abstract

1
Mathematical modeling a “Farady cage” new electronic structure for atoms Mathematical modeling explaining the behavior of the elements from Mendeleev’s Periodic Table, suggesting a new model of the distribution of electrons, completely different from the distribution suggested by Bohr and later by Somerfield, as well as from the subsequent developments of these models. This distribution is a ‘Faraday cage’- type, based on the geometrical interpretations of curves in space-time continuum created by vibrations of particles. Here are some of the aspects explained by the model that I suggest: the behavior of rare gases, the electrical conductivity of metals, the variations of the electron affinity in the entire periodic table, and even the specific behaviors of a number of elements from the point of view of their electron affinity. The above- mentioned elements are N, Mg, Mn, Zn, Cd, Hg, Hf, which are elements with zero electronic affinity, similar to that of rare gases, although they are in the middle of series and of active periods from the point of view of the electron affinity. I finally developed the model up to the level of actinides, the geometric interactions of the type of coherent waves at such complexity of the ‘Faraday Cage’ being excessively complex for me to simulate. The key with which I verified the model was the natural course in the occurrence of more chemical reactions that is invariably, according to the model that I suggested, the course of growth of the system’s entropy. In the case of reversible reactions, according to the calculations resulting from the model that I suggested, the system’s entropy before the occurrence of a chemical reaction is approximately equal to the system’s entropy after the occurrence of the chemical reaction. Keywords: Atomic model Vector equilibrium structure Space-time waves curves

Upload: coker1972

Post on 07-Feb-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abstract

Mathematical modeling a “Farady cage” new electronic structure for atoms

Mathematical modeling explaining the behavior of the elements from Mendeleev’s Periodic Table, suggesting a new model of the distribution of electrons, completely different from the distribution suggested by Bohr and later by Somerfield, as well as from the subsequent developments of these models. This distribution is a ‘Faraday cage’- type, based on the geometrical interpretations of curves in space-time continuum created by vibrations of particles. Here are some of the aspects explained by the model that I suggest: the behavior of rare gases, the electrical conductivity of metals, the variations of the electron affinity in the entire periodic table, and even the specific behaviors of a number of elements from the point of view of their electron affinity. The above-mentioned elements are N, Mg, Mn, Zn, Cd, Hg, Hf, which are elements with zero electronic affinity, similar to that of rare gases, although they are in the middle of series and of active periods from the point of view of the electron affinity.I finally developed the model up to the level of actinides, the geometric interactions of the type of coherent waves at such complexity of the ‘Faraday Cage’ being excessively complex for me to simulate. The key with which I verified the model was the natural course in the occurrence of more chemical reactions that is invariably, according to the model that I suggested, the course of growth of the system’s entropy. In the case of reversible reactions, according to the calculations resulting from the model that I suggested, the system’s entropy before the occurrence of a chemical reaction is approximately equal to the system’s entropy after the occurrence of the chemical reaction.

Keywords:Atomic modelVector equilibrium structureSpace-time waves curves