algebras generalazing the octonions - icerm... · algebras generalizing the octonions marie kreusch...

1
Algebras generalizing the Octonions Marie Kreusch Poster presented at the Topical Workshop "Integrability and Cluster Algebras: Geometry and Combinatorics" at ICERM, US, 25 – 29 August, 2014 Overview R C H O ... C l p ,q O p ,q Cayley-Dickson Algebras Clifford Algebras Algebras O p ,q Applications to the classical Hurwitz problem of "Sums of Squares". Main Definition The algebra O p ,q (p + q = n 3) is the 2 n -dimensional vector space on R with the basis {u x : x Z n 2 }, and equipped with the product u x · u y =(-1) f O p,q (x ,y ) u x +y for all x , y Z n 2 , where f O p,q (x , y )= X 1i <j <k n (x i x j y k + x i y j x k + y i x j x k )+ X 1i j n x i y j + X 1i p x i . In particular, the algebra O p ,q is a twisted group algebra, noted (R[Z n 2 ], f O p,q ). Generating Cubic Form The defect of commutativity and associativity of a twisted algebra (R[Z n 2 ], f ) is measured by a symmetric function β : Z n 2 × Z n 2 Z 2 , and a function φ : Z n 2 × Z n 2 × Z n 2 Z 2 , respectively u x · u y =(-1) β (x ,y ) u y · u x , u x · (u y · u z )=(-1) φ(x ,y ,z ) (u x · u y ) · u z . A function α : Z n 2 -→ Z 2 is called a generating function for (R[Z n 2 ], f ), if for x , y and z in Z n 2 , (i ) f (x , x ) = α(x ), (ii ) β (x , y ) = α(x + y )+ α(x )+ α(y ), (iii ) φ(x , y , z )= α(x + y + z )+ α(x + y )+ α(x + z )+ α(y + z )+ α(x )+ α(y )+ α(z ). Theorem [M-G & O] : I A twisted algebra (R[Z n 2 ], f ) has a generating function iff φ is symmetric. I The generating function α is a polynomial on Z n 2 of degree 3. I Given any polynomial α on Z n 2 degree 3, there exists a unique (up to isomorphism) twisted group algebra (R[Z n 2 ], f ) having α as generating function. Algebras O p ,q and Clifford Algebras The algebras O p ,q (as well as the Clifford algebras) have generating cubic forms (res. quadratic forms). They are given by α p ,q (x )= f O p,q (x , x )= α n (x )+ X 1i p x i , where α n (x )= X 1i <j <k n x i x j x k + X 1i <j n x i x j + X 1i n x i , for all x =(x 1 ,..., x n ) Z n 2 . The Hamming weight of x is |x | := #{x i 6= 0}, and one has α n (x )= ( 0, if |x |≡ 0 mod 4, 1, otherwise. For q 6= 0, O p ,q contains a Clifford subalgebra C l p ,q -1 O p ,q which basis is given by {u x : x (Z 2 ) n , IxI 0 mod2} Classification Theorem [1] : I If pq 6= 0, then one has O p ,q O q ,p O p ,q +4 O p +4,q ) ⇔C l p ,q -1 ’C l p 0 ,q 0 -1 I For n 5, the algebras O n,0 and O 0,n are exceptional. Bott Periodicity Theorem [2] : If n = p + q 3 and pq 6= 0, then I O 0,n+4 O 0,n C O 0,5 Cl p ,q +2 Cl q ,p R Cl 0,2 Cl p +2,q Cl q ,p R Cl 2,0 Cl p +1,q +1 Cl p ,q R Cl 1,1 O n+4,0 O n,0 RR O 5,0 I O p +2,q +2 O p ,q C O 2,3 O p ,q RR O 3,2 Summary Table of Classification of Algebras O p ,q O 9,0 O 8,1 O 7,2 O 6,3 O 5,4 O 4,5 O 3,6 O 2,7 O 1,8 O 0,9 O 8,0 O 7,1 O 6,2 O 5,3 O 4,4 O 3,5 O 2,6 O 1,7 O 0,8 O 7,0 O 6,1 O 5,2 O 4,3 O 3,4 O 2,5 O 1,6 O 0,7 O 6,0 O 5,1 O 4,2 O 3,3 O 2,4 O 1,5 O 0,6 O 5,0 O 4,1 O 3,2 O 2,3 O 1,4 O 0,5 O 4,0 O 3,1 O 2,2 O 1,3 O 0,4 O 3,0 O 2,1 O 1,2 O 0,3 [email protected] [1] Kreusch & Morier Genoud, Classification of the algebras O p ,q Université de Liège (Belgique) [2] Kreusch, Bott type periodicity for higher octonions

Upload: others

Post on 29-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algebras generalazing the Octonions - ICERM... · Algebras generalizing the Octonions Marie Kreusch Poster presented at the Topical Workshop "Integrability and Cluster Algebras: Geometry

Algebras generalizing the OctonionsMarie Kreusch

Poster presented at the Topical Workshop "Integrability and Cluster Algebras: Geometry and Combinatorics" at ICERM, US, 25 – 29 August, 2014

Overview

R C H O . . .

Clp,q Op,q

Cayley-DicksonAlgebras

CliffordAlgebras

AlgebrasOp,q

Applications to the classical Hurwitz problem of "Sums of Squares".

Main DefinitionThe algebra Op,q (p + q = n ≥ 3) is the 2n-dimensional vector space on R withthe basis {ux : x ∈ Zn

2}, and equipped with the product

ux · uy = (−1)fOp,q(x ,y)ux+y

for all x , y ∈ Zn2, where

fOp,q (x , y) =∑

1≤i<j<k≤n

(xixjyk + xiyjxk + yixjxk) +∑

1≤i≤j≤n

xiyj +∑

1≤i≤p

xi.

In particular, the algebra Op,q is a twisted group algebra, noted (R[Zn2], fOp,q).

Generating Cubic Form

The defect of commutativity and associativity of a twisted algebra (R[Zn2], f ) is measured by a

symmetric function β : Zn2 × Zn

2 → Z2, and a function φ : Zn2 × Zn

2 × Zn2 → Z2, respectively

ux · uy = (−1)β(x ,y) uy · ux ,

ux · (uy · uz) = (−1)φ(x ,y ,z) (ux · uy) · uz.

A function α : Zn2 −→ Z2 is called a generating function for (R[Zn

2], f ), if for x , y and z in Zn2,

(i) f (x , x) = α(x),

(ii) β(x , y) = α(x + y) + α(x) + α(y),

(iii) φ(x , y , z) = α(x + y + z) + α(x + y) + α(x + z) + α(y + z) + α(x) + α(y) + α(z).

Theorem [M-G & O] :

I A twisted algebra (R[Zn2], f ) has a generating function iff φ is symmetric.

I The generating function α is a polynomial on Zn2 of degree ≤ 3.

I Given any polynomial α on Zn2 degree ≤ 3, there exists a unique (up to isomorphism)

twisted group algebra (R[Zn2], f ) having α as generating function.

Algebras Op,q and Clifford Algebras

The algebras Op,q (as well as the Clifford algebras) have generatingcubic forms (res. quadratic forms). They are given by

αp,q(x) = fOp,q(x , x) = αn(x) +∑

1≤i≤p

xi,

whereαn(x) =

∑1≤i<j<k≤n

xixjxk +∑

1≤i<j≤n

xixj +∑

1≤i≤n

xi,

for all x = (x1, . . . , xn) ∈ Zn2.

The Hamming weight of x is |x | := #{xi 6= 0}, and one has

αn(x) =

{0, if |x | ≡ 0 mod 4,1, otherwise.

For q 6= 0, Op,q contains a Clifford subalgebra Clp,q−1 ⊂ Op,q whichbasis is given by {ux : x ∈ (Z2)

n, IxI ≡ 0 mod2}

ClassificationTheorem [1] :

I If pq 6= 0, then one has

Op,q ' Oq,p

Op,q+4 ' Op+4,q

}⇔ Clp,q−1 ' Clp′,q′−1

I For n ≥ 5, the algebras On,0 and O0,n are exceptional.

Bott Periodicity

Theorem [2] : If n = p + q ≥ 3 and pq 6= 0, then

I O0,n+4 ' O0,n ⊗C O0,5 Clp,q+2 ' Clq,p ⊗R Cl0,2Clp+2,q ' Clq,p ⊗R Cl2,0

Clp+1,q+1 ' Clp,q ⊗R Cl1,1

On+4,0 ' On,0 ⊗R⊕R O5,0

I Op+2,q+2 ' Op,q ⊗C O2,3

' Op,q ⊗R⊕R O3,2

Summary Table of Classification of Algebras Op,q

O9,0 O8,1 O7,2 O6,3 O5,4 O4,5 O3,6 O2,7 O1,8 O0,9

O8,0 O7,1 O6,2 O5,3 O4,4 O3,5 O2,6 O1,7 O0,8

O7,0 O6,1 O5,2 O4,3 O3,4 O2,5 O1,6 O0,7

O6,0 O5,1 O4,2 O3,3 O2,4 O1,5 O0,6

O5,0 O4,1 O3,2 O2,3 O1,4 O0,5

O4,0 O3,1 O2,2 O1,3 O0,4

O3,0 O2,1 O1,2 O0,3

[email protected] [1] Kreusch & Morier Genoud, Classification of the algebras Op,qUniversité de Liège (Belgique) [2] Kreusch, Bott type periodicity for higher octonions