advanced biochemistry bisc 6310 fall 2011

77
ADVANCED BIOCHEMISTRY ADVANCED BIOCHEMISTRY BISC 6310 BISC 6310 FALL 2011 FALL 2011 1

Upload: mikayla-washington

Post on 05-Jan-2016

35 views

Category:

Documents


4 download

DESCRIPTION

Advanced Biochemistry BISC 6310 Fall 2011. Course topics: Textbook: Biochemistry, 5 th ed. ( Lubert Stryer ). To be tought by Dr. Tarek M. Zaida … Basic concepts of metabolism ( ch . 8 & 14) Glycolysis and gluconeogenesis ( ch . 16) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Advanced Biochemistry             BISC 6310         Fall 2011

ADVANCED ADVANCED BIOCHEMISTRY BIOCHEMISTRY

BISC 6310 BISC 6310 FALL FALL

20112011

1

Page 2: Advanced Biochemistry             BISC 6310         Fall 2011

COURSE TOPICS:COURSE TOPICS:TEXTBOOK: TEXTBOOK: BIOCHEMISTRY, 5BIOCHEMISTRY, 5THTH ED. ED. (LUBERT STRYER)(LUBERT STRYER) To be tought by Dr. Tarek M. Zaida…

1. Basic concepts of metabolism (ch. 8 & 14)

2. Glycolysis and gluconeogenesis (ch. 16)

3. The citric acid cycle (ch.17)

4. Oxidative phosphorylation (ch. 18)

5. Glycogen metabolism (ch. 21)

6. Fatty acids metabolism (ch. 22)

2

Page 3: Advanced Biochemistry             BISC 6310         Fall 2011

To be tought by Dr. Kamal Alkahlout… 7. Protein turnover and amino acids metabolism (ch. 23)

8. Synthesizing the molecules of life:

9. Biosynthesis of Amino acids (Ch.24)

10. Nucleotide biosynthesis (ch.25)

11. Biosynthesis of membrane lipids & steroids (ch. 26)

12. The Integration of metabolism (ch. 30)

13. Signal Transduction (ch.15)

14. The Calvin cycle (ch.20)

15. Biochemical Techniques

3

Page 4: Advanced Biochemistry             BISC 6310         Fall 2011

ACTIVITIES AND EXAMSACTIVITIES AND EXAMS

Activities:At the end of the term every student will present an oral

presentation of their choosing, covering one of the medical-related disorders connected to any of the course chapters

Note: You have the right to choose a topic, but you are obligated to maintain your focus on the biochemical background of the topic.

You have to let us know which topic you have chosen within 2 weeks from now, so that we may grant you the permission to proceed with your research.

4

Page 5: Advanced Biochemistry             BISC 6310         Fall 2011

The evaluation of the presentation will be based on: Performance (oral) Content (oral & written) Time frame (limited to 10 min.)

Note: Be ready to give me up your presentation electronically or via email at : [email protected] or [email protected] The time of the presentation should not exceed 10 minutes.

Exams: Two exams will be held in the middle and at end of the semester. The material of the final exam will include up to 20% of the

chapters I will cover, the other 80% of the final exam will be covered by the chapters tought by Dr. Kamal.

5

Page 6: Advanced Biochemistry             BISC 6310         Fall 2011

You will be given 2 Quizzes., the 1st before midterm & the 2nd before final exam.

Making-ups are not allowed neither for presentations nor for quizzes nor for midterm ……………(STRICTLY ENFORCED)

Class attendance is strongly recommended, But once you decide not to come to class, its your responsibility to keep yourself posted and updated with what has been done/ said during class.

I will always welcome your suggestions as it is the best way to improve the outcome of this class (you can talk to me in person or if you feel more comfortable drop me an email)

Office hours: TBD

6

Page 7: Advanced Biochemistry             BISC 6310         Fall 2011

GRADING:GRADING:

Points

1 Presentation 10

2 Quizzes 10

3 Midterm exam 30

4 Final exam

Total

50

100

7

Page 8: Advanced Biochemistry             BISC 6310         Fall 2011

METABOLISMMETABOLISMBASIC CONCEPTS & DESIGNBASIC CONCEPTS & DESIGN

The quantitative study of cellular energy transductions and the chemical reactions underlying these transductions.

8

Page 9: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYMESENZYMES

Enzymes are the most sophisticated biological catalysts known.catalysts alter the rates of chemical reactions

but are neither formed nor consumed during the reactions they catalyze.

Most enzymes are proteins. Some nucleic acids exhibit enzymatic activities (e.g., rRNA).

9

Page 10: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CHARACTERISTICS:ENZYME CHARACTERISTICS:RATE ENHANCEMENTRATE ENHANCEMENTEnzymes significantly enhance the rates of

reactions:

10

Page 11: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CHARACTERISTICS:ENZYME CHARACTERISTICS:TURNOVER NUMBERSTURNOVER NUMBERS

The “turnover number” is used to rate the effeciency of an enzyme.It tells how many molecules

of reactant a molecule of enzyme can convert to product(s) per second.

How fast can an enzyme produce products?

11

Page 12: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CHARACTERISTICS:ENZYME CHARACTERISTICS:SPECIFICITYSPECIFICITY Enzymes can be very

specific. For example, proteolytic

enzymes help hydrolyze peptide bonds in proteins. Trypsin is rather specific Thrombin is very specific

12

The specificity of an enzyme is due to the precise interaction of substrate with the enzyme. This is a result of the intricate three-dimensional structure of the enzyme protein.

Page 13: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CHARACTERISTICS:ENZYME CHARACTERISTICS:REGULATIONREGULATIONEnzymes can enhance the rates of

reactions by many orders of magnitude.A rate enhancement of 1017 means that what

would occur in 1 second with an enzyme’s help, would otherwise require 31,710,000,000 years to take place.

Thus, regulation of enzymatic activity is in a sense, regulation of metabolism, or any other cellular process

13

Page 14: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME COFACTORSENZYME COFACTORS Many enzymes use

same cofactor Cofactors are split

into two groups: Metals Coenzymes (small

organic molecules)

Most vitamins are coenzymes.

When tightly bound to enzyme, cofactor =prosthetic group

14“Apoenzyme” + cofactor = “Holoenzyme”

Page 15: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYMES – GIBBS FREE ENERGYENZYMES – GIBBS FREE ENERGY

Gibb’s “Free Energy,” ΔG, determines the spontaneity of a reaction:ΔG must be negative for a reaction to occur

spontaneouslyA system is at equilibrium and no net change can occur if

ΔG is zeroA reaction will not occur spontaneously if ΔG is positive;

to proceed, it must receive an input of free energy from another source.

15

Page 16: Advanced Biochemistry             BISC 6310         Fall 2011

G is the Gibbs free energy change, used to describe energetics of biochemical reactions

H is the change in enthalpy, heat content of a system. S is the change in entropy, a measure of the level of

randomness or disorder in a system.

The total entropy of a system and its surroundings always increases for a spontaneous process) {2nd Law}

Entropy will increase only if: G = Hsystem - TSsystem < 0

The free-energy change must be negative for a reaction to be spontaneous

G = Hsystem - TSsystem

16

Page 17: Advanced Biochemistry             BISC 6310         Fall 2011

G of a reaction depends only on free-energy of products minus free-energy of reactants. G of a reaction is independent of path (or molecular

mechanism) of the transformation G provides no information about the rate of a reaction

For the reaction: A + B C + D

To determine G, must consider nature of both reactants and products as well as their concentrations

17

[B][A][D][C]

RTlnΔGΔG 0 '

Page 18: Advanced Biochemistry             BISC 6310         Fall 2011

FREE ENERGY & EQUILIBRIUM CONSTANT (K)FREE ENERGY & EQUILIBRIUM CONSTANT (K)

At equilibrium, G = 0. 0 = Go’ + RTln([C][D]/[A][B]) K’eq = [C][D]/[A][B]

Go’ = - RTlnK’eq

An enzyme cannot alter the equilibrium of a chemical reaction.This means, an enzyme

accelerates the forward and reverse reactions by precisely the same factor.

18

Page 19: Advanced Biochemistry             BISC 6310         Fall 2011

19

eq0 RTlnK'ΔG

Page 20: Advanced Biochemistry             BISC 6310         Fall 2011

20

Page 21: Advanced Biochemistry             BISC 6310         Fall 2011

21

Page 22: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYMES DECREASE ACTIVATION ENZYMES DECREASE ACTIVATION ENERGYENERGY

A chemical reaction goes through a transition state with a higher G than either S of P

Enzymes facilitate the formation of the transition state by decreasing G‡

22

Page 23: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME-SUBSTRATE COMPLEXENZYME-SUBSTRATE COMPLEX

For enzymes to function, they must come in contact with the substrate. While in contact, they are referred to as the “enzyme-substrate

complex.”

The combination of substrate and enzyme creates a new reaction pathway, with a lowered transition-state energy More molecules have the required energy to reach the transition

state

Catalytic power of enzymes is derived from the formation of the transition states in enzyme-substrate (ES) complexes The essence of catalysis is specific binding of the transition state

23

Page 24: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME – ACTIVE SITEENZYME – ACTIVE SITE

Enzymes are often quite large compared to their substrates. The relatively small region where the substrate binds and catalysis takes place is called the “active site.” (e.g., human carbonic anhydrase:)

24

Page 25: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME – ACTIVE SITEENZYME – ACTIVE SITE

The active site is the region that binds the substrates (& cofactors if any)

It contains the residues that directly participate in the making & breaking of bonds (these residues are called catalytic groups)

The interaction of the enzyme and substrate at the active site promotes the formation of the transition state

The active site is the region that most directly lowers G‡ of the reaction - resulting in rate enhancement of the reaction

25

Page 26: Advanced Biochemistry             BISC 6310         Fall 2011

26

ENZYMES DIFFER WIDELY IN, ENZYMES DIFFER WIDELY IN, STRUCTURE, SPECIFICITY, & MODE OF STRUCTURE, SPECIFICITY, & MODE OF CATALYSIS, YET, ACTIVE SITE HAVE CATALYSIS, YET, ACTIVE SITE HAVE COMMON FEATURES:COMMON FEATURES: The active site is a 3-D cleft formed

by groups that come from different parts of the amino acid sequence

Water is usually excluded unless it is a reactant.

Substrates bind to enzymes by multiple weak attractions (electrostatic interactions, hydrogen bonds, hydrophobic interactions, etc.

The specificity of binding depends on the precisely defined arrangement of atoms at the active site

Page 27: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CLASSIFICATIONENZYME CLASSIFICATION

Enzymes are classified and named according to the types of reactions they catalyze:Proteolytic enzymes [such as trypsin] lyse protein

peptide bonds.“ATPase” breaks down ATP“ATP synthetase” synthesizes ATP“Lactate dehydrogenase” oxidizes lactate, removing

two hydrogen atoms.

Such a wide variety of names can be confusing. A better method was needed.

27

Page 28: Advanced Biochemistry             BISC 6310         Fall 2011

ENZYME CLASSIFICATIONENZYME CLASSIFICATION

The “Enzyme Commission” invented a systematic numbering system for enzymes based upon these categories, with extensions for various subgroups. e.g., nucleoside monophosphate kinase (transfers phosphates)

EC 2.7.4.4. 2 = Transferase, 7 = phosphate transferred, 4=transferred to another phosphate, 4 = acceptor

28

Page 29: Advanced Biochemistry             BISC 6310         Fall 2011

29

LIVING ORGANISMS NEED LIVING ORGANISMS NEED ENERGY FOR:ENERGY FOR:

1. Performing mechanical work

2. Active transport and maintaining homeostasis

3. Synthesis of macromolecuels and biochemicals.

Page 30: Advanced Biochemistry             BISC 6310         Fall 2011

30

METABOLIC PATHWAYSMETABOLIC PATHWAYS

1. Catabolic pathways

2. Anabolic pathways

3. Amphibolic pathways that can be both anabolic and catabolic depending on the energy status in the cell.

Page 31: Advanced Biochemistry             BISC 6310         Fall 2011

31

THE USEFUL FORMS OF ENERGY THE USEFUL FORMS OF ENERGY PRODUCED IN CATABOLISM ARE PRODUCED IN CATABOLISM ARE EMPLOYED IN ANABOLISMEMPLOYED IN ANABOLISM

Page 32: Advanced Biochemistry             BISC 6310         Fall 2011

32

A METABOLIC PATHWAY MUST A METABOLIC PATHWAY MUST SATISFY MINIMALLY TWO CRITERIASATISFY MINIMALLY TWO CRITERIA

1. The reactions of the pathway must be specific:

This criterion is accomplished by enzymes

2. The entire set of reactions must be thermodynamically favored.

A reaction can occur spontaneously only if G, the change in free energy, is negative.

Page 33: Advanced Biochemistry             BISC 6310         Fall 2011

33

AN IMPORTANT THERMODYNAMIC AN IMPORTANT THERMODYNAMIC FACTFACTThe overall free-energy change for a

chemically coupled series of reactions is equal to the sum of the free energy changes of the individual steps.

Page 34: Advanced Biochemistry             BISC 6310         Fall 2011

34

The two reactions are catalyzed by the same enzyme

Page 35: Advanced Biochemistry             BISC 6310         Fall 2011

35

Page 36: Advanced Biochemistry             BISC 6310         Fall 2011

36

Page 37: Advanced Biochemistry             BISC 6310         Fall 2011

37

Page 38: Advanced Biochemistry             BISC 6310         Fall 2011

38

Page 39: Advanced Biochemistry             BISC 6310         Fall 2011

39

Page 40: Advanced Biochemistry             BISC 6310         Fall 2011

ATP IS THE ENERGY CURRENCY IN ATP IS THE ENERGY CURRENCY IN BIOLOGICAL SYSTEMSBIOLOGICAL SYSTEMS

40

The active form of ATP is usually attached to Mg2+ or Mn2+

Page 41: Advanced Biochemistry             BISC 6310         Fall 2011

41

ATP IS THE ENERGY CURRENCY IN ATP IS THE ENERGY CURRENCY IN BIOLOGICAL SYSTEMSBIOLOGICAL SYSTEMS

ATP is an energy-rich molecule because its triphosphate unit contains two phosphoanhydride bonds.

A large amount of free energy is liberated when ATP is hydrolyzed to ADP and (Pi) or to AMP and PPi.

Page 42: Advanced Biochemistry             BISC 6310         Fall 2011

42

ATP IS THE ENERGY CURRENCY IN ATP IS THE ENERGY CURRENCY IN BIOLOGICAL SYSTEMSBIOLOGICAL SYSTEMS

The precise G°’ for these reactions depends on:The ionic strength of the mediumThe concentrations of Mg2+ and other metal

ions.Under typical cellular concentrations, the

actual G for these hydrolyses is approximately -12 kcal mol-1 (-50 kJ/mol).

ATP hydrolysis can be coupled to promote unfavorable reactions.

Page 43: Advanced Biochemistry             BISC 6310         Fall 2011

43

ATP HYDROLYSIS DRIVES METABOLISM BY ATP HYDROLYSIS DRIVES METABOLISM BY SHIFTING THE EQUILIBRIUM OF COUPLED SHIFTING THE EQUILIBRIUM OF COUPLED REACTIONSREACTIONS

RT

G

eq

eq

eq

K

RT

GK

KRTG

0'

10'

'ln

'ln0'

0'

proceed. to reaction the fo

thanlower be to has B/A of ratiomolar The

:by 'G to related is C25at constant mequilibriu The oo

3

336.1

1015.1

1015.1][

][10'

0'

eq

eqG

eq A

BK

Page 44: Advanced Biochemistry             BISC 6310         Fall 2011

44

A CAN BE CONVERTED INTO B IF THE A CAN BE CONVERTED INTO B IF THE REACTION IS COUPLED TO ATP REACTION IS COUPLED TO ATP HYDROLYSISHYDROLYSIS

236.1/3.336.1/' 1067.21010][

][][

][

][' oG

eq

eqeq

eq

eqeq ATP

PiADP

A

BK

:is reaction coupled this ofconstant mequilibriu the 7.0 pHAt

eqeq

eqeq

eq

eq

PiADP

ATPK

A

B

][][

]['

][

][

:by given is B/A of ratio the mequilibriuAt

Page 45: Advanced Biochemistry             BISC 6310         Fall 2011

45

ATP IS AN ENERGY COUPLING ATP IS AN ENERGY COUPLING AGENT:AGENT:

5

52

1034.1

1034.15001067.2][

][

of value a reaches [B]/[A] ratio the

until B into converted be to Aenabels hydrolysis that ATP means This

)(500M cells the in level highat maintained is ratio ][Pi][ATP]/[ADP -1

eq

eq

A

B

The hydrolysis of an ATP molecule in a coupled reaction changes the equilibrium by a factor of 108

(1.15 X10-3 compared to 1.34X105)

Page 46: Advanced Biochemistry             BISC 6310         Fall 2011

46

A and B in the preceding example can be any two different chemical species

A and B may represent activated and unactivated conformations of a proteinphosphorylation with ATP may be a means of

conversion into an activated conformation.Such a conformation can store free energy, which can

then be used to drive a thermodynamically unfavorable reaction. (muscle contraction).

A and B may refer to the concentrations of an ion or molecule on the outside and inside of a cell, as in the active transport of a nutrient.

Page 47: Advanced Biochemistry             BISC 6310         Fall 2011

47

THE STRUCTURAL BASIS OF THE THE STRUCTURAL BASIS OF THE HIGH PHOSPHORYL TRANSFER HIGH PHOSPHORYL TRANSFER POTENTIAL OF ATP POTENTIAL OF ATP 1. Resonance stabilization:

ADP and, particularly, Pi, have greater resonance stabilization than does ATP.

2. Electrostatic repulsion: At pH 7, the triphosphate unit of ATP carries about four

negative charges in close proximity. The repulsion between them is reduced when ATP is

hydrolyzed.

3. Stabilization due to hydration: Water can bind more effectively to ADP and Pi than it can to

the phosphoanhydride part of ATP, stabilizing the ADP and Pi by hydration.

Page 48: Advanced Biochemistry             BISC 6310         Fall 2011

PHOSPHORYL TRANSFER PHOSPHORYL TRANSFER POTENTIALPOTENTIAL

48

Page 49: Advanced Biochemistry             BISC 6310         Fall 2011

49

PHOSPHORYL TRANSFER PHOSPHORYL TRANSFER POTENTIALPOTENTIAL It is significant that ATP has an intermediate

phosphoryl transfer potential among the biologically important phosphorylated molecules.

This intermediate position enables ATP to function efficiently as a carrier of phosphoryl groups.If ATP had the highest potential then it wouldn’t

be formed.

Page 50: Advanced Biochemistry             BISC 6310         Fall 2011

50

Page 51: Advanced Biochemistry             BISC 6310         Fall 2011

SOURCES OF ATP DURING SOURCES OF ATP DURING EXERCISEEXERCISE

51

In resting muscle, [ATP] = 4 mM, [creatine phosphate] = 25 mM[ATP] sufficient to sustain 1second of muscle contraction

Page 52: Advanced Biochemistry             BISC 6310         Fall 2011

ATP-ADP CYCLEATP-ADP CYCLE

52

Only 100g of ATP in the body, turnover is very high.

This amount must be constantly recycled every day. The ultimate source of energy for constructing ATP is food; ATP is simply the carrier and regulation-storage unit of energy. The average daily intake of 2,500 food calories translates into a turnover of a 180 kg of ATP

Resting human consumes 40 kg of ATP in 24 hours.

Strenuous exertion: 0.5 kg / minute. 2hr run: 60kg utilized

Page 53: Advanced Biochemistry             BISC 6310         Fall 2011

CARBON FUELS- AN IMPORTANT CARBON FUELS- AN IMPORTANT SOURCE OF CELLULAR ENERGYSOURCE OF CELLULAR ENERGY

The more reduced a carbon is, the more energy its oxidation will give.

53

Page 54: Advanced Biochemistry             BISC 6310         Fall 2011

Fats are a more efficient fuel source than carbohydrates such as glucose due to the fact that carbon in fats is more reduced.

Energy derived from carbon oxidation is used in: creating a high phosphoryl transfer potential

compound creating an ion gradient.In both cases, the end point is the formation of ATP.

54

Page 55: Advanced Biochemistry             BISC 6310         Fall 2011

THE COMPLEXITY OF METABOLISM IS THE COMPLEXITY OF METABOLISM IS SIMPLIFIED BY UNIFYING THEMESSIMPLIFIED BY UNIFYING THEMES

The use of activated carriers is a recurring motif in biochemistry:- We’ve seen that phosphoryl transfer can be used to drive otherwise endergonic reactions,

- alter the energy of conformation of a protein,

- or serve as a signal to alter the activity of a protein. The phosphoryl-group donor in all of these reactions is ATP. So ATP is an activated carrier of phosphoryl groups because it is an exergonic process.

55

Page 56: Advanced Biochemistry             BISC 6310         Fall 2011

56

1.1. ACTIVATED ELECTRONS CARRIERS ACTIVATED ELECTRONS CARRIERS FOR FUEL OXIDATION.FOR FUEL OXIDATION.

The reactive part of NAD+ is its nicotinamide ring, a pyridine derivative synthesized from the vitamin niacin.

Nicotinamide adenine dinucleotide (NAD+): R = HNicotinamide adenine dinucleotidephosphate (NADP+): R = PO3

2-

Nicotinamide Adenine Dinucleotide

NAD+/NADH

Oxidizedforms

Page 57: Advanced Biochemistry             BISC 6310         Fall 2011

57

In the oxidation of a substrate, the nicotinamide ring of NAD+ accepts a hydrogen ion and two electrons, which are equivalent to a hydride ion and becomes reduced.

Page 58: Advanced Biochemistry             BISC 6310         Fall 2011

58

Flavin Adenine Dinucleotide

FAD/FADH2

This electron carrier consists of a flavin mononucleotide (FMN) unit (shown in blue) and an AMP unit (shown in black).

Page 59: Advanced Biochemistry             BISC 6310         Fall 2011

59

FAD, like NAD+, can accept two electrons. In doing so, FAD, unlike NAD+, takes up two protons.

Page 60: Advanced Biochemistry             BISC 6310         Fall 2011

60

2.2. AN ACTIVATED CARRIER OF AN ACTIVATED CARRIER OF ELECTRONS FOR REDUCTIVE ELECTRONS FOR REDUCTIVE BIOSYNTHESISBIOSYNTHESIS

NADPH carries electrons in the same way as NADH.

NADPH is used almost exclusively for reductive biosyntheses, whereas NADH is used primarily for the generation of ATP.

The extra phosphoryl group on NADPH is a tag that enables enzymes to distinguish between high-potential electrons to be used in anabolism and those to be used in catabolism.

Page 61: Advanced Biochemistry             BISC 6310         Fall 2011

61

3.3. AN ACTIVATED CARRIER OF TWO-AN ACTIVATED CARRIER OF TWO-CARBON FRAGMENTS.CARBON FRAGMENTS.

Coenzyme A, another central molecule in metabolism, is a carrier of acyl groups

The terminal sulfhydryl group in CoA is the reactive site.

Acyl groups are linked to CoA by thioester bonds. The resulting derivative is called an acyl CoA.

Page 62: Advanced Biochemistry             BISC 6310         Fall 2011

62

An acyl group often linked to CoA is the acetyl unit:

The G° for the hydrolysis of acetyl CoA has a large negative value:

Acetyl CoA has a high acetyl group-transfer potential because transfer of the acetyl group is exergonic.

Page 63: Advanced Biochemistry             BISC 6310         Fall 2011

ACTIVATED CARRIERSACTIVATED CARRIERS

63

A small set of carriers responsible for most interchangesof activated groups in metabolism

Page 64: Advanced Biochemistry             BISC 6310         Fall 2011

64

NADH, NADPH, and FADH2 react slowly with O2 in the absence of a catalyst.

Likewise, ATP and acetyl CoA are hydrolyzed slowly in the absence of a catalyst.

These molecules are kinetically quite stable in the face of a large thermodynamic driving force for reaction with O2 (in regard to the electron carriers) and H2O (in regard to ATP and acetyl CoA).

The kinetic stability of these molecules in the absence of specific catalysts enables enzymes to control the flow of free energy and reducing power.

Page 65: Advanced Biochemistry             BISC 6310         Fall 2011

65

KEY REACTIONS ARE REOCCURRING KEY REACTIONS ARE REOCCURRING THROUGHOUT METABOLISMTHROUGHOUT METABOLISM

Types of chemical reactions in metabolism:

Page 66: Advanced Biochemistry             BISC 6310         Fall 2011

66

1.1. OXIDATION-REDUCTION OXIDATION-REDUCTION REACTIONS REACTIONS

Reduction:Gain of electronsGain of hydrogenLoss of oxygen

Oxidation:Loss of electronsLoss of hydrogenGain of oxygen

Page 67: Advanced Biochemistry             BISC 6310         Fall 2011

67

2.2. LIGATION REACTIONS LIGATION REACTIONS

Bond formation using free energy from ATP cleavage.

Page 68: Advanced Biochemistry             BISC 6310         Fall 2011

3.3. ISOMERIZATION REACTIONS ISOMERIZATION REACTIONS

Rearrange particular atoms within the molecule.Their role is often to prepare a molecule for

subsequent reactions such as the oxidation-reduction.

68

Page 69: Advanced Biochemistry             BISC 6310         Fall 2011

4.4. GROUP-TRANSFER GROUP-TRANSFER REACTIONS REACTIONS

69

Page 70: Advanced Biochemistry             BISC 6310         Fall 2011

5.5. HYDROLYTIC REACTIONS HYDROLYTIC REACTIONS

Cleave bonds by the addition of water.Hydrolysis is a common means employed to

break down large molecules.

70

Page 71: Advanced Biochemistry             BISC 6310         Fall 2011

6.6. THE ADDITION OF FUNCTIONAL THE ADDITION OF FUNCTIONAL GROUPS TO DOUBLE BONDS OR THE GROUPS TO DOUBLE BONDS OR THE REMOVAL OF GROUPS FORM REMOVAL OF GROUPS FORM DOUBLE BONDSDOUBLE BONDS

71

Page 72: Advanced Biochemistry             BISC 6310         Fall 2011

72

Page 73: Advanced Biochemistry             BISC 6310         Fall 2011

IMPORTANT GENERAL IMPORTANT GENERAL PRINCIPLE OF METABOLISMPRINCIPLE OF METABOLISMBiosynthetic and degradative pathways are

almost always distinct.It facilitates the control of metabolism.

Metabolic regulation and flexibility are enhanced by compartmentalization:For example, fatty acid oxidation takes place in

mitochondria, whereas fatty acid synthesis takes place in the cytosol

73

Page 74: Advanced Biochemistry             BISC 6310         Fall 2011

METABOLIC PROCESSES ARE METABOLIC PROCESSES ARE REGULATED IN THREE REGULATED IN THREE PRINCIPAL WAYSPRINCIPAL WAYS1. The amounts of enzymes

2. Their catalytic activities

3. The accessibility of substrates

74

Page 75: Advanced Biochemistry             BISC 6310         Fall 2011

75

1.1. THE AMOUNTS OF ENZYMESTHE AMOUNTS OF ENZYMES

Rate of enzyme synthesis:Transcriptional regulation (ex. Lactose

upregulates -Gal within minutes)Translational regulation

Rate of enzyme degradation:RNA degradationProtein degradation

Page 76: Advanced Biochemistry             BISC 6310         Fall 2011

2.2. THEIR CATALYTIC ACTIVITIES:THEIR CATALYTIC ACTIVITIES:

Reversible allosteric control:Feed back inhibition of the first step of most

metabolic pathways by the pathway products.

Reversible covalent modification:Phosphorylation-dephosphorylation.Hormones like insulin and epinephrine trigger the

reversible modifications of key enzymes.

76

Page 77: Advanced Biochemistry             BISC 6310         Fall 2011

3.3. THE ACCESSIBILITY OF THE ACCESSIBILITY OF SUBSTRATESSUBSTRATES

Controlling the flux of substrateTransfer of substrate from one

compartment of the cell to the other.

77