accelerating air traffic management efficiency - a call to industry

44
Accelerating Air Traffic Management Efficiency: A Call to Industry

Upload: canso

Post on 29-Mar-2016

223 views

Category:

Documents


4 download

DESCRIPTION

CANSO and The Boeing Company are committed to challenging the status quo by promoting examples of where positive change has taken place. This “Call to Industry” promotes collaboration as the core of true aviation sustainability and challenges all stakeholders to come to the table, ready to learn, to share, and to create change.

TRANSCRIPT

Page 1: Accelerating Air Traffic Management Efficiency - A Call to Industry

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 2: Accelerating Air Traffic Management Efficiency - A Call to Industry
Page 3: Accelerating Air Traffic Management Efficiency - A Call to Industry

Contents 2_3

1_ Foreword_p4

2_ Overview_p6

3_ Critical Actions_p7

4_ Background_p8

5_ Interdependencies and ATM Efficiency_p10

5.1_RecognisingtheInterdependencies_p105.2_UnderstandingInefficienciesbyPhaseofFlight_p13 5.2.1_PlanningandGateDeparture_p15 5.2.2_Taxi-Out/Taxi-In_p15 5.2.3_DeparturePhase_p15 5.2.4_Cruise(enroute)Phase_p16 5.2.5_EnRouteLongHaulandOceanic Flights_p16 5.2.6_DescentPhase_p20

6_ Opportunities to Reduce Inefficiencies in Each Phase of Flight_p22

6.1_PlanningandPre-Flight_p226.2_GateDepartureandTaxi-out_p226.3_Departures_p226.4_EnRouteandOceanicAirspace_p226.5_Descent_p236.6_StakeholderInvolvement_p24

7_ Current Efficiency Improvements Worldwide_p25

7.1_Europe_p257.2_Americas_p277.3_AsiaPacific_p297.4_Eurasia_p307.5_Africa–IATAservice_p317.6_MiddleEast_p327.7_Oceanic&RemoteRegions_p337.8_CollaborationAmongRegions_p34

8_ Opportunities for Stakeholder Collaboration for ATM Efficiency Improvement_p36

9_ Industry Challenge and Next Steps_p38

9.1_SharingofBestPractices_p389.2_CollaborationisKey_p399.3_Let’sStartToday_p39

10_ Glossary_p41

Appendix A_ European Airport CDM Projects_p43

Appendix B_ AMAN tools in use by airports and ANSPs in Europe_p43

©CopyrightBoeing&CANSO2012

Thiswhitepaperisforinformationpurposesonly.Whileeveryefforthasbeenmadetoensurethequalityandaccuracyofinformationinthispublication,itismadeavailablewithoutanywarrantyofanykind.

www.canso.orgwww.boeing.com

Page 4: Accelerating Air Traffic Management Efficiency - A Call to Industry

1Foreword

Despiteinterdependencieswithsafety,capacity,weatherconstraints,andindividualstakeholdergoals,today’sAirTrafficManagement(ATM)systemisalreadyhighlyoptimised.Thereis,however,roomforimprovement–especiallyrelatedtoATMinitiativesthattakeadvantageofcurrentaircraftequipage.

Inthespiritofcontinuousimprovement,inJune2010,theCivilAirNavigationServicesOrganisation(CANSO)andTheBoeingCompanyembarkedonanambitiousplantoimprovestakeholders’understandingofthecomplexneartomid-termchallengesassociatedwithoperationalimprovements.

PartsoftheATMsystemareapproachingmaximumcapacity.Currentpolicyandprocedureswillnotsustainfuturegrowthandlocalcommunitiesmustbepartofthefutureofairportgrowth.Itisvitallyimportantthattheindustrycollaborateonthemeasuresusedtoidentifywherecapacityandefficiencycanstillbeimproved.Asdemandcontinuestooutstripcapacityinthenear-tomid-term,weneedspecificfocusonhowtotakeadvantageofexistingaircraftcapabilitiestomanagetrafficincongestedenvironmentsinamorefuelefficientmanner.

ATMperformanceiscomplex.InterdependenciesdriveupfuelburnandcompetingbusinessobjectivesplacestressontheATMsystem.AirlinesandANSPsneedtoagreeoncommongoalsthatrewardairlineinvestmentbutsupportANSPgoalstoimprovesystem-widefuelefficiencyatalowercost.CANSOandBoeingbelievethatitistheresponsibilityofallstakeholderstobringtheirbusinessobjectivestothetableandworkwithANSPsandotherstakeholderstobuildtruefuturesustainability.TheInternationalaviationindustrymustincreasecollaborationtocorrectlydiagnosetheproblems,setcommonoperationalgoals,andprioritisefocusareasthatwilldriverealATMfuelefficiency.

Sharingbestpractices,whilesimultaneouslydevelopingnewoperationalproceduresandconductingcollaborativetrialsarethebehaviouralactivitiesneededtoleveragetechnicalachievements.This“whitepaper”highlightswheretheseprogressiveactivitiesarecurrentlyhappening,wherecollaborationisdeliveringchange,andwhereagreementaroundthemetricsandmeasureshasledtogreaterunderstandingofthecomplexityoffuelburnandsystemwideefficiency.

ThecurrentworldwideATMsystemfuelefficiencyisestimatedbyCANSOtobebetween92and94percent.CANSOhasalsosetanAspirationalGoalfor2050forATMsystemefficiencyofbetween95to98percent.Webelievetherearebestpracticesinplaceandkeytrialsunderwayaroundtheworldthatcanbethebasisforacceleratedimprovements.ThispaperiscomplementarytotheNextGenerationAirTransportationSystem(NextGen)andSingleEuropeanSkyATMResearch(SESAR)programmeleadbytheSESARJointUndertaking,ATMimprovementplans.ThispaperisalsocomplementarytotheICAOAviationSystemBlockUpgrades(ASBU)initiativeasaframeworkforglobalATMharmonisation.

CANSOandTheBoeingCompanyarecommittedtochallengingthestatusquobypromotingexamplesofwherepositivechangehastakenplace.This“CalltoIndustry”promotescollaborationasthecoreoftrueaviationsustainabilityandchallengesallstakeholderstocometothetable,readytolearn,toshare,andtocreatechange.

Accelerating Air Traffic Management Efficiency:ACalltoIndustry

CANSOandTheBoeingCompanyFebruary2012

Page 5: Accelerating Air Traffic Management Efficiency - A Call to Industry

Accelerating Air Traffic Management Efficiency: A Call to Industry

1 Foreword

4_5

Page 6: Accelerating Air Traffic Management Efficiency - A Call to Industry

2Overview

ThispaperisajointBoeing/CANSO“CalltoIndustry”forstrongercollaborationtoimproveworldwideAirTrafficManagement(ATM)efficiency.Withtheincreaseddemandforenvironmentalstewardship,theentireaviationindustryislookingateveryopportunitytoreduceitsnetcarbonfootprintthroughnewaircraftdesignsandalternativefuelsinconjunctionwithmoreefficientoperationsthatminimisefueluseandreducedelays.Thispaperonlyexaminesthecollaborationrequiredbyallstakeholderstoaccelerateairtrafficoperationsefficiencyimprovements.Thepaceofchangeandimplementationmustbesteppeduptomeetamedium-rangeaspirationalgoalof94-95%1ATMefficiencyby2025,consistentwiththeoriginalCANSOaspirationalgoalof95-98%ATMefficiencyby2050.

WefullysupporttheairtrafficefficiencytransformationalobjectivesoftheUnitedStates’FederalAviationAdministration’s(FAA)NextGenProgramme,Eurocontrol’sSESARprogramme,andtheleadershipshownbytheInternationalCivilAviationOrganization(ICAO)incoordinatinginternationalefficiencyimprovementsbyhighlightingtheneedforAviationSystemBlockUpgrades(ASBU).ThisreportsupportsthesuccessofthesecomplexactivitiesrelativetoATMfuelefficiencyandprovidesinformationandguidanceonhowtogloballyaccelerateprogresstodeliverfurtherATMefficiencyimprovements.

TheAirNavigationServiceProvider(ANSP)communityhashaditsshareofchallengesdeliveringcapabilitytotheATMcommunity.Thereareopportunitiesforenhancedcollaborationbetweenthesystem-wideefficiencygoalsofANSPsandtheairlineindustry’sdesiretobenefitdirectlyfromequippingtheirfleets.WiththecollectiveexperienceofBoeingandCANSO,thispaper

providesauniqueopportunitytoidentifywhatisworkingacrosstheworldwideATMspectrum,identifygapsandchangesneededtorealiseefficiencyimprovements,anddescribecollaborativestrategiesforfuturesuccess.

Thispaperisstructuredasfollows:— Section3presentscriticalactionsthatwould

helpaccelerateimprovements,— Section4providesthebackgroundbehindthe

environmentalcommitmentsdrivingtheneedforcontinuousoperationalfuelefficiencyimprovements,

— Section5reviewsthesystemoperationalinterdependenciesleadingtoinefficienciesineachphaseofflightanddefines“opportunitypools”forefficiencyimprovement,

— Section6furtherdescribesareasforstakeholdercollaborationforefficiencyimprovementsacrossthevariousphasesofflight.

— Section7highlightsoperationalimprovementprojectsandsuccessesthroughouttheworld,

— Section8suggestswayskeystakeholderscanenhancecollaborationtoacceleratechanges,

—Finally,Section9concludeswithacallforindustrystakeholderstoworktogethertomaketheseefficiencyimprovementsareality.

1 New extrapolated CANSO/Boeing Aspirational mid-term goal for 2025

Page 7: Accelerating Air Traffic Management Efficiency - A Call to Industry

3 Critical Actions

3Critical Actions

Today’saircrafthavethetechnologytosignificantlyimproveATMfuelefficiency.ThechallengefacingANSPsisdevelopingoperationalpoliciesandproceduresthatcomplimentaircrafttechnologyandleveragethistechnologytoachievenewlevelsofATMsystemefficiency.ThisreportattemptstorestructurethewaytheATMcommunityviewstheproblemsassociatedwithfuelefficiencyandfocusesonworldwidebestpracticesinplacetodayforcapturingfuelsavings.

WebelievethefollowingactionsarerequiredtoaccelerateATMefficiency:—Ensureaclearunderstandingoftheissuesand

interdependentconstraintsdrivingATMfuelefficiencytodayandquantifyopportunitypoolsforefficiencyimprovementbyphaseofflight;

—Examinethecompetingoperationalgoalsofairlines,airports,andANSPstoidentifythecollaborativerolesthatpolicymakers,regulators,aircraftmanufacturersandavionics/groundsystemsupplierscanplayinimprovingairtrafficefficiency;

—ANSPstakealeadershiprole–becomingtheconnectorstofacilitateandincreasestakeholdercollaborationandacceleratechange;

—Accelerate“real-time”decisionmakingthroughenhancedinformationsharing;

—Minimiseairspaceuserestrictionsthatleadtoinefficientoperations;

—Ensuretheairtrafficcontrolofficer(ATCO)communityisinvolvedasakeystakeholder.

—Highlightandsharetoday’sbestpracticesandsuccesses,includingnewpoliciesandproceduresthatimproveATMrelatedefficiency.Emphasiseafocusthattakesadvantageofcurrentcapabilitiesandpromotetheseasameanstoimproveglobalharmonisation.

Throughprogrammessuchas“CollaborativeDecisionMaking”theneedsofmoststakeholdersareaddressed,includingthedevelopmentofcooperativepolicyandessentialbusinessrules,whichresultinimprovedfuelefficiency,notonlyfortheindividualstakeholders,butforthesystemasawhole.Otherkeyefficiencyimprovementopportunitiescanbecapturedintheclimb,cruise,anddescentphasesofflightandaredescribedinlatersections.AroundtheworldtodaytrialsaretakingplaceandbestpracticesarebeingestablishedforATMfuelefficiencyproceduresthattakeadvantageofcapabilityalreadyontoday’saircraft.Muchcanbelearnedfromaggregatingthisinformation.ATMsuccessisasmoreafunctionofRegulators,ANSPs,Airports,Airlines,AircraftManufacturers,andAvionics/GroundSystemSupplierscollaborativelyimplementingandexecutingnewpoliciesandproceduresthanitisimplementingnewtechnology.

6_7Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 8: Accelerating Air Traffic Management Efficiency - A Call to Industry

4Background

InDecember2008,CANSO,incoordinationwiththeaviationindustry,describedasetofaspirationalgoalsforimprovingATMefficiencyby20502.Thechallenge,definedbyCANSO’sEnvironmentWorkingGroup,wastoreducetheimpactofaviationCO2emissionsontheenvironmentbyimprovingworldwideoperationalfuelefficiency.CANSOconsolidatedseveralregionalstudiesandconcludedthattheglobalATMsystemcouldbemadebetween95-98%efficientby2050.Figure1belowrepresentsthecarbonemissionschallengesetforthbytheAirTransportActionGroup(ATAG)3.Aviationtodayrepresents2%ofglobalman-madeCO2emissions.Keyleadersintheaviationindustrymadeacommitmentin2009toworktogethertowardstheaspirationalgoalofreducingthenetaviationemissionsby50%by2050comparedto2005levels4.

Theportionofaviationcarbonfootprintbeingaddressedinthisreportispartofthetwomiddlewedges:Operations(airlinefocus)andInfrastructure(ATMfocus).TheAirlinesOperationswedgeincludesimprovementsbeyondATMcontrollikefleetmixchoicesandloadfactors.Allairframemanufacturersarefullyinvestedinthetopandbottomwedges,TechnologyandBiofuels,makingeachgenerationofnewairplanessignificantlymorefuelefficientthanthepreviousgenerationaswellasensuringthatenginescanoperatesafelyonrenewablefuels.Infact,itwastheaviationindustrythatsparkedaccelerateddevelopmentofalternativeairplanefuelsandsupportedthedevelopmentandapprovalofalternativefuelstandardssuchasASTMD7566-11for50%bio-fueluse.ForfurtherreferenceonaviationbiofuelsrefertotheATAGwebsite5.

ThispaperhighlightsavailableATM“poolsofefficiencyopportunity”forimprovements,identifiesmeanstomeasuretechnicalprogress,andproposesachallengetoallindustrystakeholders:Regulators,ANSPs,Airlines,Airports,AirplaneManufacturers,AvionicsandGroundSystemSuppliers,andCommunitiestocollaborateonasetofstepstoreach94-95%operationalefficiencyintheglobalATMsystemby2025.Theefficiencybenefitswouldflowtoall,whiletheenvironmentalemissionsreductionswillbenefittheglobalcommunity.TheIntergovernmentalPanelonClimateChange(IPCC)estimatedthatimprovementsinairtrafficmanagementandotheroperationalprocedurescouldreducefuelburnby8to18%,withthemajorityofthat,6to12%,comingfromATMimprovements6.In2005,CANSOengagedstakeholderstoupdatethe1999IPCCestimateofthetotalATMinefficiencyonaworldwidebasistobeabout6to8%withlargevariancesbyregionandbyairport.Ofthisidentifiedinefficiency,CANSObelievesthathalf(3to4%)isrelatedtotheoperationalinterdependencies.Someoftheseinterdependencyconstraintsinclude:safety,capacity,weather,andmilitaryairspace.Ourgoalnowistorecoverthisremaininginefficiencytoachieve94-95%efficiencyby2025and95-98%efficiencyby2050.Thesegoalsrequiremoreeffortstoimproveoperationalefficiencythanjuststatusquo;forifnothingisdone,fuelefficiencieswillactuallydecreaseduetoincreasedglobaltrafficdensityandairportconstraints,aspresentedinFigure2.

Theaspirationalgoalsexpressedhereareforaworldwideaverage.Therewillbespecificregionsandairportswheretheopportunitiesforimprovementaremuchlargerthanindicatedhere,andlikewise,someregionswheretheopportunitiesaremuchless.

2 ATM Global Environment Efficiency Goals for 2050, CANSO Environment Working Group, December 2008, available on the web at: http://www.canso.org/environment.

3 The Right Flightpath to Reduce Aviation Emissions, ATAG, Nov 2011, UNFCCC Climate Talks, Durban SA.

4 http://www.atag.org/our-activities/climate-change.html

5 Powering the Future of Flight: The six easy steps to growing a viable aviation biofuels industry” at www.atag.org/component/downloads/downloads/58.html

6 Aviation and the Global Atmosphere, IPCC, 1999.

Page 9: Accelerating Air Traffic Management Efficiency - A Call to Industry

4 Background

Figure1—CarbonemissionschallengesetforthAirTransportActionGroup

(Schematic,indicativediagramonly)

8_9

Mapping out the industry commitments

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 10: Accelerating Air Traffic Management Efficiency - A Call to Industry

Toaccomplishthisincreaseinoverallefficiencyrequiresstakeholdercollaborationtoplanaphasedapproachtoimplement:—ANSPenhancementsthatsafelyincreaseATM

efficiencyandglobalinteroperability.—Achangeinphilosophyandpolicyencouraging

ANSPstoprovideenhancedservicesforthe“betterequipped”aircraftasameansofcapacityandefficiencyimprovement.Thisrequiresarenewedconnectionbetweenthesystem-wideefficiencygoalsofANSPsandtheairlineindustry’sdesiretobenefitdirectlyfromequippingtheirfleets.MarketforcesforefficiencyandreturnoninvestmentwilloffersufficientincentivestoequipiftheANSPsprovidetheservicesthatdeliverthebenefitsbasedonthatequipage.

—Bettermanagementoffuelefficientdelayabsorptionintocongestedterminalareas.

—Newfuel-efficientflighttrackswhilemanagingnoiseconsequencesnearairports.

—Regionalsolutionsacrossmajorcity-pairtrafficflowsand;

—Sharinglessonslearnedtobringtherightproceduresandtechnologytoregionsoftheworldbasedontheiruniquedemands.

TheremainderofthispaperfocusesontheinterdependenciesbetweenANSPsandotherstakeholdersthatmustbeconsideredwhenworkingtogethertomaximiseATMefficiency.

5Interdependencies and ATM Efficiency

5.1_RecognisingtheInterdependencies

Efficiencyonanindividualflightbasiscanbetheoreticallycalculatedbycomparingtheactualtrajectorytoanoptimaltrajectory,whereeachflightisassumedtobetheonlyflightinthesystem.Thistheoreticalconstructisconstrainedasinterdependenciesandinefficienciesareintroducedduetooperationsinvolvingmanyaircraft,orwhenphysical,safety,andcostfactorsimpactoperationaldecisionsforcinglessthanoptimalroutestobeflown.TheseinefficienciesderivefromthewaytheATMsystemitselfhasevolvedandcanbereferredtoasinterdependencieswith“improvementopportunitypools”definedinthefollowingsection.Theseinterdependenciesinclude:a. Safety–aircraftwillstilldeviatefromthe

optimumrouteinordertoensuresafeseparationortosafelymanageairspacecomplexity.FutureenrouteoperationswillfocusmoreonATMflowmanagementandshiftresponsibilityfortacticaldeviationstotheairplaneastechnologypermits.

b. Weather–toensureasafeandsmoothflight,aircraftwillstillneedtodeviatefromanoptimumrouteduetoadverseweatherorturbulence.

c. Capacity–toaccommodatecapacitylimitationsattheairportorthroughtheairspace,aircraftmaywait(hold)onthegroundpriortodeparture,deviateenroute,orevendoanairborneholdprocedurepriortoarrival.Whentrafficdemandapproachesavailablecapacity,thereissomenecessaryincreaseincongestionandfuelinefficientdelaystomaximiseuseofavailablecapacity.ThiscongestionwillreduceefficiencyandincreaseCO2emissions.

d. Noise–toreducenoiseimpactontheground,aircraftoperationsaroundtheairfieldcanbesubjectedtonoiseabatementproceduresthatmayreducenoisetosome,yetcausetheaircraft

Page 11: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

Figure2—NotionalviewofATMefficiencygoalsandtheimpactofincreasedairtraffic

10_11Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 12: Accelerating Air Traffic Management Efficiency - A Call to Industry

Figure 3 —ATM inefficiency categories (notional scales)

toflyalessefficientrouteoratsub-optimalaltitudes.Reducednoisearoundtheairportitselfisextremelychallengingascreationof“new”noise(evenifoverallnoiseisreduced)isheavilyrejectedbycommunities.

e. Airlinepractices–airlinesoperatetheirnetworkschedulestoaccommodatepassengerdemand;however,optimalroutesoraltitudesmaynotalwaysbeavailable,eitherbecauseofcongestion,lackofgroundinfrastructure,lackofflexibilityonthepartoftheflightplanningsystemoravionics,orlackoffullyintegratedsituationalknowledge.

f. AirportPractices–thelocationandconfigurationofairportrunwaysandtaxiwayshasasignificantimpactonATMefficiencyandenvironmentalimpact(especiallycommunitynoise).Anyrunwayandtaxiwayefficiencyimprovementsrequirelongtermstrategicplanning.

g. Military–civilaircraftgenerallymustroutearoundmilitaryairspaceandothertypesofrestrictedairspace,therebyflyinglessthanoptimalroutesandincreasingfueluse.

h. Institutional–aircraftoftenflylessthanoptimalroutesduetofragmentedairspace.Different

regions/countriesmayhavedifferentoperatingproceduresorchargingmechanismsorrequiresetoverflyaltitudesandroutesthatleadtolessthanoptimumfuel-efficientrouting.

i. Mixedfleetequipmentcapability–aircrafthaveusefullifetimesofover25years.Olderaircraftdonot,ingeneral,havethesametechnologyandcapabilitiesasthemostrecentmodels.Thismixingofcapabilitiesaddsinefficienciesasthesystemmuststillsupportthelesscapable.

AlltheATMinterdependenciesareillustratedconceptuallyinFigure3.Weacknowledgethattheadoptionofmoderntechnologycouldimproveoneinterdependencywhileadverselyaffectinganother.Forexample,PerformanceBasedNavigation(PBN)canincreaseterminalareaairspacecapacityoftenatthecostofaconcentrationofflightpathsinoneregion.Wherethiscanbeaccomplishedovernon-residentialareastherearemajornoisebenefitsforcommunities.Howeverduetopastlanduseplanningdecisions,manyexistingairportsaresurroundedbyresidentialareasthatcannotbereadilyavoided.

Page 13: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

Figure 4 —Phases of Flight

ExperiencewithnewarrivalproceduresbyCANSOmembersshowsthatreducingoverallnoiseoftencreatesareasof“newnoise”7.Thisconceptof“new”noiseversusexistingnoiseisanimportantconsiderationwhendevelopingnewATMproceduresandrequirescollaborationwiththelocalcommunitytofindsolutionstomanagenoise,capacityandefficiency.TheseissuescannotbeaddressedsolelybytheANSP,airportoperatorandairplaneoperatorswithoutcommunityengagement.

Efficiencygainscanbeachievedbyreducingtheeffectoftheinterdependencies.ExamplesincludesafelyincreasingenrouteairspacecapacitywithautomationtoolstherebyreducingexcessfuelneededforAirTrafficControl(ATC)routingsaroundcomplexairspace.WhileANSPscandirectlyinfluencesomeoftheinterdependencieslistedabove,thelargestgainswillcomefromANSPsworkingcloselywithotherindustrystakeholders–Regulators,Airlines,Airports,AirplaneManufacturers,AvionicsandGroundSystemSuppliers,andlocalCommunities.

5.2_UnderstandingInefficienciesbyPhaseofFlight

Inordertodefineandunderstandtheinefficiencies,weneedtoanalysetheATMsystembyphaseofflight,aspresentedinFigure4:—Planning,pre-flightandgatedeparture—Taxi-out—Departure—Enroute&Oceanic—Descentandarrival—Taxi-in

Thedifferencebetweenactualperformanceandanideal/benchmarkperformanceisreferredtoasflightinefficiencyoran“opportunitypool”.Theinefficienciesforeachphaseofflightaredefinedasthedifferencebetweenactualtraveltime,traveldistance,orfueluseagainstanun-impededorbenchmarktraveltime,traveldistance,orfueluse.Thedifferencebetweenactualtraveltimeandbenchmarktraveltimeisdelay.Theseflightphaseinefficienciesareexaminedinthenextsections.Itisimportanttopointoutthatthesetotal“inefficiency”poolsincludeunrecoverableportionsrelatedtothe

7 CANSO Environment Working Group, Noise White Paper draft September 2011.

12_13Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 14: Accelerating Air Traffic Management Efficiency - A Call to Industry

Table1—ATMrelateddeparturedelaysover15minutesatmain34airports

Figure5—Keyeventtimesintaxi-outefficiencycalculations

Page 15: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

interdependenciesdescribedinSection5.1.Thesepoolsprovideinsightsintorelativeopportunitiesforimprovement.

5.2.1_PlanningandGateDeparture

AirTrafficManagementdrivengatedepartureholdsareusedtomanagecongestionatthedepartureairport,enroutesectorsoratthearrivalairport.Thesedelaysarecalculatedwithreferencetothetimesprovidedinthelastsubmittedflightplan(notthepublisheddeparturetimesinairlineschedules).Mostdelaysaretakenatthegatebutsomeoccurduringthetaxi-outphase.WhileATMisnotalwaystherootcauseofthedepartureholdings,howthegatedepartureholdsarehandledcanhaveaconsiderableimpactoncoststoairspaceusersandutilisationofscarcecapacity.Keepinganaircraftatthegatesavesfuelbutifitisheldatthegateandavaluablecapacityslotgoesunused,thecosttotheairlineoftheextradelaymayexceedtheextrafuelcost.Table1comparesATM-relateddeparturedelaysover15minutesattributabletoen-routeandairportconstraintsforthetop34AirportsintheU.S.andEuropefor20108.Theseaveragesshowthedelayimpactsaveragedoverallflightsandtheaverageforjusttheflightsthatwereactuallydelayedbyholds.

5.2.2_Taxi-Out/Taxi-In

Nominaltaxi-out/taxi-intimeistheunimpededtimerequiredtotraversethesurfacefromthegateuntiltherunwaypositionpriortotakeofffortaxi-outorfromrunwayexittothearrivalgatefortaxi-in.Intheory,theremaybehundredsofunimpededtimesbasedonparkinglocationsandrunwaycombinations.Inpractice,however,ANSP’shavedevelopedapproximationsforthesetimesusingthedataavailableinexistingperformancedatabases.Thefidelityofthebenchmarktimeisdependentonthebreadthandaccuracyofthisdata.Figure5showskeyeventtimesavailablefromtheairplane

viaACARS9Out-Off-On-In(OOOI)data,fromgroundradar10orasurfacemovementguidancecontrolsystemfortaxioperations.

ATMperformanceonthesurfaceisoftenseparatedintotheActiveMovementArea,whereATMexercisescontrolandtheNon-MovementArea(orRampArea)whichiscontrolledbyanotherentitysuchastheoperatoroftheramp.Foraircraftreporting,twoeventtimesarerecorded:aGate-Outmessagewhichsignalsthestartoftaxi-timeandtheWheels-Offmessagesignallingtheendofsurfacemovementandthestartofairborneflight.Ground-basedsystemsofferthepotentialformorerefinedcalculationofsurfaceperformanceintheactivemovementarea.Howeverthisdataneedstobecoupledwithsophisticatedalgorithmsthatusethegeometryoftheairportsurfacetodetectkeyeventtimes.

Thedataabovecanbeusedtocreateadistributionofgroundtaxi-traveltimes.ForACARSequippedairplanes,taxi-outisdefinedasWheels-OffminusGate-Outtime.Theseaircraftmessagesmayalsobeusedtodetectthenumberofaircraftactiveonthegroundineitherataxi-outstateortaxi-instatewhichcanbeasurrogateforcongestionontheground.Periodsofnocongestioncanbeconsideredindicativeoftheidealbenchmarktaxitime.Figure6presentsthespecificdataforthetop20ofthese34airports.

5.2.3_DeparturePhase

Thedeparturephaseofflightisdefinedasthetimetheaircraftdepartstherunway(wheels-off)andtraversesthedepartureairportterminalarea–definedbyaregionallyappropriatering(e.g.40nm)aroundtheairport.Aircraftmayberequiredtoflylongerdistancesiftheyneedtoflyoveraspecificdeparturefixfornoiseabatementproceduresortoensureseparationfromotheraircraft.Thesedepartureprofilesoftenleadtosub-optimalaltitudesandspeeds,thusincreasingfueluse.Theorientationoftheactiverunwaysinrelationtothedirectionoftravelcanalsocauseaircrafttohave

8 US/Europe Comparison of ATM Related Operational Performance - 2012, Performance Review Commission, 2012

9 Aircraft Communications Addressing and Reporting System

10 Such as ASDE-X (Airport Surface Detection Equipment, Model-X)

14_15Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 16: Accelerating Air Traffic Management Efficiency - A Call to Industry

toflyexcessdistancetoconnecttoaspecificroute.Inaddition,thesedepartureroutingsmaybeinfluencedbyneighbouringairports,militaryorrestrictedairspaceorenvironmentallysensitiveareas.Theinefficiencyopportunityforthisphaseofflightcanbecalculatedsimilartothatforthedescentphase,describedlater.

5.2.4_Cruise(enroute)Phase

Someefficiencystudiescalculateefficiencyasthedifferencebetweenactualflightdistanceandanon-windadjustedgreatcircledistancebetweenairportreferencepoints–whichdoesnotaccountforrequiredterminalareatrafficstructurebasedontherunwaysinuse.Thisstructuralextradistanceisoftenaninherentinefficiencyreflectingrunwayorientationandsegregatedarrivalanddepartureflows.ItmaybeconsideredatheoreticalupperboundwithlimitedpotentialforimprovingthetrueATMefficiency.

Forefficiencyanalysis,werecommendseparatingtheairborneportionoftheflightintothreephasesasdepictedinFigure7,departureterminalarea,enroute,andarrivalterminalarea11.Theterminalenvironmentsareapproximatedbyonering(approximately40nm)aroundthedepartureairportandanotherlargerring(100nmtoaccountforarrivalmanagementplanning)aroundthearrivalairport.Eachairporthastoefficientlymanagetrafficforbothringstocoordinatearrivalsanddepartures.

Twogreatcircledistances–thedistancebetweentheentryandexitpoints(D)andthedistancebetweenthetworeferencecircles(G),definetheupperandlowerbenchmarktrajectoriesfortheenrouteenvironment.Differencesbetweentheactualtrajectory(A)andthebenchmarks(DorG)provideindicatorsofenrouteinefficiency.A-DreflectsidealflightusingtheexistingTMAinterface,whileA-Gprovidesanupper-boundefficiencyvalueforanoptimalTMAinterfacebetweentwocitypairs.Theactualtrajectoryischaracterisedbystandard

routesdefinedbyspecificaltitudesandspeedsthatmaybeimpactedbyrestrictedairspaceorotherairspaceuseconsiderations.

Tomeasurehorizontalen-routeefficiency,theKeyPerformanceIndicator(KPI)usedbyEurocontrolandothersisdirect“en-routeextension”,asdepictedinFigure7.Itistheextradistanceflownorthedifferencebetweenthelengthoftheactualtrajectory(A)andtheminimumno-windGreatCircleDistance(G)betweenthedepartureradiusandthearrivalradius.Thisdifferencewouldbeequaltozeroinanidealsituationwhereeachaircraftwouldbealoneinthesystem,notsubjecttoanyconstraints.Figure8comparestheex-routeextensionsfromthemain34airportsfortheUSandEuropeandthepercentofflightsimpacted.

Duringtheenroutephaseofflight,ATMmayimposespeedconstraintsorvectoranaircraftforcongestionorconvectiveweather.Inmostregionsoftheworld,aircraftmayalsoelecttoflylongerroutestoavoidcostlyroutecharges,tradingofftheexcessfuelcostagainstairspaceusecharges.

5.2.5_EnrouteLongHaulandOceanicFlight

Forflightswithcruisesegmentsmorethan1000miles,greatcircleroutesaretypicallynotoptimalintermsofbothfuelandtime.UserPreferredRoutings(UPR)allowsforflightstotakeadvantageofwindoptimalroutes.UPRsareinplacetovaryingdegreesworldwidebutconstraintsexistwhereATMinfrastructureislackingorthedemandexceedscapacityforoptimalroutes,asexperiencedintheNorthAtlantic.Figure9showsanexampleofawindoptimalUPRwithsignificantfuelandtimesavings.CANSOsupportstheInternationalAirTransportAssociation(IATA)inimplementingflexandUPRthroughDynamicAirborneRerouteProcedures(DARP)wherepracticableacrossregionswhichallowairlinestoflymoreefficientroutesbasedoncurrentandforecastwindsandtemperaturesratherthanflyingfixedroutestructures.

11 US/Europe Comparison of ATM Related Operational Performance, Performance Review Commission, 2009

Page 17: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

16_17

Figure6—Averagetaxi-outdelaysforthetop20airportsinEuropeandtheUS

Figure 7 —En-Route extension key performance indicator

Average additional time in the taxi out phase - 2010 (Only the first 20 airports are shown)

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 18: Accelerating Air Traffic Management Efficiency - A Call to Industry

Figure 9 — Example wind optimal oceanic route from Dubai to Brisbane12

12 Courtesy of Airservices Australia www.airservicesaustralia.com

Figure8—ComparisonofexcessdistancesflownfordifferentflightlengthsintheUSandEurope

2010 horizontal en-route flight efficiencyFlights to/ from the main 34 airports within the respective region

Example Flex Track Saving—>1200nmabeamgreatcircletrack—43minutesquickerthanfixed—Saved8408KgFuel

Page 19: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

Figure 11 — Shifting level segment to cruise (a) distance/ (b) time perspective

Figure 12 — Notional depiction of excess distance during descent

18_19

Figure 10 — Inefficiencies within the descent phase

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 20: Accelerating Air Traffic Management Efficiency - A Call to Industry

5.2.6_DescentPhase

Thedescentphasemaybeevaluatedastwoinefficiencies;vertical(intermediatelevel-offs)andhorizontal(extradistanceflown).Theseinefficiencies,showninFigure10,averagealmost3minutesofextraflighttimeperaircraftatthe34busiestairportsintheUSandEurope.

Forthedescentphase,excessdistanceandintermediatelevel-offsegmentsaretranslatedintotimeandfuel.Theunconstrainedbenefitpoolinthedescentphaseofflightisrepresentedbythedifferencebetweenanunimpededhorizontalandverticaltrajectoryandtheactualtrajectoryflown.Thisbenefitpoolrepresentsthenetamountoftimeorfuelthatcouldbesavedwithmore“optimal”trajectories.

Onedifficultyinassessingthedifferencebetweenactualandunimpededtimeandfuelisthatbothareaffectedbyfactorssuchaswind,temperature,aircraftweight,enginetype,andairframeperformance.ThismethodologyusesavailabledatatoidentifyboththeATMconstraintsthatimpacttheverticalandhorizontaltrajectoriesaswellastheimpactofthoseconstraintsontheexcesstimeandfuelburn.Thistwo-tieredapproachallows

forseparateinsightsintothebenefitsavailablefortheverticalandhorizontaldimensions.

Verticalinefficiencyisassessedintwoparts:(a)theadditionalfueltoflythesamehorizontaldistancecomparedtoanunconstrainedoptimalverticaltrajectoryand(b)theadditionalfuelrequiredtoflytheadditionaldistanceassumingbothhaveanoptimumverticalprofile.

Horizontalinefficiencyiscalculatedbycomparingtheactualdistanceflownwithanidealbenchmarkdistance.Theexcessdistanceisthentranslatedintoexcessfueluseatcruiselevel.Thistwostepprocessprovidesameanstoeliminatedoublecountingverticalandhorizontalinefficienciesandisequivalenttothetruebenefitpool.

EvaluatingtheVerticalOpportunityPool–Themaincomponentsoftheverticalopportunitypoolarethelevelflightsegmentsflownatloweraltitude.Toincreaseefficiencyandreducefuelburn,levelflightsegmentsatloweraltitudeareassumedtobeflownatcruisealtitude.Inmovinglevelflightsegmentsfromaloweraltitudetoahigheraltitude,thismethodassumesthedistancecoveredforeachsegmentwillbeidentical;however,speedandfuelusewillbedifferent.

Figure 13a —The descent opportunity pool for the top 34 airports in the US and Europe (in minutes)

2010 average additional time within the last 100 NM miles(Only the first 20 airports are shown)

Page 21: Accelerating Air Traffic Management Efficiency - A Call to Industry

5 Interdependencies and ATM Efficiency

Tocoverthesamedistanceathigheraltitude,lesstimeisneededandlessfuelisusedoverall.Figure11,showsthedistance(a)andtimeperspective(b)ofshiftinglevelsegmentstohighercruisealtitudes.

Byextendingthecruisephase(higherspeed)andremovingthelevelsegment,theoveralltimeisshortened.AsillustratedinFigure11(a),thisassumesflyingdistanceisthesamebeforeandaftermovinglevelflightsegments.However,asshowninFigure11(b),itassumesthatflyingtimeisunconstrainedandtheflightcouldarriveearly,conflictfree.

EvaluatingtheHorizontalOpportunityPool–Afterevaluatingtheverticalopportunity,theverticaltrajectoryisoptimisedandtheexcessdistanceassociatedwithvectorsorholdingisleft.Themaindriverforthehorizontalopportunitypoolisassumedtobetheexcessdistanceflowncomparedtoabenchmarkunimpededdistance.Figure12illustratesthisexcessdescentdistancewithinthearrivalmanagementringusedbyEurocontrolforanalysisofexcessdistance.

Fromthehorizontalefficiencyperspective,theblack(dashed)trajectoryistheactual

trajectory;thegreen(solid)trajectoryisanominal(unconstrained)trajectory.Incasesofholdingorextendeddownwindlegsthedifferencebetweenthetwohorizontaltrajectoriesmaybemuchgreater.Thistotalexcessdistanceisconvertedtoequivalenttimeatthecruisephasetoobtainthehorizontalfuelopportunitycomponent.

IntegrationofHorizontalandVerticalOpportunityPools–Fortheunconstrainedscenario,thebenefitpoolissimplythesumofbenefitpoolsfromthehorizontalandverticalphases.Inthedescentphase,aircraftmayberequiredtoslowdownorflyexcessdistancesathighaltitudelevelflightinorderforATMtomergeorspacearrivingaircrafttoameterfixorarrivalfix,torouteaircrafttoaparticularrunway,orvectorthemforsafeseparation.Addingshortdog-legsathighaltitudecanpreventundesirablelowaltitudelevelsegmentsandallowaircrafttobemergedandsequencedfornearlycontinuousdescentstotheairportwithanettotalfuelsavings.Figure13showsthedescentopportunitypoolforthetop20airportsinEuropeandtheUSin2010.

Figure 13b —

20_21Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 22: Accelerating Air Traffic Management Efficiency - A Call to Industry

6Opportunities to Reduce Inefficienciesin Each Phase of Flight

Inthissection,weaddresstheopportunitiestoreducetheinefficienciesandhighlightthecollaborationrequiredamongmultiplestakeholderstoaccomplishthesedesiredgains.Whilenewcapacityiskeytoimprovingflightefficiency,asdemandincreasesalargeroleofANSPsinATMistobestmanage“necessary”delayonadailybasis.Managingwhereandhowdelayisabsorbedwhenairportcapacityisconstrainedmustclearlyconsiderfuelefficiencywhilemaximisingrunwaythroughput.Overarchingalloftheseopportunitiesistheneedtonotonlyencourage,butacceleratetheintroductionofnewairandgroundtechnologiesandproceduresforcommunications,navigationandsurveillancewherevertheywouldmosteffectivelyimproveATMandflightefficiency.6.1_PlanningandPre-FlightClosecooperationbetweenairplaneoperators,airportoperatorsandtheANSPthroughsharednetworkinformationduringweatherupsetsorotherairspaceimpacts(suchasrunwayclosures,specialairspaceclosures,etc.)willimprovetheoperator’sflightplanningefficiency.Similarly,toimproveoverallairtrafficflowmanagementandreducecongestion,ANSPsrequireenhancedautomationtoevaluatethecollectionoffiledflightplansagainstexistingconstraintsandquicklyofferequitablealternativestooperatorsthatminimisethedelayorflightpathimpact.Thesealternativescouldincludetheopportunitytoflymorefuelefficientspeedswithearlydepartures,andhigherMachspeedsforlaterdepartures.Toachieveindividualairlinegoalstheremustbeequitabletreatmentandanassurancethatgoodpreflightdecisionmakingisn’tpenalisedlaterintheflightpath.Thisapproachneedstobalance“global”efficiencyobjectivesagainstindividualefficiencyimpacts.

6.2_GateDepartureandTaxi-outDuringdeparturepeaks,aircraftcanwaitinlongqueuesconsumingfuel.Inmajorareasoftheworldtoreserveaspotinthequeue,theaircraftmustphysicallytakeaslotinline.Aircraftthataredelayedonthegroundoftenburnexcessfuelduringcruiseto“makeupthetime.”RecenteffortshaveshownprogressinreducingtaxitimesandemissionsthroughCollaborativeDepartureQueueManagementintheUSandtheEuropeanAirportCollaborativeDecisionMakingconceptinEurope.Theseconceptsmanagethenumberofaircraftinthedeparturequeuetominimisetheamountoftimethataircraftareactuallyinlinewithenginesrunningwhileensuringmaximumuseoftherunways.Theseeffortsrequirethattheairport,ANSP,andairlinesworktogethertomaximiseuseoftheairportsurfacewhileminimisingfuelburn.6.3_DeparturesDepartureoperationscouldbemademorefuelefficientwithimproveddepartureroutesthatreducethe“wasteddistance”insidethe40nmringsoaircraftcanproceedonacontinuousclimbinapreferreddirection.Communityengagementwithairports,airlines,andANSPsisessentialtofindingimplementablesolutions.6.4_EnRouteandOceanicAirspaceIntheenroutephaseofflight,recentresearchhasshownthepotentialofsavingfuelandemissionsduetooptimisingaltitude,speed,orboth,witharangeinbenefits.ANSPsshouldfacilitatethe“FlexibleUseofAirspace”(FUA)tomaximisetheshareduseofcivil/militaryairspace.ANSPsshouldimplementapprovalofUser-PreferredRoutes(UPR)toimprovethehorizontalandverticalportionsofaflighttrajectory.Asaircraftbecome

Page 23: Accelerating Air Traffic Management Efficiency - A Call to Industry

6Opportunities to Reduce Inefficienciesin Each Phase of Flight

evermoredigitallyenabled,theywillbecomeanincreasingsupplieranduserofcurrentinformationsuchaswindsandturbulence.Asintegrateddataprocessingandweathermodellingcontinuestoadvance,thedatasomeaircraftprovidewillbereturnedasimprovedneartermforecastsforflightplanninganddynamicre-routingforlateraircraft.

Inoceanicairspace,regulators,ANSPs,andaircraftoperatorshavebeenabletoincreasecapacity,andreducedelays,throughtheuseofAutomaticDependentSurveillance–Contract(ADS-C)andControllerPilotDataLinkCommunications(CPDLC),aswellastheenhancednavigationcapabilitiesassociatedwithRequiredNavigationPerformance(e.g.RNP4).UPRsandDARPhaveenabledsignificantreductionsinfuelburn,flighttime,andCO2emissions,whilereductionsinlateralandlongitudinalseparations(downto30mileslateral/30mileslongitudinalinsomeoceanicairspace)hasincreasedcapacityandgivenincreasedopportunitiesforoptimumaltitude(andblockaltitude)clearances.TrialsofbothADS-BandADS-Cclimb/descentproceduresshowpromiseofadditionalopportunitiesforsuchclearances.

Improvedcoordinationforflightthroughmilitaryairspacewhennotinusecanimproveenrouteflightpaths.Airlinesmayneedmoredynamicreroutingprocessestotakeadvantageofairspaceopenings.

Finally,increasingenroutesectorcapacitymayalsoreducedelaysassociatedwithaircraftroutingsaroundcongestedairspace.6.5_DescentMuchhasbeenwrittenaboutOptimisedProfileDescents(OPDs)andTailoredArrivals(TAs)whichremovelevelsegmentsduringdescenttoallowforafuelefficientarrival.However,OPDs/TAsmaynotbefeasibleduringcongestedperiods

becausetheyresultinunusedcapacity.Missingarrivalslotsduringcongestedperiodsaddsoveralldelaysandinefficiencies.Theconceptofslowingaircraftincruisetoreducearrivalcongestionhelpstominimisecontrolleractionsondescentaimedatabsorbingneededdelay.BymovingaportionofnecessarydelayfromthedescentphasetocruisemakestheresultingdescentmoveclosertoanOPDwhilemaintainingmaximalrunwaythroughput.

ManyATMArrivalManager(AMAN)Toolsdon’tincludethecapabilitytoautomaticallymoveaircraftforwardinasequence–iftwoaircrafthavethesameestimatefortherunway–onewillbedelayed,evenifitispossibletoincreasespeedandremovedelayforthesecondaircraft.Currentresearchalsoindicatesitismoreefficientfortheentirepeakofarrivingaircraftifselectedaircraftatthebeginningofarushperiod“speedup”toavoidcreatingcongestion.Althoughthesefewearlyaircraftmayconsumemorefuelthenetresultisamore“global”reductioninfuelusebythefollowingaircraft.

ANSPs,workingwithregulatorsandaircraftoperatorsareusingspeedcontrolandControlledTimesofArrival(CTAs)tomanagefuelandterminalcongestion(alsoreferredtoas“linear”holding).TheworldwidepooloffuelsavingsduringdescentsandarrivalsatcongestedairportspotentiallyrepresentsthemostsignificantopportunityforATMefficiencyimprovement.RealisationoftheseefficiencieswillbeenabledbytheintroductionoffutureATMtechnologiessuchasdatacommunicationsbetweenaircrewandcontrollersandADS-Btoenabletheflightcrewtomaintainaspeedortimeintervalbehindaleadingaircraft.WithdatacommunicationsATMwillbeabletouplinkarrivaltimesandpotentialroutesdirectlytotheflightcrewandintotheFlightManagementSystem(FMS)forreviewandimplementation.Whiledatacommunicationsandassociateduplinkofcomplextrajectoriesmaybealongertermsolution,thereareneartermopportunitiestorefine

22_23Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 24: Accelerating Air Traffic Management Efficiency - A Call to Industry

existingproceduresandgainmuchofthebenefitfromassistedflowmanagement.SuccessismoredependentonproceduresandacommitmentforcollaborationfromANPS,airlines,regulators,andairportsthananyparticulartechnology.SomeoftheseconceptsareintheresearcharenabutofferthepotentialtoincorporatethesemethodologiesintoATMautomation.

6.6_StakeholderInvolvementAsoutlinedabove,theaviationindustrytodayhasauniqueopportunitytodeliverimmediatebenefitsintheformofincreasedcapacity,reduceddelays,increasedefficiency,andreducednoise,fuelburnandemissions.TheremaybedifferentATMcandidatesolutionsfordifferentregions,buteachphaseofflightrequirescollaborationbydifferentstakeholders.Figure14presentsanidealisationofstakeholder’slevelofengagement(high,medium,low)forcollaborationineachphaseofflight.

Figure 14 —Stakeholder collaboration by phase of flight

Page 25: Accelerating Air Traffic Management Efficiency - A Call to Industry

7Current Efficiency Improvements Worldwide

Inthissection,weofferasamplingofthemyriadprojectsworldwidewhereindustrystakeholdersarecurrentlyworkingtogethertoincreaseefficiencyandinsodoing,reducecosts,fuelburn,andCO2emissions.Foreachregion,projectsarelistedbyphaseofflight,stakeholdersarehighlighted,andbenefitsdocumented.

7.1_EuropeTaxi-Out(Regulator,ANSP,airport,airlines,groundhandling)EuropehasbeenverysuccessfulintheimplementationofEuropeanAirportCollaborativeDecisionMaking(A-CDM)toreducetaxidelaysontheground,therebyreducingfueluseandemissions.

EuropeanAirportCDMispartoftheEurocontrolAirportOperationsProgrammeandrepresentscollaborationbetweenEurocontrol,AirportsCouncilInternational,andIATA13.Asofthirdquarter2011,over20EuropeanairportsshowninFigure15andmajorairlineswereparticipatinginvariousstagesintheEuropeA-CDMproject(http://www.euro-cdm.org/airports.php)highlightingthecollaborationbetweentheairportoperator,airlines,ANSP,EurocontrolCentralFlowManagementUnit(CFMU),andgroundhandlingagencies.

A-CDMbecameoperationalatMunichAirportinJune2007,makingMunichthefirstEuropeanairporttoimplementAirportCDMasastandardprocedure.ThisprojectconsistedofthesharingofdatabetweenMunichairportoperatorFlughafenMünchenGmbH(FMG),theGermanANSPDeutscheFlugsicherung(DFS),airlines,handlingagencies,groundhandlingagencies,andtheEuropeanCFMU.Thecollaborationhasledtobettermanagementofairportandairlineresources,reducedturntimes,andoverallreductionindelays.

Similarly,Paris-CharlesdeGaulle(CDG)joinedthegroupinNovember2010.TheuseofCollaborativePreDepartureSequencetools

(C-PDS),connectedtotheCFMUanddevelopedwiththestakeholders(ADP,DSNAandEgisAvia),resultsinbetterslotcomplianceandreducednumberofmissedslots.TheC-PDSallowsmorestabletrafficflowandreducestaxitimes,apronandtaxiwaycongestion,andqueuesattheCDGrunways.A-CDMatCDGisestimatedtocutaircrafttaxitimeofby2to4minutesandcontributestosustainabledevelopmentbycuttingCO2emissionsby44tonnesperday.

EnRouteOceanic(ANSP,airlines)TheIrishAviationAuthority(IAA)andUKNationalAirTrafficServices(NATS)embarkedontheENSURE(ENRouteShannonUpperairspaceREdesign)projecttoenableairlinestoflydirectroutesoverIrelandintooceanicairspace.TheprojectwaslaunchedinDecember2009allowingforafullyearofoperationin2010toenabletheairlinestoconfirmthesavingsthatwerepredictedbysimulation.Trainingwasprovidedtoallhighlevelradarcontrollersforaseamlessoperation;briefingswereprovidedtoairlines,IATA,Eurocontrol,andadjacentcentresonwhatwasplanned;coordinationwasarrangedwithandagreedtobyUKNATS,andregulatoryapprovalwassoughtandgranted.Theairlinesconfirmedthepredictedsavingsandtheyrequestedafurtherextensionofthisfreerouteairspace.ThiswasaccommodatedincooperationwithUKNATSbylaunchinganewprojectcalledNightTimeFuelSavingsRoutes(NTFSR)acrossIrelandandUKairspacewhichallowsdirectroutingstoselecteddestinationsduringthenight,resultinginfurtherbenefits.Descent(ANSP,airport,airline,groundinfrastructureprovider)Europehasbeenverysuccessfulindevelopingofavarietyofarrivalmanagementtoolstoassistairtrafficcontrollerswithmeteringandspacinginto

7Current Efficiency Improvements Worldwide

13 European Airport CDM, available on the web at http://www.euro-cdm.org/airports.php

24_25Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 26: Accelerating Air Traffic Management Efficiency - A Call to Industry

theterminalarea.EurocontrolhasencouragedthedevelopmentandimplementationofdifferentArrivalManagement(AMAN)tools,reducingvectoring,fuelburnandemissions.AsummaryoftheairportsusingAMANtoolsispresentedinFigure1614.

AtZurichAirportforexample,collaborationbetweentheANSP--Skyguide,ZurichAirport,andgroundsystemproviderBarcohaveresultedinthedevelopmentanduseoftheComputer-assistedApproachandLandingManagement(CALM)system,whichhelpstosmooththetrafficflowintoZurichbyprovidingtrafficadvisoriestoairtrafficcontrollers.

IntheNetherlands,AmsterdamSchipolAirport,theDutchANSPLVNL,KLMRoyalDutchAirlines,andEurocontrolMaastrichtUpperAreaControlCentrecollaboratedtoperformtrialsusingtheSpeedandRouteAdviser(SARA)toolforspeedadvisoriestoenableoptimisedprofiledescentsintoAmsterdamSchipolAirport.Onaverage,SARAflightsflew2.4nmlessperflightwithintheterminal

areawithacorrespondingreductioninlevelflight.Paris-CharlesdeGaulleisusingtheMAESTRO

toolforarrivalmanagementwithintheParisen-routecentretomonitortheairportcapacityandsmooththetrafficflowsonallentrypointsintheParisTMA.

UKNATShasperformedtrialswithUnitedAirlinesforarrivalsintoHeathrowwithsignificantfuelsavings.Thesavingsarebasedonaproceduretoabsorbnecessarydelayincruiseinsteadofholdingstacksaroundtheairport.Inthetrials,selectedUnitedaircrafttransitingtheNorthAtlanticweregivendelaytargetstoabsorbincruiseandwerethenabletobypasstheholdingstacks.Fuelsavingsresultedfrommorefuelefficientcruisespeedsaswellaseliminatingthefuelnormallyburnedinthestack.CurrentlyNATSisworkingonimplementing“linearholding”forNorthAtlanticflightsasanefforttoimproveoverallfuelefficiencyforHeathrowarrivals.

Figure 15 —Airports participating in the European Airport-CDM Project

14 AMAN Status Review 2010, Eurocontrol, December 2010.

Page 27: Accelerating Air Traffic Management Efficiency - A Call to Industry

7.2_AmericasTaxi-Out(ANSP,airport,airlines)IntheUnitedStates,theFAAisevaluatingseveralsurfacemanagementconceptstoreducetaxitime,fuelburn,andemissions.CollaborativeDepartureQueueManagement(CDQM)managesthelengthofrunwaydeparturequeuessothataircraftcanreducetheirphysicalqueuetimewhileensuringthatrunwaysarefullyused15.Inthisconcept,theairlinereceivesanallocationofslotstoentertheairportmovementarearatherthanspecificassignedtimes.TheairlinemaythenusetheseentryslotsintotheairportmovementarearatherthancoordinatewithotherairlinesorATC.CDQMhasbeenimplementedwithintheFAA’sSurfaceDecisionSupportSystemandhasbeentestedatMemphisInternationalAirportsince2009.Anotherconcept,the“Ncontrol”concept,tested

atBostonLoganAirport,usesstatisticalanalysistodeterminewhenthenumberofactiveaircraftontheairportsurfacesaturatesthedepartureflowrate.Thisconceptappliesgateholdprocedurestoaircraftrequestingpushbackifthenumberofaircraftontheairportsurfacehasreachedthissaturationpoint.AnotherconceptusingAirportSurfaceDetectionEquipment,ModelX(ASDE-X)wasusedbythePortAuthorityofNewYorkandNewJerseyandtheairlinestosuccessfullyimplementdeparturequeuemanagementattheJohnF.KennedyAirportinNewYork,whileoneoftheprimaryrunwayswasundergoingreconstruction.ThisprocedurewasusedsuccessfullyfromMarchthroughJune2010,withsubstantialfuelsavingstotheairlines16.

Figure 16 —European airports and ANSPs using various Arrival Management (AMAN) Tools

7Current Efficiency Improvements Worldwide

15 Collaborative Departure Queue Management: An Example of Airport Collaborative Decision Making in the United States, Ninth USA/Europe ATM RE&D Seminar, Brinton, C., Provan, C., Lent, S., Prevost, T., Passmore, S., 2011.

16 Benefits of Virtual Queuing at Congested Airports Using ASDE-X: A Case Study of JFK Airport, Ninth USA/Europe ATM RE&D Seminar, Bhadra, D., Knorr, D., Levy, B., 2011.

26_27Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 28: Accelerating Air Traffic Management Efficiency - A Call to Industry

Departure(ANSP,airport,andairlines)AtlantaInternationalAirport,theFAA,TheMitreCorporation(MITRE),andDeltaAirlineshaveworkedtogethertoimplementAreaNavigation(RNAV)StandardInstrumentDepartures(SID)since2005.DeltaAirlineshasreportedsignificantbenefitsincludingreducedmileageflownonthedepartures,anearliertimetoclimb,reducedtaxitimes,andreducedvoicecommunications.SimilarbenefitshavebeenreportedatDallas-Ft.WorthInternationalAirport,LasVegasMcCarranInternationalAirport,LosAngelesInternationalAirport,andPhoenixInternationalAirport17.EnRoutetoDescent(ANSP,airlines,aircraftmanufacturer,groundinfrastructureprovider)TheFAAhasbeenworkingonseveralprojectsaimedatimprovingATMefficiencyinthetransitionfromenroutecruisetotheterminalarea.TheThreeDimensionalPathinArrivalManagement(3DPAM)ProjectisacollaborativeeffortbetweentheFAA,NationalAeronauticsandSpaceAdministration(NASA),TheBoeingCompany,airlines,andotherindustryparticipants18.3DPAMusesacombinationofgroundandairborneautomationtocomputeandexecuteadvisoriesforaconflict-freetrajectoryfromcruisealtitudetoatime-basedmeteringfixattheTerminalRadarApproachCONtrol(TRACON)boundary.Whilemaximisingthroughputandavoidingseparationconflicts,3DPAMtrajectoriesuseoptimalprofiledescentstoimproveefficiency.Although3DPAMreliesonexistingflightdeckautomationformaximisingefficiencybenefitsandminimisingpilotworkload,newproceduresarerequiredtoensurethatthisautomationgetsusedtoitsfullpotentialinthearrivaldomain.3DPAMisunderdevelopmentattheDenverAirRouteTrafficControlCentre(ARTCC).

TheInitialTailoredArrivals(ITA)ProjectisacollaborativeinitiativebetweentheFAAandThe

BoeingCompanywithairlinepartnershipandNASAsupport.TailoredArrivalsincorporatecurrentlyunderutilisedflightmanagementsystem(FMS)functionsandFutureAirNavigationSystem(FANS)1/Aequipmentonboardoceanicaircrafttogetherwithgroundautomationknownas‘Ocean21’AdvancedTechnologies&OceanicProcedures(ATOP)toincreasetheefficiencyandarrivalcapacity.TheFANSequipmentreceivestheTAclearancefromOcean21andtheFMSthenexecutesatrajectory-basedarrivalrouteandprofileoptimisedverticallyandlaterallyfromcruisealtitudetotherunwaythreshold.CurrentlythisprojectislimitedtotheuseofOceanicFANSequippedaircraftandtheOcean21systemandisonlyperformedatselectcoastalcityairports.IntheUS,ITAshavebeenconductedatSanFrancisco,Miami,andLosAngelesInternationalAirports.TheAttila™AircraftArrivalManagementSystemdevelopedbytheATHGroup,isatoolusedbytheairlinestotracktheiraircraftinthesystem,calculateestimatedtimesofarrival,andmakesmalltimelycorrectionstoeachaircraft’sspeedtodriveoptimalsolutionsfortheairline’snetworkofflights19.TheAttila™systemcurrentlyoperatesindependentoftheATCsysteminthatarrivaltimesareprovidedtopilotsbydispatchers.Assoonasflightsenterthecruisephasetheyaregivenatimetocrosstheterminalareameterfix.Attila™mayspeedaircraftupearlyinthe“rush”tomaximiseoverallthroughput.Whilespeedingaircraftupmayincreasefullburnforthoseindividualflights,overalldelaycanbereducedandsystemfuelburncanbeminimised.Attila™takesadvantageofairlineinformationonwhichaircrafthavethehighestprioritytoreducetime(meetconnections,increaseon-time,etc).AnFAAfundedAttila™trialhastakenplacewherethesystemattemptstohelpmanagearrivalflowsfromtwoairlinesintoCharlotteairport.Fullbenefitsfromafuelsavingsstandpointrequireparticipationfromallaircraft.

17 Statement of Dr. Agam Sinha Before the House Committee on Transportation and Infrastructure, Subcommittee on ATC Modernization and NextGen, March 18, 2009, Washington, DC.

18 Summer/Fall 2010 Metrics/Benefits Analysis Report 4D Advanced Arrivals, FAA, September 2010

19 The Attila Managed Arrivals System, available on the web at http://www.athgrp.com/index.html.

Page 29: Accelerating Air Traffic Management Efficiency - A Call to Industry

OthertimebasedmeteringtoolsforterminalcongestionareusedbythroughoutmajorairportsintheUS.Fuelsavingscanbeimprovedbyusingaircraftcapabilitiestosupportachievingmeteringtimeswherepracticable.

Descent(ANSP,airport,airlines,groundinfrastructureprovider)RNParrivalproceduresweretrialledatPortlandInternationalAirportinPortland,Oregon,enablingasignificantreductioninthevariabilityofflighttracksandreducingbothfuelandemissions.RonaldReaganWashingtonNationalAirportinWashington,DC,permitRNPenabledaircrafttoflyaprecisepathalongthePotomacRiverwhileavoidingprohibitedairspace.RNAVandRNPprocedureshavebeenusedtodeconflictarrivalanddepartureproceduresatnearbyairportsandthusaccommodatemorearrivalsanddeparturesincongestedairspace.7.3_AsiaPacificEnRoutetoDescent(ANSP,airport,airlines)TheATMLongRangeOptimalFlowTool(ALOFT)isusedtohelpsequencearrivalsintoSydneyInternationalAirport.ThereisacurfewinplaceatSydneyfrom11pmto6amandthoughinternationalarrivalsdepartinordertomakethecurfew,thisisnotalwaysthecase.Withoutacoordinatedapproachtomanagingarrivals,airlineswereincentivisedtoarriveearlierinordertoimprovetheirpositioninthearrivalqueue.Inordertomanagethedemand,ATCwouldputaircraftinholdingpatternsoutsideofSydney.AirservicesAustraliaimplementedALOFTsothatarrivingaircraftareprovidedwithatimeupto1000nauticalmilesfromtheairporttoarriveatameteringfixlocated160nauticalmilesfromSydney.ThisallowsaircrafttousetheirFMScapabilitiestobestmanagefuelburnassociatedwithmeetingatimeconstraint.The

aircraftarethenissuedanadditionaltimetoarriveata40nauticalmilemeterfixusingtheirAMANsystem(MAESTRO).Boththetimesat160and40nauticalmilesallowsufficientpressureforATCtofine-tunethesequenceandmanageadditionalflowandseparationchangesasneeded–whileguaranteeingthatnoslotsforarrivalaremissed.ThisALOFTprocesswillcontinuetoberefinedastechnologyandautomationareintroduced20.

Descent(ANSP,airlines,airports,groundserviceprovider)AirwaysNewZealandhasbeenusingCollaborativeFlowManagement(CFM)tomanagearrivals.CFMinNewZealandusesgrounddelaystomanageterminalareacongestionatthedestinationairport,similartotheUSandEurope.ThedifferenceisthatinNewZealandthecalculatedarrivaltimesareusedthroughouttheflight.ThesetimesaretransmittedtoaircraftoperatingcompaniesbetweentwoandthreehourspriortoEstimatedOffBlockTime(EOBT).TheControlledTimeOfTakeoff(CTOT)andControlledTimeofArrival(CTA)timesareestablishedthroughanonline“reservation”systembasedonthelatestflightplaninformationasmodelledbytheATMsystemandthedeclaredcapacityforthedestinationairport,asdeterminedbytheANSP.TheoperationsteamcanmanipulatetheirfleettimestoprioritiseoroptimisethemanagementoftheirnetworkbutcannotmanipulateotherflightswithoutmutualagreementbetweentheoperatingcompaniesandapprovaloftheCFMcoordinator.TheoptimiseddeparturetimesareprovidedtoaircrewbytheirflightopsteamusingACARSorpre-departuremessagesnolaterthan25minutespriortoEOBTbutcanbemodifiedandupdatedpriortotakeoff.Oncetheflightsareairborne,theaircrewisrequiredtoconformascloselyaspossibletothefiledflightplan.AnyfinetuningoftheactualarrivalsequenceremainsanoperationalATCresponsibilityandthiswillbefurtherenhancedwiththeintroductionof

7Current Efficiency Improvements Worldwide

21 From conversations with CANSO member Airways New Zealand.20 From conversations with CANSO member Airservices Australia.

28_29Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 30: Accelerating Air Traffic Management Efficiency - A Call to Industry

BARCO’sAMANtoolandtheuseofthe“RequiredTimeArrival”(RTA)function21.

InJapaneseAirspace,themajorsourcesofcongestionarethemetropolitanairportsandtheirsurroundingterminalareas.Today,operationsinthearrivalphaseleadtoinefficientlyflownpathsandhighcontrollerworkload.JapaneseATMisplanningtoimplement“trafficsynchronisation”,ICAO’stacticalmeasure,allowingthecontroloftrajectoriesbeyondsectorboundaries.Inthiscontext,newsequencingtoolsandnewstrategiestointegratetrafficsynchronisationanddemand/capacitybalancingwillbeneeded.

RNPdesignandimplementationatBrisbaneisaclearexampleofaircraftmanufacturer,airline,ANSP,andregulatorworkingtowardsacommongoal22.TheinitialRNP0.3designcriteriacommencedsevenmonthspriortoimplementationatBrisbane;initialdesignsweredistributedtoATCforreviewandtestedintheQantas737flightsimulatorsbeforebeingflightchecked.AnOnlineTraining(OLT)packagewasdevelopedforairtrafficcontrollertraining;thepackagetargetedthespecificelementsofchangewithineachoperationalunit;completionoftheOLTpackagewasmandatoryforallairtrafficcontrolpersonnelpriortotheirparticipationintheBrisbaneGreenproject.QantaspilotsundertooktheoreticalandsimulatortrainingtoqualifyforRNPinstrumentapproachesgenerally;importantlynoadditionaltrainingwasrequiredfortheseRNPqualifiedpilotstoparticipateintheproject.Newpilot/controllerphraseologiesweredevelopedinconjunctionwiththeregulatorandairlineparticipants;thesephraseswerealsoapplicabletootherlocationswhereRNPwasbeingintroducedandwerestandardisedthroughoutAustralia.Transparentandcollaborativesafetyactivitiesbetweentheairline,ANSPandregulatorwereafoundationtotheproject’ssuccess–thisincludedthesafetyframework,datacollection,andreportingwithcontinualoversightbytheAustralianRegulator(CivilAviationSafetyAuthority).

7.4_EurasiaANSPsinEurasiahaveformedthe“CoordinationCouncilofEurasia”toenhanceoperationalefficiencyindealingwithATMissuesaffectingneighbouringStatesandtodevelopagreedproposalsintheareaofATMtobesubmittedtonationalaviationadministrations.ThemembershipofthisgroupincludestheANSPsofEurasiaandpermanentobserversfromindustryandairlines.TheCoordinationCouncil(CC)hasworkingsubgroupstomanagethevariousspecialisttasksneededtosupporttheobjectivesofthecouncil.Theseincludeinteralia:—harmonisationofATMregulatorydocumentsof

“Eurasia”CCStates;—supporttobilateralAgreementsbetweennational

ATMenterprisesof“Eurasia”CCStates;—organisationalandtechnicalissuesoflanguage

trainingprovisionforAirTrafficControlOfficers(ATCOs);

—developmentofproposalstoensureseamlessflightsofallairlines;

—organisationalandtechnicalissuesofRVSMimplementation;

—organisationalandtechnicalissuesofFlightPlan(FPL)2012implementation;

—establishmentofautomatedAirTrafficFlowManagement(ATFM)systemfor“Eurasia”CCStates,includingdeploymentoftheInternationalAirNavigationService(IAS)ensuringitsinteroperabilitywithEurocontrol;

—establishmentofautomatedflightsafetyassessmentsystem;

— interoperabilityofsatellitecommunicationsnetworkofCentralAsiawiththesimilarsatellitecommunicationsnetworkofRussiaintheinterestsofATM;

—DevelopmentofinterfacesbetweennationalATMdatabases.

22 http://www.airservicesaustralia.com/wp-content/uploads/RNP_Brisbane_ Green_Project_Stage1_Report.pdf.

Page 31: Accelerating Air Traffic Management Efficiency - A Call to Industry

TheFederalStateUnitaryEnterprise,StateAirTrafficManagementCorporationoftheRussianFederation(StateATMCorporation)hasdrawnupamodernisationprogrammecalledthe“JointATMsystemModernisationoftheRussianFederation(2009-2015)–whichhasbeenapprovedbytheGovernment23.ThisprogrammeaimstoincreaseflightsafetyandairspaceefficiencythroughthemodernisationoftheRussianJointATMSystem,andtooptimiseairspaceusebymeansofinnovativeequipmentandtechnology.TheprogrammeiscomparablewithothermodernisationprogrammessuchasSESARinEuropeandNextGenintheUS.

Amongthekeymeasurescontainedwithintheprogrammeistheconsolidationofareacontrolcentres,enhancementofterminalandenrouteAirNavigationService(ANS)provision,modernisationofaeronauticaltelecommunicationsanddatalinknetworks,implementationofasingleairspacemanagementsystem,transitiontoCommunication,NavigationandSurveillance(CNS)/ATMbasedtechnologiesaswellasestablishmentofintegratedcivilmilitaryautomatedATCsystems.

Theconsolidationofareacontrolcentresiswelladvanced.Theprocessisduetobecompleteby2015when13regionalcentreswilltaketheplaceoftheexistingfacilities.Bytheendof2010,twosuchcentreshadalreadybeenestablished:InMoscow,theAutomatedATCCentreBranch,andinRostov-on-Don,theSouthAirNavigationBranch.In2011,aconsolidatedcentreatKhabarovskwillbeginoperations.Justacoupleofyearsagothenumberofareacontrolcentrestotalled118.Todaythereare69andtheprogrammeremainsontracktocompletethetaskby2015.

Between2009and2015investmentinthemodernisationprogrammeisestimatedtoexceedEUR1billion.InadditiontotheresourcesappropriatedbytheStateATMCorporation,theRussianGovernmentrendersassistancebyallocatingfundsfromthefederalbudget.In2010,

themajoritemsofinvestmentincludedconsolidationoftheareacontrolcentres,installingterminalATCautomationequipmentinaccordancewiththefederaltargets;andATMsystemmodernisationinpreparationforReducedVerticalSeparationMinima(RVSM)implementation.

Duringthecomingyears,100short-rangenavigationsystemsandover100terminal,en-routeandsecondaryradarswillbedeployed.Over50satellitecommunicationstations,770VHF/HFvoicecommunicationandAutomaticTerminalInformationService(ATIS)stationsaretobemodernised.Additionally,100full-scaleandvisualsimulatorswillbeimplemented.Thescopeofworkissignificantandithastobecarriedoutoverlargedistances,ofteninharshweatherconditions.

7.5_Africa–IATAserviceAirlinesandairtrafficauthoritiesarebeingcontinuouslychallengedbyexistingairspacestructure.Incertainareas,flightroutingsofferedbyAirTrafficControl(ATC)serviceshavebeenslowtokeeppacewiththerapidchangesofairlines’operationaldemands,especiallyforlong-haulcity-pairs24.

AcrossthesouthernAtlanticandovertheAfricancontinent,regionalroutestructures,builtmanyyearsago,havebecomeoutdatedandarebecomingconstrainingfactorsduetotheirinflexibility.IATAhasworkedwithkeystakeholderstohelpintroducemoreflexibleroutings,mainlyinlessdensetrafficareas.ThisworkiscallediFLEX(IATAFlexibleRoutings).Twomajorairlines,EmiratesandDeltaarealreadyinvolvedintheproject,andareconfidentthatiFLEXcanbedevelopedtosignificantlychangethewaytheyoperate.UsingwhatisalreadyavailableontheairplaneandwithinATCgroundsystems,themovefromFixedtoFlexcaneasilybeaccomplishedinanorderlyandefficientmanner.Theobstacleistochallengethetraditionalwayofthinking.ImplementingiFLEXdoesnotrequire

7Current Efficiency Improvements Worldwide

23 http://www.canso.org/cms/streambin.aspx?requestid=7C56A539-46FB- 49A2-B79B-7F2580EEE587

24 http://www.iata.org/whatwedo/airport-ans/infrastructure_strategy/ Documents/iFLEX.pdf

30_31Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 32: Accelerating Air Traffic Management Efficiency - A Call to Industry

anychangestotheairlines/aircraftnortotheANSPsortheirsystems.TheIATAGuidanceMaterialwillprovidethe‘science’toimplementtheprogrammegloballyandonasustainablebasis.

TheiFLEXprogrammebuildsonexistingbest-practices,currenttechnologyandwithsolutionsthatcanbeimplementedacrossseveralFIRsorregionsinday-to-dayoperatingconditions.AllnewFlexRoutesgeneratedwillbevalidatedinreal-timeforNoticestoAirmen(NOTAMs),airspacerestrictionsanden-routeweatherconditions.Theresultingflightplanswilluseacombinationofexistinginfrastructure,waypoints,latitude/longitudes,fixed-airwayswithnewFlexRouteswherepossibletoobtainanoptimisedtrajectorygiventhewindsforthatperiod.ItwillrequireclosecoordinationwithICAO,states,ANSPsandairlines.7.6_MiddleEastAtthefirstMiddleEastAirspaceUserandStakeholderEngagement(MEAUSE)ConferenceheldinNovember2010,MiddleEasternANSPsandAirspaceUsers,bothcivilandmilitary,discussedfutureplansfortheregionandthenecessaryframeworkandconsultationneededtoachievethis.OneoftheoutcomesofthisconferencewastheestablishmentoftheCANSOMEAUSEWorkgroup.

TheMEAUSEWorkgroupthatspecificallyengagesANSPs,airspaceusersandotheraviationstakeholderstobuildlastingrelationshipsaimedatthetransformationofATMperformance25.

PriortothecreationoftheMEAUSEWorkgrouptheregiondidnothaveapermanentconsultationmechanismforaviationstakeholderstosupportthedevelopmentofafuturevisionandplans.

ThedevelopmentofanANSP’splansforthefuturerequiresadetailedanalysisofoperationalneedsandrequirementsinordertocreatetheoptimuminvestmentplantoimplementtherequiredprojects.TheexecutionoftheseprojectsmustbedoneinatimelymannertoensurethatthegroundinfrastructureoftheCNS/ATMelementsmatchthe

airspaceusers’airbornesystemequipageplans.TheANSPs’businesscasefortheirprojectsis

thereforedirectlydependantontheairspaceusers’futureplans.ThisisespeciallytrueforsystemsthatrequirebothgroundandairborneelementssuchasAutomaticDependentSurveillance–Broadcast(ADS-B),SatelliteBasedAugmentationSystem(SBAS),FANS-1/A,GroundBasedAugmentationsystem(GBAS),andAeronauticalTelecommunicationNetwork(ATN).

TobuildaharmonisedfuturevisionandplanintheMiddleEastrequiresaconsultationplatformtohelpaviationstakeholders:— Identifychallenges—Understandrequirementsanddevelopsolutions—Translaterequirementsandsolutionsinto

projectelements—Developanimplementationplanforall

projectelements

Unfortunately,theMiddleEastregiondoesnothaveaconsolidatedCNS/ATMplanwithanimplementationtimeframethatisagreeabletoallANSPsandairspaceusers.ThissituationmadethedevelopmentoffutureplansforbothANSPsandairlinesveryriskysincefinancialinvestmentsinfutureprojectsarebasedonmanyassumptionsandfewfactswhileprojectbenefitscannotbeguaranteed.

TheMEAUSEWorkgrouphasdevelopedseveralsurveysforANSPs,airlines,airportsandthemilitarytogainanunderstandingoftheirfutureplanswithregardstospecificCNS/ATMelements.Ananalysisofthesurveyshasclearlyshowntheareastorefineandharmonisefutureplanstoensurethatcollectivelygoalsandobjectivesaremet.

ThebenefitsforthisharmonisedfutureCNS/ATMplanfortheMiddleEastregioninclude:—Addressingregionalchallengesanddeveloping

recommendationsandsolutions—Ensuringthatthebenefitsofthemodernisation

projectsarerealisedandallstakeholdersseea

25 http://www.canso.org/cms/streambin.aspx?requestid=602CB48B-5844-4146-A70A-16EA5D8C73CC

Page 33: Accelerating Air Traffic Management Efficiency - A Call to Industry

returnontheirinvestments—Creatingaconsolidatedtimeframefor

implementationthatisagreeabletoallstakeholders.—Establishingapositivebusinesscaseforthe

CNS/ATMprojectelements

TheMEAUSEWorkgroupbringssubstantialchangefortheMiddleEastbycreatingaplatformforthecontinuousengagementofallthestakeholderstoshapethefuturevisionandplansfortheregion.

7.7_Oceanic&RemoteRegionsRegulator,ANSP,airlines,aircraftmanufacturers,avionicssuppliers,groundinfrastructureprovidersSince2009,NavCanadahasusedADS-BOutintheHudsonBaytoreduceseparationsbetweentrailingaircraftfrom80nmto5nminremoteairspace.ADS-Bequippedandauthorisedairlinesgetpreferredroutingwhilenon-equippedairlinesareaccommodated.ThetrafficdensityofADS-Bequipagerangesbetween50and60%.Approximately30airlinesoperatingover800aircraftwithADS-BOutareoperatingintheHudsonBayand

seeingsubstantialsavingsinfuelandemissions.AirservicesAustraliawasthefirstcountryto

implementADS-Bcontinent-wide,deliveringtheabilitytoprovide5nmseparationthroughoutitsenrouteairspace.ThegroundnetworkinAustraliauses29groundstationstoprovidecompletecoverageofairspaceaboveFL290andquitealotofcoveragebelowthat,tothegroundatmanylocations.AirservicesprovidesADS-BserviceswhereverADS-BcoverageisavailableandAirservicesexpectstoextendthatcoveragecommencingnextyear.AirserviceshasanagreementwithIndonesiatoexchangeADS-Bdatawheretheirairspacesjoin.

TheFAAhasimplementedADS-BOutforlowaltitudehelicopteroperationsintheGulfofMexicosinceDecember2009.ADS-Bequippedaircraftflydedicatedaltitudestoenableradar-likehandoffsandpermitdirectroutingsfromHoustonCentreandtheGulfCoastApproachControls.Forequippedaircraft,ATCrequiredseparationwasreducedfrom12nmto5nm.Equippedoperatorshaveseenwaittimesforclearancedeliveryreducedfrom45minutesdownto2minandfuelsavingsduetodirectroutingsof90to100lbs/flight.

Table 2 —Summary of environmental benefits of AIRE-1 Flights in 2009

7Current Efficiency Improvements Worldwide

32_33Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 34: Accelerating Air Traffic Management Efficiency - A Call to Industry

26 http://www.sesarju.eu/environment/aire

27 Delivering Green Results: A summary of European AIRE project results in 2009, SESAR Joint Undertaking, 2010.

28 http://www.faa.gov/nextgen/implementation/portfolio/trans_support_ progs/aire/flights/surface/

29 ASPIRE – Asia and Pacific Initiative to Reduce Emissions, Annual Report, 2011.

7.8_CollaborationAmongRegionsAIRETheEuropeanCommissionandtheFAAlaunchedtheAtlanticInteroperabilityInitiativetoReduceEmissions(AIRE)26in2007.In2009,AIRE-1executed1,152commercialflighttrialswith18stakeholderpartnersinfivedifferentlocations.Eachoftheflighttrialswereaimedatimprovingenvironmentalperformanceofflightsusingcurrenttechnologieswithimprovedoperationalprocedures27.TheEuropeantrailsaresummarisedinTable2withAIRE-1partnersandprojectsshowninFigure17below.

IntheUS,AIREdemonstrationflightshaveincludedsurface,terminal,enrouteoceanic,andgate-to-gateflightsfromandwithintheUS.SurfacedemonstrationshavefocusedonCollaborativeDepartureQueueManagementatMemphisandOrlando28InternationalAirports.ThegoaloftheseprojectshasbeentoenabledatasharingbetweentheFAA,airlines,andairportoperatorstoreducetaxitimesandtheuseofAuxiliaryPowerUnitsontheairportsurface.

Startingin2008,AIREdemonstrationflightsforenrouteoceanicfocusedonthecollaborationbetweenFAAandNAVPortugaltoallowpartnerairlinestomodifytheroutingoftheirflightswhileenrouteDARPallowaFANS-1/Aequippedaircrafttorequestarerouteclearancetotakeadvantageoffavourabletailwindsorminimiseheadwinds.In2008,AirEuropaparticipatedwithflightsfromMadridtoHavana,SantoDomingo,andCaracas.Theprojectwasexpandedin2009and2010toincludeLufthansaAirlines.ThisprocedurebecamefullyoperationalandavailableforeastboundandwestboundflightsthroughNewYorkOceanicAirspacein2010.

Thefirsttransatlanticgate-to-gateAIREdemonstrationflightswithBoeingaircraftwereflowninApril2010.AirFranceandAmericanAirlinesparticipatedwithflightsfromParistoMiamiinvolving

DSNA,UKNATS,NavPortugalandtheFAA.In2011,FAApartneredwithNAVCanada,UKNATS,DSNA,andAirFrancetooptimiseAirbusA380transatlanticgate-to-gateflightsfromNewYorkJFKtoParisCDG.ASPIREAsiaandPacificInitiativestoReduceEmissions(ASPIRE)wasstartedinFebruary,2008asacollaborationbetweentheFAA,AirservicesAustralia,andAirwaysNewZealand.Sincetheoriginalformation,theJapaneseCivilAviationBureau,theCivilAviationAuthorityofSingapore,andAeroThaihavealsojoinedasANSPmembers29.ASPIREpromotestheimplementationofAirTrafficManagementenvironmentalbestpracticeandhasestablishedaworkprogrammeofinitiativestodeliverimprovedenvironmentaloutcomesacrosstheAsiaPacific.

Forexample,UserPreferredRoutes(UPRs)areclearedlateralprofiles,customisedforeachindividualflight,tomeetthespecificoperatorbusinessneedsforthatflightusingDARPasthein-flightproceduretomodifythelateralprofiletotakeadvantageofcurrentwinds.Theminimumlateralandlongitudinalseparationstandardinoceanicairspacewheregroundbasednavigation,surveillance,andvoicecommunicationarenotavailableis30/30nm.TimebasedarrivalmanagementaretrafficflowmanagementproceduresandATCdecisionsupporttoolstosequencearrivalsintohighdensityairspacethatimproveefficiencybyshiftingdelaystothelesscongestedenroutephaseofflight.OptimisedProfileDescents(OPDs)andTailoredArrivals(TAs)improvefuelefficiencyduringthearrivalphaseofflight.Departureoptimisationenableunconstrainedclimbtocruiselevelandtracktoroutestartpointandoceanictrajectory.Theseproceduresminimiselowaltitudevectoringandtheneedtoleveloffatinterimaltitudes.

Page 35: Accelerating Air Traffic Management Efficiency - A Call to Industry

INSPIREBuildingonthesuccessoftheASPIREpartnership,theIndianOceanicStrategicPartnershiptoReduceEmissions(INSPIRE)wasestablishedinMarch2011betweenAirservicesAustralia,AirTrafficNavigationServices(ATNS)ofSouthAfrica,andAirportsAuthorityofIndia.INSPIREisacollaborativenetworkofpartnersandpeerorganisationsacrosstheArabianSeaandIndianOceanregiondedicatedtoimprovingfuelefficiencyandsustainabilityofaviation.AirlinespartnersincludeEmiratesAirline,EtihadAirways,VirginAustralia,andSouthAfricanAirways.

7Current Efficiency Improvements Worldwide

Figure 17 —2009 SJU AIRE-1 partners and projects

34_35Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 36: Accelerating Air Traffic Management Efficiency - A Call to Industry

8Opportunities for Stakeholder Collaboration forATM Efficiency Improvement

Thissectionofferssuggestionsforhowkeystakeholders,whoareaffectedbyeachothers’actions,canworktogetherforgenuinemutualbenefit.

ThekeystakeholdersintheaviationindustryincludeANSPs(alongwithairtrafficcontrollerorganisations),airportsandthecommunitiessurroundingairports,regulators,airlines,aircraftmanufacturers,avionicsandgroundinfrastructuresuppliers.Theyareallinter-relatedaspresentedinFigure18.TheirinteractionsaffectboththeefficiencyandinefficiencyintheATMsystemanddirectlyimpactthepaceofchange.Onlybyworkingtogethercantheinterdependenciesbeaddressedandinefficienciesreduced.

ANSPsareresponsibleforthemanagementofflightsthroughouttheairspacestructure.Theymanagetheoverallflowanddirectaircrafttoensuresafetyofflight.Theyneedtoworkcloselywithregulatorstoaccelerateimplementationofnewproceduresandtechnologytoincreaseairspacecapacityandreduceenvironmentalimpact.Theymustcollaboratecloselywithairportsandairportauthoritiesandacknowledgeairplaneoperators’prioritiestooptimiseoperations.ANSPsneedtoshiftingrolesfromdirectingto“managing”flightsoncethetools,training,andsafetyanalysesareinplace.Industrycanhelpacceleratethistransitionthroughdetailedmodelling,simulationandnewcollaborativetrials.

Inthenearterm,ANSPscansupportthefuelefficientmanagementofnecessarydelayduetocongestionbybringingairlinesandairportstogetherto“broker”systemlevelefficiencieswhilemaintainingequity.SuccessesinAirportCDMandvirtualqueuemanagementcanbeappliedtothearrivalprocesstocurbthe“rush-to-wait”incentivesinthesystemtoday.

Airportoperatorsareresponsibleforthemanagementoftheairportenvironment,includingtheroadsleadingtoandfromtheairport,theterminal

building,andthemanagementoftheairside.Airportoperatorsmustworkcloselywith:cityplannerstomakesuretheroadsleadingtoandfromtheairportcanaccommodatepassengers;withairplaneoperatorstoaccommodateefficientpassengersandfreighttransfer;withregulatorstoimplementnewstandards;withANSPstooptimiseairspaceprocedures,whilealsoengagingwiththelocalcommunitytomanagegrowthandpavethewayfornewefficientoperations.AirportandAirplaneOperators,ANSPs,andtheLocalCommunityshoulddevelopmetricsforlocalefficiencyanddevelopasustainabilityframeworkthattakesintoaccountthepotentiallycompetingenvironmentalobjectivesofminimisingbothnoiseandlocalemissions–whileplanningforandmanagingfuturegrowth.AirportoperatorscanhelpbringairlinestogetherwithANSPstocreateefficientandequitableproceduresastheydidforAirportCDM.

Regulatorsareresponsibleforacceleratingthedevelopmentofnewguidancematerial,criteria,policies,andproceduresthatenableimprovedoperationsthatwillreduceaviation’senvironmentalimpact.TheymustworkcloselywithANSPs,airportsformasterplandevelopment,communities,internationalgovernmentbodiesforglobalharmonisation,airplaneoperatorstoprioritisethemostdesirablefunctionalprioritiesandairplanemanufacturerstodetermineanefficientwaytoimplementnewonboardtechnologiesandcapabilities.Regulatorsneedtoimplementleanprinciplestoacceleratethechangeprocesswithoutsacrificingsafety.WithcloserairplaneOriginalEquipmentManufacturer(OEM),regulatorandANSPfocusedcollaboration,thedevelopmentofguidancematerial,criteria,andpoliciesfornewoperationalcapabilitiescouldlikelybereducedfrom5-10yearsto3-5years.Regulatorresponsibilitiesmayincludeestablishingrulesforensuringcomplianceofnewprocedures.Havingregulatorparticipationsupportstheassurancethat

Page 37: Accelerating Air Traffic Management Efficiency - A Call to Industry

newinvestmentswillbereturnedtotheANSPsandaircraftoperatorsintheformofcostsavings,capacityenhancements,andotherdirectbenefits.

Airlines,meaningallairplaneoperatorsincludingpassenger,cargo/freightcarriers,business,andgeneralaviationmustaccommodatepassengerorcustomerdemands,mustmanageanintegratednetworkofflightswhileoftenhavingtoimplementdifferentrequirementsfromvariousinternationalregulators.Airplaneoperatorsmustcollaboratetoworkforcoordinatedimplementationofcommon,interoperablestandardsthatmeettheirbusinessobjectiveswhilenotimposingunreasonablerequirementsongeneralaviation.Airplaneoperatorsneedtosupportairportoperatorswithlocalcommunityengagementto“findaway”toimplementnew,efficientairportapproaches.Airlineshaveabusinessincentivethatnaturallyfocusesontheircompetitiveadvantages.Morefocusisneededonbenefitsthatwillbenefitthe

aviationsystemasawhole.Otherstakeholdersoutlinedabovemustsupportairlineswithincentivesforalongertermfocus.

Aircraftmanufacturersmustcontinuetoworkcloselywithregulators,ANSPs,avionics,andgroundsystemsupplierstodevelop,implement,andcertifynewtechnology,operationalcapabilities,andcorrespondingproceduresthatenhancegate-to-gateefficiencyinamorecosteffectivemanner.Throughthestimulusofcompetition,aircraftmanufacturersworkcloselywiththeirairlinecustomerstodeterminethenewfunctionalitythatoffersthemostoperationalbenefits.Thechallengeofcertifyingthisnewcapabilitycosteffectivelyhowever,requirescloserup-frontcollaborationwithOEMs,avionicssuppliers,regulatorsandoperatorstoseekprocessimprovementswhereverpossible.ToaccomplishATMefficiencyapproaching98%by2050requirescollaborationbetweentheairplanemanufacturers,

Figure 18 —Stakeholders working together for maximum ATM efficiency

8Opportunities for Stakeholder Collaboration for ATM Efficiency Improvement

36_37Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 38: Accelerating Air Traffic Management Efficiency - A Call to Industry

regulators,operatorsandANSPstoaccelerateharmonisedimplementationofnewATMsystems.

Avionics/groundsystemsupplierswillcontinuetoworkcloselywithaircraftmanufacturers,ANSPs,andregulatorstodevelop,implementandcertifynewtechnologiesandoperationalcapabilitiestoaccommodateincreasedairtrafficdemand,whilesimultaneouslyenablingmoreefficientaircrafttravel.Avionicssuppliershavetheaddedchallengeandresponsibilitytocosteffectivelycreatenewoperationalcapabilityacrosstheaircrafttypespectrumthathelpsreachacriticalmassofequipageinthefleet.WhentheproceduresareinplacethroughOEM,ANSPandairportcollaborationtotakeadvantageofnewtechnology,thecriticalmassmaybecomethe“tippingpoint”requiredbyairlinestoobtainthebenefitsoftheirinvestment.GroundsystemsuppliershavethechallengeofcreatingsolutionsforANSPswithregionaldifferencesandchallenges.Theirresearchmustfocusonthemostforwardthinkingsolutionsthatbenefitallstakeholders.

Communitiesinthevicinityofairportsaresensitivetonoiseandemissionsfromoperationsatanynearbyairports.Theircooperationisessentialtoenablinggrowthandenablingnewoperationsattheairport.Localcommunitiesneedtofindrepresentativesthatcanexpresscommunityconcernswhilealsoappreciatingtheeconomicroleplayedbytheairportandtheaviationindustryandrecognisetheindustrygoalforreducingglobalemissionsaswellaslocalnoise.

9Industry Challenge and Next Steps

9.1_SharingofBestPracticesWemusttakeadvantageofsharingbestpracticesacrosstheATMspectrum.a. TheCANSOEnvironmentalWorkingGroup

haswrittenseveralreferencedocumentstoservethatpurpose.TheWorkingGroupsetupaMetrics&MethodologiesSubgroupthatforthepast3yearshasbeendrivingtowardsconsensusanddevelopingguidanceonperformancemeasurementmethodologiesforATMcontributionstowardsaviation’sCO2emissions.Thesubgrouphaswritten“MethodologiesforCalculatingDelays/ImprovementOpportunityPoolsbyPhaseofFlight”toprovideANSPsguidanceontherecommendeddatasourcesandsoftwareforcalculatingpotentialbenefits,recommendedproceduresfordevelopingbenchmarktimes,calculationsforspecificphasesofflight,andtheprocessforaccumulatingtheopportunitypoolintoanationalairspacesystem-widepool.Tothatend,ICAOhasdevelopedtheICAOFuelSavingsEstimationTool(IFSET)toassistmemberStatesinestimatingfuelsavingsinamannerthatisconsistentwiththemodelsapprovedbytheCommitteeonAviationEnvironmentalProtection(CAEP)andalignedwiththeICAOGlobalAirNavigationPlan.Aquantifiedcommonunderstandingoffuelsavingopportunitiesacrossstakeholderswillhelpaccelerateprogress.

b. TheCANSOEnvironmentalWorkingGrouphaswrittenotherwhitepapersthatserveasacollectionofbestpracticesfrommembersonspecifictopics.Thewhitepaperonnoisehighlightsnoiseissues,identifiesbestpracticesformanagingairspacechangesrelatedtonoise,anddocumentsareaswherestakeholdersupportmustbeobtainedtoachievebroadergoals.

Page 39: Accelerating Air Traffic Management Efficiency - A Call to Industry

c. Thewhitepaperonspeedcontrolfocusesonthepotentialforfuelsavingsduringpeakperiodsofarrivaldemandatcongestedairports.Thecasestudiespresentedshowthatmuchimprovementcanbemadeusingtoday’stechnologiesbothonthegroundandintheaircraft.Successneedstobebasedonimprovingtoday’sproceduresasopposedtowaitingforanoptimumsolution.TheCANSOEnvironmentalWorkingGroupwillcontinuetowritepapersofinteresttomembers.

9.2_CollaborationisKey

Wemusttakeadvantageofopportunitiestoworktogether.ProgrammessuchasEuropeanAirportCDMbringtogetherEurocontrol,AirportsCouncilInternational,andIATAtoreducefuelburnontheairportsurface.ProgrammeslikeAIRE,ASPIRE,andINSPIREbringtogetherANSPs,airports,andregulatorsfromdifferentregionsinanefforttoreducefuelburnandemissionsthrougheveryphaseofflight.Thoughtheregionsmaydiffer,theairlinesthatparticipateinthesetrialsoperateineachofthoseregionsandhelptobringpoliciesandprocedurestogetherformutualbenefit.Itisonlythroughcollaborationthatwecanidentifyinformationthatcanbesharedformutualbenefit.

9.3_Let’sstarttodayTheopportunityandtheneedsareclear.Thechallengeisgreatandifindustrystepsuptoimplementthefollowingsevensteps,togetherwecanacceleratechange.a. Improvethecollectiveunderstandingofthe

operationalbenefitsofmoreefficientATMoperations.Thisrequiresclearproblemdefinitionsbyphaseofflightineachprimarystakeholderdomain(ANSP,operator,community,etc.)aswellasclearandcommonefficiencymetricsandperformanceindicatorsthatlendthemselvestomeasuringoperationalimprovements.Fromthis,industrycanquantifytheachievablebenefitstotheusercommunityandsharesuccessesfromearlyimplementers.

b. Increasestakeholdercollaboration.Throughincreasedcollaboration,theindustrycanidentifyandprioritisethechangesthatreducefueluse,increaseoperationalefficiency,reduceCO2emissions(withinevermorechallenginglocalnoiselimitations)andimproveeachstakeholder’sbottomline.ThisprioritisationwillimprovethemanagementoflimitedpublicandprivateinvestmentsrequiredtoupdateATMinfrastructureandairbornesystemsandreduceimplementationrisks.

c. Accelerateoperationaltrialsandproceduresthattakeadvantageofexistingaircraftcapabilities.Modernaircraftarealreadyabletonavigatewithunprecedentedaccuracy,predicttheirfuturelocationsmoreaccuratelythangroundbasedsystems,andrelaypositionandtrajectoryinformationtoothers.Newoperationsandproceduresmustbeacceleratedtotakeadvantageoftheseinvestmentsinperformancebasednavigationsystems,ADS-Bequipment,anddigitalcommunicationscapability.TheworkalreadybeingdonewithANSPcooperation(suchasRNAV/RNPapproaches,continuous

9Industry Challenge and Next Steps

38_39Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 40: Accelerating Air Traffic Management Efficiency - A Call to Industry

descents,andI-Flexrouting)isessentialtoacceleratingearlyefficiencyimplementation.ContinuedtrialslookingatairspeedcontrolorCTA’stomanageterminalcongestionisalsokeytoourfuturesuccess.

d. Accelerate“realtime”collaborativedecisionmakingthroughenhancedinformationsharing.RealtimeinformationsharingbetweenoperatorsandANSPspermitscoordinatedtaxiandtakeofftimes(minimisinggroundfuelconsumptionandenablinglesscontingencyfueltherebyloweringairbornefueluse).Likewise,nearrealtimeinformationsharingwillenhanceflighttimepredictability,arrivalmanagementefficiency,anduserpreferredrouteadjustmentsintheeventofsignificantwindorweatherchanges.Theabilitytonegotiatetakeoff,arrivaltimes,androutechangesinasafeandtimelymannerminimisesfueluse,CO2emissions,andcosts.

e. Reduceairspacerestrictionsthatleadtoinefficientoperations.ThisstepisaprimaryemphasisforEurocontrol’sSingleEuropeanSkyconcept.However,therearestillopportunitiesforimprovedcollaborationonsharedairspaceuseandapprovalofuserpreferredroutes.Internationalagreementsshouldbenegotiatedonairspaceusagecoststominimiseinefficientflightsbyoperatorsbasedonbusinessdecisions.

f. Acceleratetheapprovalprocessfornewproceduresandoperations.Thisstepgoesbeyondstep“c”andcallsonindustrytocollaborateandapplyleanprinciplesthatwillacceleratetheimplementationprocessandtimelinewhilemanagingcertificationcostsfornewproceduresandoperationsbasedonnewtechnicalcapability.

g. PromotecommonbestpracticesinATMtoensureinternationalharmonisation.TheICAOledAviationSystemBlockUpgrades(ASBU)planprovidesanexcellentopportunityforglobalcollaborationonairspaceinteroperabilityandefficiency30.BothSESARinEuropeandNextGenintheU.S.aremappingfutureinitiativesintotheICAOparadigminpreparationforformalizingtheplanatthe12thAirNavigationConferenceinNovember2012.TheASBUplanidentifiesastructuredapproachforcoordinatingregionalchangestoaviationsystems(airandground)thatleadtoglobalharmonisationandenhancedcapability.Theplanprovidesanopportunityformultiplestakeholderstoworkwithregionalagenciestoplananorderlyimplementation.Operators,ANSPsandregionalgovernmentswillneedtocoordinatedeploymentsofairandgroundcapabilitiestoreducecoststoallstakeholdersandeliminateperformancedifferencesacrossregions.

Thesestepsrequirecommitmenttoasharedobjective–improvedoperationsforall.Thetimeisrighttostartworkingtogetheroneachofthesestepstoday.

30 GANIS (Global Air Navigation Industry Symposium) Working Document, ICAO Aviation System Block Upgrades, “The Framework for Global Harmonization”, Aug 2011.

Page 41: Accelerating Air Traffic Management Efficiency - A Call to Industry

10Glossary

40_41

10Glossary

3D-PAM3DimensionalPathArrivalManagement

ACARSAircraftCommunicationsAddressingandReportingSystem

A-CDMAirportCollaborativeDecisionMaking

ADS-B/CAutomaticDependentSurveillance–Broadcast/Contract

AIREAtlanticInteroperabilityInitiativetoReduceEmissions

ALOFTATMLongRangeOptimalFlowTool

AMANArrivalManagement(ATMArrivalManager)

ANSPAirNavigationServiceProvider

ARTCCAirRouteTrafficControlCentre

ASDE-XAirportSurfaceDetectionEquipment,ModelX

A-SMCGSAdvancedSurfaceMovementGuidanceandControlSystem

ASBUAviationSystemBlockUpgrades(ICAO)

ASPIREAsiaandPacificInitiativestoReduceEmissions

ATAGAirTransportActionGroup

ATCAirTrafficControl

ATCOAirTrafficControlOfficers

ATIS AutomaticTerminalInformationService

ATMAirTrafficManagement

ATNSAirTrafficandNavigationServices

ATOP AdvancedTechnologiesandOceanicProcedures

ATSAirTrafficServices

CANSOCivilAirNavigationServicesOrganisation

CAEP CommitteeonAviationandEnvironmentalProtection

CALM Computer-assistedApproachandLandingManagement

CARATS CollaborativeActionsforRenovationofAirTrafficSystems

CC CoordinationCouncil

CDM CollaborativeDecisionMaking

CDQM CollaborativeDepartureQueueManagement

CDS CollaborativeDepartureScheduling

CFM CollaborativeFlowManagement

CFMUCentralFlowManagementUnit(Eurocontrol)

CNS CommunicationNavigationSurveillance

CPDLCControllertoPilotDataLink

C-PDS CollaborativePre-DepartureSequence

CTA ControlledTimeofArrival

CTOT ControlledTimeofTakeoff

DARP DynamicAirborneRerouteProcedures(orProgrammeorPlanning)

DSNA DirectiondesServicesdelaNavigationAérienne

DFS DeutscheFlugsicherung

EDCT/AFTMExpectedDepartureClearanceTime/AirTrafficFlowManagement

EOBT EstimatedOffBlockTime

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 42: Accelerating Air Traffic Management Efficiency - A Call to Industry

ENSURE ENRouteShannonUpperairspaceREdsign

ETOT EstimatedTakeOffTime

EUROCONTROLEuropeanOrganisationfortheSafetyofAirNavigation

FAAFederalAviationAdministration

FANSFutureAirNavigationSystem

FMG FlughagenMünchenGmbH

FMSFlightManagementSystem

FPLFlightPlan

GANISGlobalAirNavigationIndustrySymposium

GBASGroundBasedAugmentationSystem

IAAIrishAviationAuthority

IAS InternationalAirNavigationService

IATA InternationalAirTransportAssociation

ICAO InternationalCivilAviationOrganization

iFLEXIATAFlexibleRoutings

IFSETICAOFuelSavingsEstimationTool

INSPIRE IndianOceanStrategicPartnershiptoReduceEmissions

KPIKeyPerformanceIndicator

LVNL LuchtverkeersleidingNederland

MITRETheMitreCorporation

NASANationalAeronauticsandSpaceAdministration

NATSNationalAirTrafficServices

NextGenNextGenerationTransportationSystem

NOTAM(s)NoticestoAirmen

NTSFRNightTimeFuelSavingsRoutes

OEM OriginalEquipmentManufacturer

OLTOnlineTraining

OOOIOut,Off,On,In(ACARSmessage)

OPD OptimumProfileDescent

PBN PerformanceBasedNavigation

RNAVAreaNavigation

RNP RequiredNavigationPerformance

RTA RequiredTimeofArrival

RVSM ReducedVerticalSeparationMinima

SARASpeedAndRouteAdvisor

SBASSatelliteBasedAugmentationSystem

SESARSingleEuropeanSkyATMResearch

SID StandardInstrumentDeparture

STAR StandardArrivalRoute

TA/ITATailoredArrival/InitialTailoredArrival

TMATrafficManagementAdvisor

TRACONTerminalRadarApproachCONtrol

UPRUserPreferredRoute

Page 43: Accelerating Air Traffic Management Efficiency - A Call to Industry

10Glossary

42_43

Appendix AEuropean Airport CDM Projects

Airport ANSP Airline

Amsterdam Schipol LVNL KLM

Arlanda LFV SAS Norwegian

Athens International S.A, Eleftherios Venizelos

ATC Hellenic CAA Olympic Airlines, Aegean Airlines

Barcelona

Berlin-Schönefeld DFS Deutsche Flugsicherung GmbH

Brussels Belgocontrol Airline Operators Committee, Brussels Airlines, Thomas Cook

Dublin Irish Aviation Authority Main Airlines operating at DUB (Ryanair, Aer Lingus, Aer Arann, Cityjet, British Midlands, etc.)

Dusseldorf DFS Deutsche Flugsicherung GmbH

Frankfurt DFS Deutsche Flugsicherung GmbH Deutsche Lufthansa

Geneva Skyguide

Helsinki Finavia Finnair (Hub AO), Blue 1 (Hub AO), Air Finland (Hub AO) , SAS (AO, as a parent company of the Blue1), Finnish Commuter Airlines (hub AO)

Istanbul DHMI THY A.O (AO), OHY AIRLINES A.S. (AO) , MNG AIRLINES (AO), ATLASJET HAVACILIK A.S.(AO)

Kiev Boryspil UkSatSE Ukraine International Airlines, Aerosvit, AOC, Alexandr Goryachev

Lisbon NAV (ANSP) TAP (major AO); PGA (AO), SATA (AO),

London Heathrow NATS-NSL Aircraft Operators – Represented by the AOC including British Airways, bmi, Air Canada, Virgin, Lufthansa

Lyon DSNA (Direction des Services de la Navigation)

AOC: Airlines Operator Committee

Madrid AENA Iberia

Manchester NATS Airlines – via AOC / Working Group Member

Milan Malpensa ENAV AOC (Airline Operators Committee)

Munich DFS Deutsche Flugsicherung GmbH AOC, Deutsche Lufthansa

Oslo Avinor SAS, Norwegian

Paris CDG DSNA Air France, AOC: Airlines Operations Committee

Prague Air Navigation Services of Czech Republic Czech Airlines

Rome Fiumicino ENAV ALITALIA , AOC: Airline Operators Committee

Stuttgart DFS Deutsche Flugsicherung GmbH

Vienna Austro Control GmbH Austrian Airlines

Warsaw Polish Air Navigation Agency (PANSA) Lot Polish Airlines (LOT)

Zurich Skyguide

Appendix BAMAN tools in use byairports and ANSPs in Europe

TableB1.Airports,ANSPs,andAMANtoolsinuseinEurope

Airport ANSP AMAN Tool Ground System Provider

Paris CDG MAESTRO Egis-Avia

London Heathrow UK NATS OSYRIS Barco

Frankfurt Main DFS 4D PLANNER DFS, DLR

London Gatwick UK NATS OSYRIS Barco

Zurich Skyguide CALM (OSYRIS) Barco

Copenhagen Catsup MAESTRO Egis-Avia

Paris Orly MAESTRO Egis-Avia

Oslo/Gardermoen OSYRIS Barco

Stockholm/Arlanda MAESTRO Egis-Avia

Dublin MAESTRO Egis-Avia

Helsinki/Vantaa MAESTRO Egis-Avia

TableA1.StatusofcurrentEuropeanA-CDMProjects

Accelerating Air Traffic Management Efficiency: A Call to Industry

Page 44: Accelerating Air Traffic Management Efficiency - A Call to Industry

CANSO – TheCivilAirNavigationServicesOrganisation–istheglobalvoiceofthecompaniesthatprovideairtrafficcontrol,andrepresentstheinterestsofAirNavigationServicesProvidersworldwide. CANSOmembersareresponsibleforsupportingover85%ofworldairtraffic,andthroughourWorkgroups,membersshareinformationanddevelopnewpolicies,withtheultimateaimofimprovingairnavigationservicesonthegroundandintheair.CANSOalsorepresentsitsmembers’viewsinmajorregulatoryandindustryforums,includingatICAO,wherewehaveofficialObserverstatus. FormoreinformationonjoiningCANSO,visitwww.canso.org/joiningcanso

Accelerating Air Traffic Management Efficiency: A Call to Industry

THE BOEING COMPANY – TheBoeingCompanyistheworld’slargestaerospacecompanyandleadingmanufacturerofcommercialaviationjetlinersanddefense,spaceandsecuritysystems.Thecompany’s170,000employeessupportairlinesandgovernmentcustomersin150countries. Boeingisworkingwithgovernment,industryandairlinepartnersaroundtheglobetoimprovetheworld’sairtrafficsystem.Byapplyingexpertiseintheareasofmodelingandsimulation,airspacedesign,systemsintegrationandnavigationservices,Boeing’sAirTrafficManagementteamisattheforefrontofcreatingtheinfrastructureforatransformationalairtrafficmanagementsystem. Formoreinformation,visitwww.boeing.com/boeingedge

Full Members - 78—— Aeronautical—Radio—of—Thailand—(AEROTHAI)—— Aeroportos—de—Moçambique—— Air—Navigation—and—Weather—Services,——

CAA—(ANWS)—— Air—Navigation—Services—of—the—Czech—Republic—

(ANS—Czech—Republic)—— Air—Traffic—&—Navigation—Services—(ATNS)—— Airports—and—Aviation—Services—Limited—(AASL)—— Airports—Authority—of—India—(AAI)—— Airports—Fiji—Limited—— Airservices—Australia—— Airways—New—Zealand—— Angkasa—Pura—I—— Austro—Control—— Avinor—AS—— AZANS—Azerbaijan—— Belgocontrol—— Bulgarian—Air—Traffic—Services—Authority—

(BULATSA)—— CAA—Uganda—— Civil—Aviation—Authority—of—Bangladesh—(CAAB)—— Civil—Aviation—Authority—of—Botswana—— Civil—Aviation—Authority—of—Singapore—(CAAS)—— Civil—Aviation—Regulatory—Commission—(CARC)—— Department—of—Airspace—Control—(DECEA)—— Department—of—Civil—Aviation,—Republic—of—Cyprus—— DFS—Deutsche—Flugsicherung—GmbH—(DFS)—— Dirección—General—de—Control—de—Tránsito—Aéreo—

(DGCTA)—— DSNA—France—— Dutch—Caribbean—Air—Navigation—Service—Provider—

(DC-ANSP)—— ENANA-EP—ANGOLA—— ENAV—S.p.A:—Società—Nazionale—per—l’Assistenza—al—

Volo—— Entidad—Pública—Aeropuertos—Españoles—y—

Navegación—Aérea—(Aena)—— Estonian—Air—Navigation—Services—(EANS)—— Federal—Aviation—Administration—(FAA)—— Finavia—Corporation—— GCAA—United—Arab—Emirates—— General—Authority—of—Civil—Aviation—(GACA)—— Hellenic—Civil—Aviation—Authority—(HCAA)—— HungaroControl—Pte.—Ltd.—Co.—— Israel—Airports—Authority—(IAA)—— Iran—Airports—Co—— Irish—Aviation—Authority—(IAA)—— ISAVIA—Ltd—— Japan—Civil—Aviation—Bureau—(JCAB)—— Kazaeronavigatsia—— Kenya—Civil—Aviation—Authority—(KCAA)—— Latvijas—Gaisa—Satiksme—(LGS)—— Letové—prevádzkové—Služby—Slovenskej—

Republiky,—Štátny—Podnik

Lighter—areas—represent—airspace—covered—by—CANSO—Members

CANSO Members

Correct—as—of—11—April—2013.—For—the—most—up-to-date—list—and—organisation—profiles—go—to—www.canso.org/cansomembers

—— Luchtverkeersleiding—Nederland—(LVNL)—— Luxembourg—ANA—— Maldives—Airports—Company—Limited—(MACL)—— Malta—Air—Traffic—Services—(MATS)—— NATA—Albania—— National—Airports—Corporation—Ltd.—— National—Air—Navigation—Services—Company—

(NANSC)—— NATS—UK—— NAV—CANADA—— NAV—Portugal—— Naviair—— Nigerian—Airspace—Management—Agency—(NAMA)—— Office—de—l’Aviation—Civile—et—des—Aeroports—

(OACA)—— ORO—NAVIGACIJA,—Lithuania—— PNG—Air—Services—Limited—(PNGASL)—— Polish—Air—Navigation—Services—Agency—(PANSA)—— PIA—“Adem—Jashari”—-—Air—Control—J.S.C.—— PT—Angkasa—Pura—II—(Persero)—— ROMATSA—— Sakaeronavigatsia—Ltd—— S.E.—MoldATSA—— SENEAM—— Serbia—and—Montenegro—Air—Traffic—Services—

Agency—(SMATSA)—— Serco—— skyguide—— Slovenia—Control—— State—Airports—Authority—&—ANSP—(DHMI)—— State—ATM—Corporation—— Tanzania—Civil—Aviation—Authority—— The—LFV—Group—— Ukrainian—Air—Traffic—Service—Enterprise—

(UkSATSE)—— U.S.—DoD—Policy—Board—on—Federal—Aviation

Gold Associate Members - 14—— Abu—Dhabi—Airports—Company—— Airbus—ProSky—— Boeing—— BT—Plc—— FREQUENTIS—AG—— GE—Air—Traffic—Optimization—Services—— GroupEAD—Europe—S.L.—— ITT—Exelis—— Lockheed—Martin—— Metron—Aviation—— Raytheon—— SELEX—Sistemi—Integrati—S.p.A.—— Telephonics—Corporation,—ESD—— Thales—

Silver Associate Members - 62

—— Adacel—Inc.—— ARINC—— ATCA—–—Japan—— ATECH—Negócios—em—Tecnologia—S/A—— Aviation—Advocacy—Sarl—— Avibit—Data—Processing—GmbH—— Avitech—AG—— AZIMUT—JSC—— Barco—Orthogon—GmbH—— Booz—Allen—Hamilton,—Inc.—— Brüel—&—Kjaer—EMS—— Comsoft—GmbH—— CGH—Technologies,—Inc—— Abu—Dhabi—Department—of—Transport—— Dubai—Airports—— EADS—Cassidian—— EIZO—Technologies—GmbH—— European—Satellite—Services—Provider—(ESSP—SAS)—— Emirates—— Entry—Point—North—— Era—Corporation—— Etihad—Airways—— Guntermann—&—Drunck—GmbH—— Harris—Corporation—— Helios—— Honeywell—International—Inc.—/—Aerospace—— IDS—–—Ingegneria—Dei—Sistemi—S.p.A.—— Indra—Navia—AS—— Indra—Sistemas—— INECO—— Inmarsat—Global—Limited—— Integra—A/S—— Intelcan—Technosystems—Inc.—— International—Aeronavigation—Systems—(IANS)—— Iridium—Communications—Inc.—— Jeppesen—— JMA—Solutions—— LAIC—Aktiengesellschaft—— LEMZ—R&P—Corporation—— LFV—Aviation—Consulting—AB—— Micro—Nav—Ltd—— The—MITRE—Corporation—–—CAASD—— MovingDot—— New—Mexico—State—University—Physical—Science—Lab—— NLR—— Northrop—Grumman—— NTT—Data—Corporation—— Project—Boost——— Quintiq—— Rockwell—Collins,—Inc.—— Rohde—&—Schwarz—GmbH—&—Co.—KG—— RTCA,—Inc.—— Saab—AB—— Saab—Sensis—Corporation—— Saudi—Arabian—Airlines—— SENASA—— SITA—— STR-SpeechTech—Ltd.—— TASC,—Inc.—— Tetra—Tech—AMT—— Washington—Consulting—Group—— WIDE

CANSO—–—The—Civil—Air—Navigation—Services—Organisation—–—is—the—global—voice—of—the—companies—that—provide—air—traffic—control,—and—represents—the—interests—of—Air—Navigation—Services—Providers—worldwide.—

CANSO—members—are—responsible—for—supporting—over—85%—of—world—air—traffic,—and—through—our—Workgroups,—members—share—information—and—develop—new—policies,—with—the—ultimate—aim—of—improving—air—navigation—services—on—the—ground—and—in—the—air.—CANSO—also—represents—its—members’—views—in—major—regulatory—and—industry—forums,—including—at—ICAO,—where—we—have—official—Observer—status.—For—more—information—on—joining—CANSO,—visit—www.canso.org/joiningcanso.—