre-processing circuit generates a residue which is digitised to obtain the LSBs.

The MSBs are resolved using a coarse ADC that operates in parallel with the folding circuit.

Page 18: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 18 of 34

ESA AMICSA 2006

Folded Interpolative Flash ADC

Interpolation reduces the number of comparator preamplifiers at the input of a Flash converter.

Interpolation substantially reduces the input capacitance, power dissipation and area of flash converters, while preserving the one-step nature of a Flash architecture.

Simulations show that offset, gain and timing mismatches result in SNR degradation at high input frequencies.

Page 19: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 19 of 34

ESA AMICSA 2006

DAC Design

We have started investigating current-steering DAC micro-architectures with the goal of achieving low power with high speed and low distortion.

Traditionally current-steering DACs were fabricated using bipolar technology, however, the ability to generate matched CMOS current mirrors will result in lower power consumption.

A segmented architecture provides a good balance between performance vs. area and complexity.

Page 20: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 20 of 34

ESA AMICSA 2006

VLSI

To achieve the required performance and low power, silicon-based technologies are being targeted for fabrication.

CMOS converters are preferred as digital power dissipation scales with sampling frequency.

SOI CMOS typically offers 30 to 50% higher performance for the same power compared to bulk CMOS (30% less power at the speed).

SOI offers reduced cross-talk for mixed-signal design, immunity to latch-up, better tolerance of SEEs and the absence of radiation-induced leakage between devices.

Page 21: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 21 of 34

ESA AMICSA 2006

VLSI

BiCMOS processes combine faster, higher-current driving bipolar transistors with smaller, lower-power, high impedance CMOS devices.

This makes BiCMOS attractive for mixed-signal design.

The bipolar transistor can be either Si or SiGe.

For the same operating current, a SiGe HJT has higher speed, increased gain, lower RF noise and less 1/f noise compared to a Si BJT – ft ~ 300 GHz.

SiGe BiCMOS allows the integration of analog, digital and RF using existing CMOS foundries.

Currently investigating SOI and BiCMOS to minimise noise coupling through the wafer substrate.

Page 22: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 22 of 34

ESA AMICSA 2006

Space Microelectronics

Heavy-ion strikes can trigger latchup in CMOS and bipolar devices with the potential to damage a circuit permanently.

In ADC/DACs, a transient generated in the analogue part of a device can propagate into the digital section causing logic level shifts.

The migration to smaller geometries has helped CMOS transistors to become inherently more resistant to TID radiation as thinner gate oxide layers trap less positive charge.

Radiation hardening by design techniques are being used to mitigate the damage, functional upsets and data loss caused by radiation.

Page 23: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 23 of 34

ESA AMICSA 2006

Radiation Hardening By Design

The use of enclosed layout NMOS transistors.

The design of portions of a circuit using PMOS FETs only. As PMOS transistors are not prone to edge leakage, there is no need for annular layout.

Such structures are immune to latchup due to the absence of stray silicon-controlled rectifier structures.

Latchup can be avoided by completely enclosing NMOS and PMOS FETS using guard rings or through the addition of an epi layer.

Design-hardened versions of integrated circuits typically require more die space than their soft counterparts!

Page 24: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 24 of 34

ESA AMICSA 2006

Analogue Section of 12-bit SegmentedDAC Incorporating RHBD

63 Unary Current Sources 6 Binary Current Sources

Page 25: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 25 of 34

ESA AMICSA 2006

Radiation Hardening By Design

All NMOS transistors drawn as Enclosed Layout Transistors (Annular) – this makes them immune to edge leakage effects.

Guard rings isolate all n+ diffusions at different potentials.

Current sources are all PMOS.

Solely PMOS structures are immune to latch-up.

Page 26: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 26 of 34

ESA AMICSA 2006

PMOS Current Source – (LSB Binary)

W = 1.1 μmL = 0.8 μmM = 1

bias_P2

bias_P1

out

VDD

W = 1.1 μmL = 0.8 μmM = 1

ILSB

Page 27: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 27 of 34

ESA AMICSA 2006

PMOS Current Source – (Unary)

W = 1.1 μmL = 0.8 μmM = 64

bias_P2

bias_P1

out

VDD

W = 1.1 μmL = 0.8 μmM = 64

64 * ILSB

Page 28: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 28 of 34

ESA AMICSA 2006

Mixed Signal Processing

A number of signal processing techniques exist that potentially could ease the hardware implementation of the data converters:

– Complex Baseband Sampling

– RF/IF Bandpass Sampling

Page 29: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 29 of 34

ESA AMICSA 2006

Complex Baseband SamplingAnalogue Generation of I/Q Samples

i[n] – jq[n]x(t)x(t)

A/D

A/D

i[n]

q[n]

xi(t) i(t)

q(t) xq(t)-90°

sin ωct

Analogue Digital

Complex baseband sampling at a rate greater than the highest frequency component – allows access to lower sampling frequencies – lower power if using CMOS ADCs.

Difficult to match frequency response of both paths

Page 30: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 30 of 34

ESA AMICSA 2006

Complex Baseband SamplingDigital Generation of I/Q Samples

x(t)

Analogue Digital

A/D

i[n] i’[n]

q’[n] q[n]

sin ωct

cos ωct

Complex baseband sampling at a rate four times the highest frequency component.

Single ADC, no matching issues, simple mixing

Page 31: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 31 of 34

ESA AMICSA 2006

RF Bandpass Sampling of L-band User Uplink

Zone 1 2 3 4 23 24

Fs/270.25

Fs140.5

1.5 Fs210.7

2 Fs281 Frequency (MHz)

12 Fs1686

11.5 Fs1615.7

Band-pass AAF

Amp.

Bandpass sampling achieves digitisation and downconversion in a single operation, without the use of analogue mixers, local oscillators and image-reject filters.

Intentionally alias the RF information to baseband/IF.

The availability of wideband ADCs, e.g. bandwidths approaching 3 GHz, makes direct sampling of L/S-band RF carriers a real possibility.

Page 32: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 32 of 34

ESA AMICSA 2006

RF Bandpass Sampling

To realise bandpass sampling, the ADC must have the necessary analogue input bandwidth to process the highest frequency component within the input signal.

Low distortion and good linearity at this frequency are essential.

ADCs intended for undersampling applications are more sensitive to the amount of noise at the input than a traditional converter.

Board layout, decoupling considerations and minimising jitter on the sampling clock are critical.

Page 33: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 33 of 34

ESA AMICSA 2006

Conclusions

I have shared with you current investigations that research the development of low-power, high-performance, space-grade converters for use with future mobile and broadband payloads.

Satellite manufactures have intimate knowledge of payloads.

Different types of telecommunication satellites have unique mixed-signal requirements, e.g. sampling frequency, resolution, dynamic performance and power consumption.

  Pipelined ADCs should be targeted for future mobile payloads

and folding, interpolative flash architectures for broadband processors.

Segmented, current-steering DACs should be targeted for future satellites.

 

Page 34: Slide 1 of 34 ESA AMICSA 2006 Mixed-Signal ASIC Design for Space Communications Presented by Dr. Rajan Bedi

Slide 34 of 34

ESA AMICSA 2006

Conclusions

A re-usable design and verification flow and design trade-offs at the systems-level, the micro-architectural level, the circuit level and at a technology level combine to enable mission-specific, mixed-signal IP.