adaptive control and the definition of exponential stability · definition: uniform stability in...

71
Adaptive Control and the Definition of Exponential Stability Travis E. Gibson and Anuradha M. Annaswamy American Control Conference, Chicago IL July 1, 2015

Upload: others

Post on 25-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and the Definition of

Exponential Stability

Travis E. Gibson† and Anuradha M. Annaswamy‡

American Control Conference, Chicago ILJuly 1, 2015

Page 2: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Objectives

Prove that the following statement is incorrect

“If the reference model is persistently exciting then the adaptivesystem is globally exponentially stable”

2 / 15

Page 3: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Objectives

Prove that the following statement is incorrect

“If the reference model is persistently exciting then the adaptivesystem is globally exponentially stable”

Prove the following

Adaptive systems can at best be uniformly asymptotically stable inthe large

2 / 15

Page 4: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Objectives

Prove that the following statement is incorrect

“If the reference model is persistently exciting then the adaptivesystem is globally exponentially stable”

Prove the following

Adaptive systems can at best be uniformly asymptotically stable inthe large

Main insights

Indeed if the reference model is PE then after some time the plantwill be PE, but after exactly how much time?

We will show how a PE condition on the reference model implies aweak PE condition on the plant state.

2 / 15

Page 5: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Outline

Definitions Stability Exponential Stability Persistent Excitation (PE) weak Persistent Excitation (PE∗)

Link between PE and Exponential Stability

Link between PE∗ and Uniform AsymptoticStability

Simulation Studies

3 / 15

Page 6: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability in the Large (Global)

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)t

x0

s

4 / 15

Page 7: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability in the Large (Global)

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)δ

ǫ

tx0

t0

s

Definition: Uniform Stability in the Large (Massera, 1956)

(i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t.‖x0‖ ≤ δ =⇒ ‖s(t;x0, t0)‖ ≤ ǫ.

4 / 15

Page 8: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability in the Large (Global)

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)δ, ρ

ǫ

t

η

x0

t0

t0 + Ts

Definition: Uniform Stability in the Large (Massera, 1956)

(i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t.‖x0‖ ≤ δ =⇒ ‖s(t;x0, t0)‖ ≤ ǫ.

(ii) Uniformly Attracting in the Large: For all ρ,η ∃ T (η,ρ)‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ η ∀ t ≥ t0 + T .

4 / 15

Page 9: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability in the Large (Global)

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)δ, ρ

ǫ

t

η

x0

t0

t0 + Ts

Definition: Uniform Stability in the Large (Massera, 1956)

(i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t.‖x0‖ ≤ δ =⇒ ‖s(t;x0, t0)‖ ≤ ǫ.

(ii) Uniformly Attracting in the Large: For all ρ,η ∃ T (η,ρ)‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ η ∀ t ≥ t0 + T .

(iii) Uniformly Asymptotically Stable in the Large (UASL)= uniformly stable + uniformly bounded +

uniformly attracting in the large.4 / 15

Page 10: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)

ρ

κ‖x0‖

t

x0

t0

κ‖x0‖e−ν(t−t0)

s

Definition: (Malkin, 1935; Kalman and Bertram, 1960)

(i) Exponentially Stable (ES): ∀ ρ > 0 ∃ ν(ρ),κ(ρ) s.t.

‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0)

5 / 15

Page 11: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)

ρ

κ‖x0‖

t

x0

t0

κ‖x0‖e−ν(t−t0)

s

Definition: (Malkin, 1935; Kalman and Bertram, 1960)

(i) Exponentially Stable (ES): ∀ ρ > 0 ∃ ν(ρ),κ(ρ) s.t.

‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0)

(ii) Exponentially Stable in the Large (ESL): ∃ ν,κ s.t.

‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0)

5 / 15

Page 12: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Persistent Excitation

“Exogenous Signal” : ω : [t0,∞) → Rp

Initial Condition : ω0 = ω(t0)

Parameterized Function : y(t, ω) : [t0,∞)× Rp → R

m

6 / 15

Page 13: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Persistent Excitation

“Exogenous Signal” : ω : [t0,∞) → Rp

Initial Condition : ω0 = ω(t0)

Parameterized Function : y(t, ω) : [t0,∞)× Rp → R

m

Definition

(i) Persistently Exciting (PE):∃ T ,α s.t.

∫ t+T

t

y(τ, ω)yT(τ, ω)dτ ≥ αI

for all t ≥ t0 and ω0 ∈ Rp.

6 / 15

Page 14: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Persistent Excitation

“Exogenous Signal” : ω : [t0,∞) → Rp

Initial Condition : ω0 = ω(t0)

Parameterized Function : y(t, ω) : [t0,∞)× Rp → R

m

Definition

(i) Persistently Exciting (PE):∃ T ,α s.t.

∫ t+T

t

y(τ, ω)yT(τ, ω)dτ ≥ αI

for all t ≥ t0 and ω0 ∈ Rp.

(ii) weakly Persistently Exciting (PE∗(ω,Ω)):∃ a compact set Ω ⊂ R

p, T (Ω) > 0,α(Ω) s.t.∫ t+T

t

y(τ, ω)yT(τ, ω)dτ ≥ αI

for all ω0 ∈ Ω and t ≥ t0.

6 / 15

Page 15: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

properties of adaptive control

7 / 15

Page 16: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

-

θT

r

xm

x

e

Reference Model

Plant

8 / 15

Page 17: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

8 / 15

Page 18: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

8 / 15

Page 19: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

8 / 15

Page 20: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

Update Law˙θ(t) = −xeTPB

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

8 / 15

Page 21: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

Update Law˙θ(t) = −xeTPB

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

Stability V (e(t), θ(t)) = eT(t)Pe(t) + Trace(

θT(t)θ(t))

8 / 15

Page 22: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

Update Law˙θ(t) = −xeTPB

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

Stability V (e(t), θ(t)) = eT(t)Pe(t) + Trace(

θT(t)θ(t))

V ≤ eTQe

8 / 15

Page 23: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

Update Law˙θ(t) = −xeTPB

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

Stability V (e(t), θ(t)) = eT(t)Pe(t) + Trace(

θT(t)θ(t))

V ≤ eTQe

‖e‖L∞≤

V (e(t0), θ(t0))/Pmin

‖e‖L2≤

V (e(t0), θ(t0))/Qmin

8 / 15

Page 24: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control

Plant x = Ax−BθTx+Bu

Reference Model xm = Axm +Br

Control Input u = θT(t)x+ r

Error e = x− xm

Parameter Error θ(t) = θ(t)− θ

Update Law˙θ(t) = −xeTPB

-

θT

r

xm

x

e

Reference Model

Plant

Unknown Parameter θ

Adaptive Parameter θ(t)

Stability V (e(t), θ(t)) = eT(t)Pe(t) + Trace(

θT(t)θ(t))

V ≤ eTQe

‖e‖L∞≤

V (e(t0), θ(t0))/Pmin

‖e‖L2≤

V (e(t0), θ(t0))/Qmin

The L-norms of e are initial condition dependent!! 8 / 15

Page 25: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability and Adaptive Control

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

9 / 15

Page 26: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability and Adaptive Control

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Theorem: (Morgan and Narendra, 1977)

If x(t) ∈ PE then z(t) = 0 is UASL.

9 / 15

Page 27: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability and Adaptive Control

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Theorem: (Morgan and Narendra, 1977)

If x(t) ∈ PE then z(t) = 0 is UASL.

ESL ES

UASL UAS+ Linear

9 / 15

Page 28: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability and Adaptive Control

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Theorem: (Morgan and Narendra, 1977)

If x(t) ∈ PE then z(t) = 0 is UASL.

ESL ES

UASL UAS+ Linear

Therefore, when x ∈ PE the dynamics z(t) are globallyexponentially stable (Anderson, 1977).

9 / 15

Page 29: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Stability and Adaptive Control

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Theorem: (Morgan and Narendra, 1977)

If x(t) ∈ PE then z(t) = 0 is UASL.

ESL ES

UASL UAS+ Linear

Therefore, when x ∈ PE the dynamics z(t) are globallyexponentially stable (Anderson, 1977).

The condition of PE for x(t) however does not follow fromxm(t) ∈ PE.

9 / 15

Page 30: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

10 / 15

Page 31: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?

Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = − (xTh− x

Tmh)(xT

h+ xTmh)

10 / 15

Page 32: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

10 / 15

Page 33: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

10 / 15

Page 34: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

10 / 15

Page 35: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

‖e‖L∞≤

V (z0)Pmin

10 / 15

Page 36: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

‖e‖L∞≤

V (z0)Pmin

10 / 15

Page 37: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

∫ t+pT

t

(xT(τ)h)2dτ ≥

pα−

(

V (z0)Pmin

+ 2xmaxm

)

pT

∫ t+pT

t

‖e(τ)‖2dτ.

‖e‖L∞≤

V (z0)Pmin

10 / 15

Page 38: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

∫ t+pT

t

(xT(τ)h)2dτ ≥

pα−

(

V (z0)Pmin

+ 2xmaxm

)

pT

∫ t+pT

t

‖e(τ)‖2dτ.

‖e‖L∞≤

V (z0)Pmin

10 / 15

Page 39: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

∫ t+pT

t

(xT(τ)h)2dτ ≥

pα−

(

V (z0)Pmin

+ 2xmaxm

)

pT

∫ t+pT

t

‖e(τ)‖2dτ.

‖e‖L∞≤

V (z0)Pmin

xm ∈ PE

∫ t0+T

t0

xmxTm ≥ αI

10 / 15

Page 40: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

∫ t+pT

t

(xT(τ)h)2dτ ≥

pα−

(

V (z0)Pmin

+ 2xmaxm

)

pT

∫ t+pT

t

‖e(τ)‖2dτ.

‖e‖L∞≤

V (z0)Pmin

xm ∈ PE

∫ t0+T

t0

xmxTm ≥ αI

‖e‖L2≤

V (z0)Qmin

10 / 15

Page 41: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

If xm ∈ PE then x ∈ ?Recall that e = x − xm, then for any fixed unitaryvector h

(xTmh)2 − (xT

h)2 = −(xTh− x

Tmh)

︸ ︷︷ ︸

≤‖e‖

(xTh+ x

Tmh)

︸ ︷︷ ︸

=eTh+2xTm

h

(xTmh)2 − (xT

h)2 ≤ ‖e‖

(√

V (z0)

Pmin+ 2xmax

m

)

Move xm to the RHS, multiply by −1, and integrateto pT

∫ t+pT

t

(xT(τ)h)2dτ ≥

pα−

(

V (z0)Pmin

+ 2xmaxm

)

pT

∫ t+pT

t

‖e(τ)‖2dτ.

Clean the notation∫ t+pT

t

‖x‖2dτ ≥ pα−

(

V (z0)Pmin

+ 2xmaxm

)

pTV (z0)Qmin

.

‖e‖L∞≤

V (z0)Pmin

xm ∈ PE

∫ t0+T

t0

xmxTm ≥ αI

‖e‖L2≤

V (z0)Qmin

10 / 15

Page 42: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

.

11 / 15

Page 43: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

.

Fixed T, α

11 / 15

Page 44: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

.

Fixed T, α Free p

11 / 15

Page 45: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

.

Fixed T, α Free p Initial Condition z0

11 / 15

Page 46: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

︸ ︷︷ ︸

α′

.

Fixed T, α Free p Initial Condition z0

If the initial condition ‖z(t0)‖ increases (V (z0) increases), then p mustincrease, and thus the time (pT ) must increase to keep α′ constant.

11 / 15

Page 47: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

x ∈ PE∗ x /∈ PE

∫ t+T

t

xm(τ )xTm(τ )dτ ≥ αI

∫ t+pT

t

xT(τ, z)x(τ, z)dτ ≥ pα−

(√V (z0)Pmin

+ 2xmaxm

)√

pTV (z0)Qmin

︸ ︷︷ ︸

α′

.

Fixed T, α Free p Initial Condition z0

If the initial condition ‖z(t0)‖ increases (V (z0) increases), then p mustincrease, and thus the time (pT ) must increase to keep α′ constant.

Revisit the definitions for PE

(i) Persistently Exciting (PE): ∃ T, α s.t.∫ t+T

t

x(τ, ω)xT(τ, ω)dτ ≥ αI

for all t ≥ t0 and ω0 ∈ Rp.

(ii) weakly Persistently Exciting (PE∗(ω,Ω)): ∃ a compactset Ω ⊂ R

p, T (Ω) > 0, α(Ω) s.t.∫ t+T

t

x(τ, ω)xT(τ, ω)dτ ≥ αI

for all ω0 ∈ Ω and t ≥ t0.11 / 15

Page 48: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

12 / 15

Page 49: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

12 / 15

Page 50: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

Theorem

If xm ∈ PE then x ∈ PE∗(z,Ω(ζ)), for any ζ > 0,and it follows that the dynamics above are UASL.

12 / 15

Page 51: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

Theorem

If xm ∈ PE then x ∈ PE∗(z,Ω(ζ)), for any ζ > 0,and it follows that the dynamics above are UASL.

Proof.

xm ∈ PE =⇒ x ∈ PE∗(z,Ω(ζ)) from previous slide.

12 / 15

Page 52: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

Theorem

If xm ∈ PE then x ∈ PE∗(z,Ω(ζ)), for any ζ > 0,and it follows that the dynamics above are UASL.

Proof.

xm ∈ PE =⇒ x ∈ PE∗(z,Ω(ζ)) from previous slide.

PE∗ by definition is a local uniform property

12 / 15

Page 53: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

Theorem

If xm ∈ PE then x ∈ PE∗(z,Ω(ζ)), for any ζ > 0,and it follows that the dynamics above are UASL.

Proof.

xm ∈ PE =⇒ x ∈ PE∗(z,Ω(ζ)) from previous slide.

PE∗ by definition is a local uniform property

The “Large” part of UASL holds because we can takearbitrarily large Ω

12 / 15

Page 54: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Adaptive Control and UASLRevisit the adaptive control problem

z(t) =

[

A BxT(t)−x(t)BTP 0

]

z(t), z(t) ,

[

e(t)

θ(t)

]

Define the following compact set

Ω(ζ) , z : V (z) ≤ ζ

Theorem

If xm ∈ PE then x ∈ PE∗(z,Ω(ζ)), for any ζ > 0,and it follows that the dynamics above are UASL.

Proof.

xm ∈ PE =⇒ x ∈ PE∗(z,Ω(ζ)) from previous slide.

PE∗ by definition is a local uniform property

The “Large” part of UASL holds because we can takearbitrarily large Ω

Next we prove (by counter example) xm ∈ PE does not imply ESL.12 / 15

Page 55: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

13 / 15

Page 56: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

θ

e

−xm(t0)

M1

M2

M3

(Jenkins et al., 2013a; 2013b)13 / 15

Page 57: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

θ

e

−xm(t0)

M1

M2

M3

M1 ∪M2 ∪M3 is invariant

(Jenkins et al., 2013a; 2013b)13 / 15

Page 58: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

θ

e

−xm(t0)

M1

M2

M3

M1 ∪M2 ∪M3 is invariant

M3 extends down in anunbounded fashion

(Jenkins et al., 2013a; 2013b)13 / 15

Page 59: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

θ

e

−xm(t0)

M1

M2

M3

M1 ∪M2 ∪M3 is invariant

M3 extends down in anunbounded fashion

maximum rate of change inM3 is bounded

(Jenkins et al., 2013a; 2013b)13 / 15

Page 60: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

z1

z2

z3

z4

z5

z6

z7

z8

z9

θ

e

Plant x = Ax−BθTx+Bu

Reference xm = Axm +Br

Control u = θT(t)x + r

A = −1

B = 1

r = 3

xm(t0) = 3

θ

e

−xm(t0)

M1

M2

M3

M1 ∪M2 ∪M3 is invariant

M3 extends down in anunbounded fashion

maximum rate of change inM3 is bounded

The fixed rate regardless ofinitial condition implies thatESL is impossible

(Jenkins et al., 2013a; 2013b)13 / 15

Page 61: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example Continued

5 5 5 0 0.5 1

0

1

2

z4

θ

e

0 5 10 15-3

-2

-1

0

1

0 5 10 150

1

2

3

4

0 5 10 150

1

2

3

4

0 5 10 15

-10

-8

-6

-4

-2

0

2

e xm

x θ

tt

Jenkins, B. M., T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013a).Asymptotic stability and convergence rates in adaptive systems, IFAC Workshopon Adaptation and Learning in Control and Signal Processing, Caen, France.

Jenkins, B. M, T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013b).Convergence properties of adaptive systems with open-and closed-loop referencemodels, AIAA guidance navigation and control conference.

14 / 15

Page 62: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example Continued

5 5 5 0 0.5 1

0

1

2

z4

z5

θ

e

0 5 10 15-3

-2

-1

0

1

0 5 10 150

1

2

3

4

0 5 10 150

1

2

3

4

0 5 10 15

-10

-8

-6

-4

-2

0

2

e xm

x θ

tt

Jenkins, B. M., T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013a).Asymptotic stability and convergence rates in adaptive systems, IFAC Workshopon Adaptation and Learning in Control and Signal Processing, Caen, France.

Jenkins, B. M, T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013b).Convergence properties of adaptive systems with open-and closed-loop referencemodels, AIAA guidance navigation and control conference.

14 / 15

Page 63: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Simulation Example Continued

5 5 5 0 0.5 1

0

1

2

z4

z5

z6

θ

e

0 5 10 15-3

-2

-1

0

1

0 5 10 150

1

2

3

4

0 5 10 150

1

2

3

4

0 5 10 15

-10

-8

-6

-4

-2

0

2

e xm

x θ

tt

Jenkins, B. M., T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013a).Asymptotic stability and convergence rates in adaptive systems, IFAC Workshopon Adaptation and Learning in Control and Signal Processing, Caen, France.

Jenkins, B. M, T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. (2013b).Convergence properties of adaptive systems with open-and closed-loop referencemodels, AIAA guidance navigation and control conference.

14 / 15

Page 64: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Summary PE of the reference model does not imply PE for the state vector

Adaptive control in general can not be guaranteed to be ESL

[email protected] BibliographyAnderson, B. D. O. 1977. Exponetial stability of linear equations arising in adaptive

identification, IEEE Trans. Automat. Contr. 22, no. 83.

Jenkins, B. M., T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. 2013a.Asymptotic stability and convergence rates in adaptive systems, Ifac workshop onadaptation and learning in control and signal processing, caen, france.

Jenkins, B. M, T. E. Gibson, A. M. Annaswamy, and E. Lavretsky. 2013b.Convergence properties of adaptive systems with open-and closed-loop reference

models, AIAA guidance navigation and control conference.

Kalman, R. E. and J. E. Bertram. 1960. Control systems analysis and design via the

‘second method’ of liapunov, i. continuous-time systems, Journal of BasicEngineering 82, 371–393.

Malkin, I. G. 1935. On stability in the first approximation, Sbornik NauchnykhTrudov Kazanskogo Aviac. Inst. 3.

Massera, J. S. 1956. Contributions to stability theory, Annals of Mathematics 64,no. 1.

Morgan, A. P. and K. S. Narendra. 1977. On the stability of nonautonomous

differential equations x = [A+B(t)]x, with skew symmetric matrix B(t), SIAMJournal on Control and Optimization 15, no. 1, 163–176.

15 / 15

Page 65: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

backup slides

16 / 15

Page 66: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Example or recent literature making this mistake

17 / 15

Page 67: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Stability

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0) δ, ρ

ǫ

t

η

x0

t0

t0 + Ts

Definition: Stability (Massera, 1956)

(i) Stable: ∀ ǫ > 0 ∃ δ(ǫ, x0, t0) > 0 s.t.‖x0‖ ≤ δ =⇒ ‖s(t;x0, t0)‖ ≤ ǫ.

(ii) Attracting: ∃ ρ(t0) > 0 s.t. ∀ η > 0 ∃ an attraction time

T (η, x0, t0) s.t.‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ η ∀ t ≥ t0 + T .

(iii) Asymptotically Stable = stable + attracting.

18 / 15

Page 68: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0) δ, ρ

ǫ

t

η

x0

t0

t0 + Ts

Definition: Uniform Stability (Massera, 1956)

(iv) Uniformly Stable: δ(ǫ) in (i) is uniform in t0 and x0.

(v) Uniformly Attracting: ρ and T do not depend on t0 or x0

and thus the attracting times take the form T (η,ρ).

(vi) Uniformly Asymptotically Stable, (UAS)= uniformly stable + uniformly attracting.

19 / 15

Page 69: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Uniform Stability in the Large (Global)

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0) δ, ρ

ǫ

t

η

x0

t0

t0 + Ts

Definition: Uniform Stability in the Large (Massera, 1956)

(vii) Uniformly Attracting in the Large: For all ρ,η ∃ T (η,ρ)‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ η ∀ t ≥ t0 + T .

(viii) Uniformly Asymptotically Stable in the Large (UASL)= uniformly stable +

uniformly bounded +

uniformly attracting in the large.20 / 15

Page 70: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Exponential Asymptotic Stability

x(t) = f(x(t), t)

x0 , x(t0)

Solution s(t;x0, t0)

δ, ρ

ǫ

t

x0

t0

ǫe−ν(t−t0)

s

Definition: (Malkin, 1935; Kalman and Bertram, 1960)

(i) Exponentially Asymptotically Stable (EAS):∀ ǫ > 0 ∃ δ(ǫ),ν(ǫ) s.t.

‖x0‖ ≤ δ =⇒ ‖s(t;x0, t0)‖ ≤ ǫe−ν(t−t0)

(ii) Exponentially Asymptotically Stable in the Large

(EASL): ∀ ρ > 0 ∃ ǫ(ρ),ν(ρ) s.t.‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ ǫe−ν(t−t0)

(iii) Exponentially Stable (ES): ∀ ρ > 0 ∃ ν(ρ),κ(ρ) s.t.‖x0‖ ≤ ρ =⇒ ‖s(t;x0, t0)‖ ≤ κ‖x0‖e

−ν(t−t0)

(iv) Exponentially Stable in the Large (ESL): ∃ ν,κ s.t.‖s(t;x0, t0)‖ ≤ κ‖x0‖e

−ν(t−t0)

21 / 15

Page 71: Adaptive Control and the Definition of Exponential Stability · Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable: ∀ ǫ > 0 ∃ δ(ǫ) > 0 s.t. kx0k

Rant about “uniform transients”

22 / 15