adaptive orthonormal systems for matrix-valued functionsbernstei/web5/2016_moima_irene.pdf ·...

29
The Unit Ball case Adaptive orthonormal systems for matrix-valued functions Irene Sabadini Politecnico di Milano MOIMA, Hannover, June 20-23, 2016 (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Upload: others

Post on 24-Sep-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Adaptive orthonormal systems for matrix-valuedfunctions

Irene Sabadini

Politecnico di Milano

MOIMA, Hannover, June 20-23, 2016(joint work with D. Alpay, F. Colombo, T. Qian)

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 2: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Functions in the Hardy space H2(D) can be decomposed using theso-called Takenaka-Malquist (TM) system

Bn(z) =

√1− |an|2

1− anz

n−1∏k=1

z − ak1− akz

, n = 1, 2, . . .

where an ∈ D.

TM systems have several applications in applied mathematics, e.g. incontrol theory, signal processing. TM systems are subject to the condition

∞∑k=1

(1− |ak |) =∞ (1)

which guarantees that the TM system is dense in Hp(D), 1 ≤ p <∞.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 3: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

T. Qian and Y-B Wang proposed a decomposition in which the condition(1) is not requested, thus the obtained subset of the TM system is notcomplete in Hp(D). The goal is:

to obtain a decomposition a given function f in an adaptive way

to have fast convergence

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 4: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Algorithm

We consider H and a dictionary D (consisting of unit elements in H).Given f we look for a decomposition

f =∞∑k=1

〈f , uk〉uk , uk ∈ D.

In the case of H2(D) we consider a dictionary D containing functions ofthe form

ea(z) =

√1− |a|2

1− az, a ∈ D.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 5: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Let f ∈ H2(D), f1 = f , a1, ..., an in D.We have Ba1 = ea1 and 〈f , ea1〉 =

√1− |a1|2f (a1).

f (z) = f1(z) = (f1(z)− 〈f1, ea1〉ea1(z)) + 〈f1, ea1〉ea1(z)

= g2(z) + 〈f1, ea1〉ea1(z)

g2(z) is the reminder. Since g2(a1) = 0:

f (z) = 〈f1, ea1〉ea1(z) + f2(z)z − a1

1− a1z,

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 6: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Then:

f (z) = 〈f1, ea1〉ea1(z) + f2(z)z − a1

1− a1z,

and

f2(z) = 〈f2, ea2〉ea2(z) + f3(z)z − a2

1− a2z,

then, iterating,

f (z) =n∑

k=1

〈fk , eak 〉eak (z) + fn+1(z)n∏

k=1

z − ak1− akz

=n∑

k=1

〈gk ,Ba1,...,ak 〉Ba1,...,ak (z) + fn+1(z)n∏

k=1

z − ak1− akz

.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 7: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Idea (Qian-Wang): use a non a typical greedy algorithm:

the points ak are not assigned

we use at each step the maximal selection principle

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 8: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

We have Ba = ea and 〈f ,Ba〉 =√

1− |a|2f (a).

f (z) = f1(z) = (f1(z)− 〈f1, ea1〉ea1(z)) + 〈f1, ea1〉ea1(z)

= g2(z) + 〈f1, ea1〉ea1(z)

g2(z) is the reminder.

Idea

To minimize ‖g2‖2. This is equivalent to maximize |〈f1, ea1〉ea1(z)|2.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 9: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Preliminaries

Maximal selection principle

For any g ∈ H2(D) there exists a ∈ D such that

|〈g , ea〉ea(z)|2 = sup{|〈g , ea1〉ea1(z)|2, a1 ∈ D}

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 10: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Theorem

Given f ∈ H2(D) using the maximal selection principle we have

f =∞∑k=1

〈f ,Bk〉Bk .

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 11: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Definition

We denote by Hp×q2 the space of p × q matrices with entries in H2(D).

A function F ∈ Hp×q2 if and only if it can be written as

F (z) =∞∑n=0

Fnzn,

where F` ∈ Cp×q, ` = 1, 2, . . ., are such that

∞∑n=0

Tr (F ∗n Fn) <∞.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 12: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Definition

Let F (z) =∑∞

n=1 Fnzn and G (z) =

∑∞n=1 Gnz

n in Hp×q2 , we define

[F ,G ] =∞∑n=0

G∗n Fn ∈ Cq×q

and

‖F‖2 = Tr [F ,F ] =∞∑n=0

Tr (F ∗n Fn).

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 13: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Definition (Matrix-valued Blaschke factors)

They are defined as

Bw ,P(z) = Ip − P + Pbw (z),

where for w ∈ D,bw =

z − w

1− zw,

and P ∈ Cp×p is any orthogonal projection.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 14: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Maximal selection principle

Let k0 ∈ {1, . . . , p} and let F ∈ Hp×q2 . There exists w0 ∈ D and an

orthogonal projection P0 of rank k0 such that

(1−|w |2) (Tr [PF (w),F (w)]) ≤ (1−|w0|2) (Tr [P0F (w0),F (w0)]) , (1)

for every choice of w ∈ D and every orthogonal projection P of rank k0.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 15: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Remark

Let w0 ∈ D and let P0 ∈ Cp×p be an orthogonal projection. We can write

F (z) = P0F (w0)ew0(z)√

1− |w0|2 + F (z)− P0F (w0)ew0(z)√

1− |w0|2,

where

ew0(z) =

√1− |w0|2

1− zw0.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 16: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Proposition

Let w0 ∈ D, let P0 ∈ Cp×p be an orthogonal projection and let

H0(z) = P0F (w0)ew0(z)√

1− |w0|2

H(z) = F (z)− P0F (w0)ew0(z)√

1− |w0|2.

We have that F (z) = H0(z) + H(z), moreover

P0H(w0) = 0

and[F ,F ] = [H0,H0] + [H,H].

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 17: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The case of matrix-valued functions

Proposition

Let H ∈ Hp×q2 be such that P0H(w0) = 0p×q. Then

H = Bw0,P0G , G ∈ Hp×q2

and[H,H] = [G ,G ].

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 18: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

For any given w0 ∈ D and any orthogonal projection P0 ∈ Cp×p, thedecomposition F = H0 + H can be rewritten in a unique way as theorthogonal sum

F (z) = M0ew0(z)√

1− |w0|2 + Bw0,P0(z)F1(z),

where M0 = P0F (w0) ∈ Cp×q and F1 ∈ Hp×q2 . We have

M0ew0

√1− |w0|2 ∈

(Hp×q

2 Bw0,P0Hp×q2

)and Bw0,P0F1 ∈ Bw0,P0H

p×q2 .

Finally,[F ,F ] = (1− |w0|2)[P0F (w0),F (w0)] + [F1,F1].

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 19: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

We can then reiterate and, after fixing k1 ∈ {1, . . . , p}, get adecomposition for F1,

F1(z) = P1F (w1)ew1(z)√

1− |w1|2 + Bw1,P1(z)F2(z), (2)

where w1 is any complex number in the disc, and P1 is any orthogonalprojection of rank k1.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 20: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

Thus F admits the orthogonal decomposition (with M1 = P1F (w1))

F (z) = M0ew0(z)√

1− |w0|2+

+ Bw0,P0(z)M1ew1(z)√

1− |w1|2 + Bw0,P0(z)Bw1,P1(z)F2(z)

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 21: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

Let

B0(z) = P0e0(z) and Bk(z) =

(k−1∏u=0

Bwu,Pu (z)

)Pkewk

(z), k = 1, 2, . . .

setting Mk = Mk

√1− |wk |2 = PkF (wk)

√1− |wk |2, we have

F (z) =N∑

k=0

Bk(z)Mk +

(N∏

u=0

Bwu,Pu (z)

)FN+1(z).

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 22: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

Theorem

Suppose that at each step one selects wk and Pk according to themaximal selection principle. Then, the algorithm converges, meaning that

limN→N0

Tr [F (z)−N∑

k=0

Bk(z)Mk , F (z)−N∑

k=0

Bk(z)Mk ] = 0,

where N0 can be finite or infinite.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 23: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Unit Ball case

Definition

Let BN be the unit ball in CN . We define

H(BN) =

f (z) =∑α∈NN

0

zαfα : ‖f ‖2H(BN )=∑α∈NN

0

α!

|α|!|fα|2 <∞

.

where we use the notation zα = zα11 · · · z

αN

N , α! = α1! · · ·αN !.It is possible to define H(BN)n×m where fα ∈ Cn×m.

We define

[f , g ](H(BN ))n×m =

∑α∈NN

0

g∗αfα, and (3)

〈f , g〉(H(BN ))n×m = Tr [f , g ](H(BN ))

n×m . (4)

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 24: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Definition

ea(z) =

√1− ‖a‖2

1− 〈z , a〉and ba(z) =

(1− ‖a‖2)1/2

1− 〈z , a〉(z − a)(IN − a∗a)−1/2.

Note that ba(z) is C1×N = C1×N -valued.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 25: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Blaschke factor

A Blaschke factor is an element of the form

B = U

(ba(z) 01×(n−1)

0(n−1)×N In−1

)where U is a unitary matrix in Cn×n. B is Cn×(N+n−1)-valued.A Blaschke product is a product of such elements, of compatible sizes.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 26: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Maximal selection principle

Let B be a Cu×n-valued rational function of the variables z1, . . . , zN ,analytic in an neighborhood of the closed unit ball BN , and takingco-isometric values on the unit sphere, let r0 ∈ {1, . . . , n}, and letF ∈ H(BN)n×m. There exists w0 ∈ BN and a Cn×n-valued orthogonalprojection P0 of rank r0 such that

(1− ‖w0‖2) (Tr [B(w0)P0F (w0),B(w0)P0F (w0)]) is maximum.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 27: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

The Algorithm

Let F ∈ (H(BN))n×m. We choose w0 ∈ BN and r0 ∈ {1, . . . , n}.Use the maximal selection principle and get a decomposition

F (z) = P0F (w0)ew0(z)√

1− ‖w0‖2 + Bw0,P0(z)F1(z),

where F1 ∈ (H(BN))(n+r ′0(N−1))×m.Then select w1 ∈ BN and r1 ∈ {1, . . . , n + r ′0(N − 1)}, and iterate byapplying the m.s. principle to (Bw0,P0(z),F1(z)):

F1(z) = P1F1(w1)ew1(z)√

1− ‖w1‖2 + Bw1,P1(z)F2(z),

where F2 ∈ (H(BN))(n+(r ′0+r ′1)(N−1))×m.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 28: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

Set:

Bk(z) =

{ √1− ‖w0‖2ew0(z) for k = 0,√1− ‖wk‖2ewk

(z)Bw0,P0(z) · · ·Bwk−1,Pk−1(z) for k ≥ 1.

and Mk = PkFk(wk).

Theorem

If the selection on wk and Pk is done according to the m.s. principle thenthe algorithm converges and

F (z) =∞∑k=0

Bk(z)Mk .

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions

Page 29: Adaptive orthonormal systems for matrix-valued functionsbernstei/Web5/2016_MOIMA_Irene.pdf · (joint work with D. Alpay, F. Colombo, T. Qian) Irene Sabadini Adaptive orthonormal systems

PreliminariesThe case of matrix-valued functions

The Unit Ball case

References

D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptive orthonormalsystems for matrix-valued functions, preprint.

D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptativedecomposition: the case of the Drury-Arveson space, preprint.

T. Qian and Y. B. Wang. Adaptive Decomposition Into BasicSignals of Non-negative Instantaneous Frequencies - A Variation andRealization of Greedy Algorithm. Adv. Comput. Math., 2011.

Irene Sabadini Adaptive orthonormal systems for matrix-valued functions