a. yu. smirnov

88
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy ICTP, December 11, 2012

Upload: samson-meyers

Post on 02-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Neutrinos:. race for the mass hierarchy. A. Yu. Smirnov. International Centre for Theoretical Physics, Trieste, Italy. ICTP, December 11, 2012. Content:. Race for the neutrino mass hierarchy. Neutrino oscillograms of the Earth. PINGU, ORCA and mass hierarchy. Searches for CP violation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A. Yu. Smirnov

A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy

ICTP, December 11, 2012

Page 2: A. Yu. Smirnov

Race for the neutrino mass hierarchy

Neutrino oscillograms of the Earth

Searches for CP violation

PINGU, ORCA and mass hierarchy

E. Akhmedov, S. Razzaque, A. Y. S.arXiv: 1205.7071 v.5

Page 3: A. Yu. Smirnov

e

2

1

3

mass

m231

m221

Normal mass hierarchy

|Ue3|2

|U3|2 |U3|2

|Ue1|2

|Ue2|2 tan23 = |U3|2 / |U3|2

sin13 = |Ue3|2tan12 = |Ue2|2 / |Ue1|2

m231 = m2

3 - m21

m221 = m2

2 - m21

Mixing parameters

f = UPMNS mass

UPMNS = U23IU13IU12

flavor

Mixing matrix:

1

2

3

e

= UPMNS

0.023

Page 4: A. Yu. Smirnov

e

2

1

1

2

3

3

MA

SS

32

ij=m2ij /2E

D31 ~ 2D32

Inverted hierarchyNormal hierarchy

Oscillations

31

Cosmolog

y

31

32

31 > 32 31 < 32

makes the e-flavor heavier changes two spectra differently

Fourier analysis

S. Petcov M. Piai

Matter effect

-decay

Page 5: A. Yu. Smirnov

Quark-lepton

symmetryUnification

Flavor symmetries

Quasi-degenerate- symmetry

Similar to quark spectrum

Supernova neutrinos

Atmosphericneutrinos

Page 6: A. Yu. Smirnov

Earth matter effects,energy spectra

NOvA

Neutrino beam Fermilab-PINGU

Sterile neutrinos may help?

LBNO

Page 7: A. Yu. Smirnov

MSW flavor MSW flavor conversion conversion inside the starinside the star

Propagation Propagation in vacuumin vacuum

Oscillations Oscillations inside the Earthinside the Earth

Collective flavor trasformationCollective flavor trasformation

Shock wave effect on conversion

Shock wave effect on conversion

Page 8: A. Yu. Smirnov

Normal hierarchy Inverted hierarchy

Level crossing scheme

m2 (

eff

ect

ive)

the Earth matter effect in the antineutrino channel only

the Earth matter effect – in the neutrino channel only

Cossible collective effects may affect this picture

and mass hierarchy

Page 9: A. Yu. Smirnov

P. Lipari ,T. OhlssonM. Chizhov, M. Maris, S .PetcovT. Kajita

and physics of oscillations

Page 10: A. Yu. Smirnov

core

mantle

flavor-to-flavor transitions

Oscillations inmultilayer medium

- nadir angle

core-crossingtrajectory

-zenith angle

= 33o

- accelerator- atmospheric- cosmic neutrinos

Applications:

Page 11: A. Yu. Smirnov

innercore

outercore

upper mantle

transition zone

crustlower mantle

(phase transitions in silicate minerals)

liquidsolid

Fe

Si

PREM model A.M. Dziewonski D.L Anderson 1981

Re = 6371 km

Page 12: A. Yu. Smirnov

exclude

d

M. Maltoni

exclude

d

Lines of equal probability

Page 13: A. Yu. Smirnov

MSW-resonancepeaks 1-2 frequency

1 - Pee

Parametric peak1-2 frequency

MSW-resonancepeaks 1-3 frequency

Parametric ridges1-3 frequency

exclude

d

Page 14: A. Yu. Smirnov

B = (sin 2m, 0, cos2m)

2 lm

= (B x P)

Equation of motion (= spin in magnetic field)

= 2t/ lm

Phase of oscillations

Pee = e+e = PZ + 1/2 = cos2Z/2Probability to find e

e

,

BP

x

z

dP dt

y

where ``magnetic field’’ vector:

P = (Re e+ , Im e

+ , e+ e -

1/2)

Page 15: A. Yu. Smirnov

mantle

mantle

1

2

1 2

Page 16: A. Yu. Smirnov

core

mantle

mantle

mantle core mantle

1

2

3

4

1

2 3

4

Page 17: A. Yu. Smirnov

core

mantle

mantle

1

2

3

4 3

2

4

1

Page 18: A. Yu. Smirnov

E. Kh. Akhmedov, S.Razzaque, A.S.

Oscillations test dispersion relation for neutrinos

Page 19: A. Yu. Smirnov

10

1

100

0.1

E,

GeV

MINOS

T2K

CNGS

NuFac 28000.005

0.03

0.10

T2KK

IceCube

LENF

IC Deep Core

NOvA

PINGU-1

e

contours of constant oscillation probability in energy- nadir (or zenith) angle plane

HyperK

Pyhasalmi

Page 20: A. Yu. Smirnov
Page 21: A. Yu. Smirnov

Energy range: 0.01 – 105 GeV

Baselines: 0 – 13000 kmMatter effects: 3 – 15 g/cm3

Flavor content nue, numu

Lepton number nu - antinu

Discovery of neutrino oscillations

Measurements of 2-3 mixing and mass splitting

Enormous physics potentialwhich is not completely explored and largely unused

Bounds on new physics - sterile neutrinos - non-standards interaction - violation of fundamental symmetries, CPT

which change with energy and zenithangle

Page 22: A. Yu. Smirnov

E. Kh Akhmedov, M. Maltoni, A.Y.S. JHEP 05, (2007) 077 [hep-ph/0612285] JHEP 06 (2008) 072 [arXiv:0804.1466] PRL 95 (2005) 211801 arXiv:0506064 M Maltoni talks, unpublished

E. Kh Akhmedov, S Razzaque, A.S. arXiv: 1205.7071

A.Y.S. , hep-ph/0610198.

E Kh Akhmedov, A Dighe, P. Lipari, A Y. S. , Nucl. Phys. B542 (1999) 3-30 hep-ph/9808270

Uncertainties of

original fluxesFlavor identification

Reconstruction of direction

Energy resolutionLow statistics

Developments

of new detection

methods?

TITAND?Y. Suzuki

High statistics will solve the problems

Page 23: A. Yu. Smirnov

Integrationaveraging

averaging and smoothing effects reconstruction of neutrino energyand direction

Original fluxes

identification of flavor

different flavors: e and

Detection

neutrinos and antineutrinos

Screening factors (1 - r s23

2 )

Reduces CP-asymmetry

(1 - e

)

(1 – )

Page 24: A. Yu. Smirnov

PA = |Ae3|2

NeIH - Ne

NH ~ (PA - PA) (1 – ) [r s232 - (1 – e)/(1 -

)]

Flavor suppression(screening factors)

Neutrino - antineutrino factor

unavoidable

CP asymmetry

can be avoided

NIH - N

NH ~ (P- P) (1 – ) - r-1(1 – e) (Pe - Pe)]

Triple suppression

= ()/()

Page 25: A. Yu. Smirnov

Oscillation physics with Huge atmospheric neutrino detectors

ANTARES

DeepCore

Oscillations at high energies 10 – 100 GeV in agreement with low energy data

no oscillation effect at E > 100 GeV

Ice Cube

Oscillations 2.7

Page 26: A. Yu. Smirnov

Precision IceCube NextGeneration Upgrade

OscillationResearch withCosmics with the Abyss

Page 27: A. Yu. Smirnov

PINGU: 18, 20, 25 ? new strings (~1000 DOMs) in DeepCore volume

IceCube : 86 strings (x 60 DOM)100 GeV thresholdGton volume

Existing IceCube stringsExisting DeepCore stringsNew PINGU strings

D. Cowen

Deep Core IC : - 8 more strings (480 DOMs)- 10 GeV threshold- 30 Mton volume

Digital Optical Module

Page 28: A. Yu. Smirnov

20 new strings (~60 DOMs each) in 30 MTon DeepCore volume

Few GeV threshold in inner 10 Mton volume

Existing IceCube strings

Existing DeepCore strings

New PINGU-I strings

PINGU v2

125 m

Denser array

Energy resolution ~ 3 GeV

Page 29: A. Yu. Smirnov

normal inverted

neutrino antineutrino

For 2 system

e - e e - e

e - e -

25

Page 30: A. Yu. Smirnov

neutrinos antineutrinos

NH – solidIH – dashedx = - blue x = e - red

Page 31: A. Yu. Smirnov

+ n + h

muon track cascade

measurements

E Eh reconstruction

E = E + Eh Eh E

105 events/year

E. Akhmedov, S. Razzaque, A. Y. S.arXiv: 1205.7071

Page 32: A. Yu. Smirnov

Oscillations test dispersion relation for neutrinos

Quick estimation of significance

Stot ~ s n1/2

Page 33: A. Yu. Smirnov
Page 34: A. Yu. Smirnov

Background 5 – 7 %

Page 35: A. Yu. Smirnov

S = [ ij Sij2 ]

Smearing with Gaussian reconstruction functions characterized by (half) widths

= A E

E. Akhmedov, S. Razzaque, A. Y. S.arXiv: 1205.7071

)

= B (mp / E)1/2

Reconstruction of neutrino energy and angle

Significance S tot = [ ij Sij2 ]1/2

Sij2 = [ Nij

IH - NijNH]2 / ij

2

ij

2 = NijNH + (f Nij

NH) 2

Uncorrelated systematic error

Page 36: A. Yu. Smirnov

S = [ ij Sij2 ]

Smearing with Gaussian reconstruction functions characterized by (half) widths

= A E

E. Akhmedov, S. Razzaque, A. Y. S.arXiv: 1205.7071

)

= B (mp / E)1/2

Reconstruction of neutrino energy and angle

Significance S tot = [ ij Sij2 ]1/2

Sij2 = [ Nij

IH - NijNH]2 / ij

2

ij

2 = NijNH + (f Nij

NH) 2

Uncorrelated systematic error

Systematics reduces

significance by factor 2

Page 37: A. Yu. Smirnov

~ 1/E0.5

= 0.2E

~ 0.5/E0.5

Page 38: A. Yu. Smirnov

~ 1/E0.5

= 2 GeV

~ 0.5/E0.5

Page 39: A. Yu. Smirnov

S tot = [ ij Sij2 ]1/2

Improvements of reconstruction of the neutrino angle leads to substantial increase of significance

Page 40: A. Yu. Smirnov

Under CP-transformations:

cCP- transformations: c = i 02

+ applying to the chiral components

UPMNS UPMNS * -

V - V usual medium is C-asymmetricwhich leads to CP asymmetryof interactions

Degeneracy of effects: Matter can imitate CP-violation

Page 41: A. Yu. Smirnov

Shape does not change the amplitude changes

Large significance at low energies

Page 42: A. Yu. Smirnov

Determination of the 1-3 mixing has given start of the race for the neutrino mass hierarchyMass hierarchy: important implications for phenomenology and theory

Dedicated new experiments to determine the

hierarchy: LBL accelerator, reactor, INO magnetized

ICAL, also Supernova neutrinos, double beta decay,

cosmology Good chance that multi-megaton scale under ice (water) atmospheric neutrino detectors with low energy threshold (PINGU, ORCA) will be the first.

Intensive study of capacity of these

detectors is under way

Page 43: A. Yu. Smirnov

m231hierarchy

versus

23

Page 44: A. Yu. Smirnov

Grid of magic lines and CP domains

Page 45: A. Yu. Smirnov

P( e ) = |cos 23Ae2e i + sin 23Ae3|2

``atmospheric’’ amplitude``solar’’ amplitude

Due to specific form of matter potential matrix (only Vee = 0)

dependence on and23is explicit

P(e ) = |Ae2 Ae3| cos ( - )

P( ) = - |Ae2 Ae3| cos cos

P( ) = - |Ae2 Ae3| sin sin

For maximal 2-3 mixing

= arg (Ae2* Ae3)

= 0

Page 46: A. Yu. Smirnov

AS = 0

- true (experimental) value of phasef - fit value

P = P() - P(f)

P = 0

(along the magic lines)

( + ) = - ( + f) + 2 k

(E, L) = - ( + f)/2 + k

= Pint() - Pint(f)

AA = 0

int. phase condition

depends on

Interference term:

P = 2 s23 c23 |AS| |AA| [ cos( + ) - cos ( + f)]

For e channel:

Page 47: A. Yu. Smirnov

AS = 0

Pint = 0

= /2 + k

AA = 0

interference phase does not depends on

For channel

- The survival probabilities is CP-even functions of - no CP-violation- dependences on phases factorize

Pint ~ 2s23c23|AS||AA|cos cos

Dependence on disappears

Form the phase line grid

V. Barger, D. Marfatia, K WhisnantP. Huber, W. Winter, A.S.

form magic grid

Page 48: A. Yu. Smirnov

e e

fU23I

I = diag (1, 1, ei )

e

e

~

Propagation basis

~

~

~

~

projection projectionpropagation

A(e ) = cos23Ae2ei + sin23Ae3

Ae3

Ae2

CP-violation and 2-3 mixingare excluded from dynamicsof propagation

CP appears in projection only

For instance:

For E > 0.1 GeV

A22 A33 A23

Page 49: A. Yu. Smirnov

AS = 0

Pint = 0

= /2 + k

AA = 0

interference phase does not depends on

For channel

- The survival probabilities is CP-even functions of - no CP-violation- dependences on phases factorize

Pint ~ 2s23c23|AS||AA|cos cos

Dependence on disappears

Form the phase line grid

V. Barger, D. Marfatia, K WhisnantP. Huber, W. Winter, A.S.

form magic grid

Page 50: A. Yu. Smirnov

Ae2 = 0

Pint = 0

- solar magic lines

( + ) = /2 + 2 k

(E, L) = - + /2 + k

Ae3 = 0

- interference phase condition

depends on

Pint = 2s23c23|Ae2||Ae3|cos( + )

P(e ) = c232|Ae2|2 + s23

2|Ae3|2 + 2s23c23|Ae2||Ae3|cos( + )

Explicitly

= arg (Ae2 Ae3*)

Dependence on disappears, interference term is zero if

V. Barger, D. Marfatia, K WhisnantP. Huber, W. Winter, A.S.

- atmospheric magic lines

Page 51: A. Yu. Smirnov

Grids do not change with

Int. phaseline (blue) moves with -change

P

P = P() - P(f) = const

White: atmosphericBlack: solar

e

Page 52: A. Yu. Smirnov

P

Page 53: A. Yu. Smirnov

P

Page 54: A. Yu. Smirnov
Page 55: A. Yu. Smirnov

- mass hierarchy

- deviation of 2-3 mixing

from maximal one

- CP violationProbe of nature of neutrino mass (soft-hard);

Neutrino images

of the Earth

Atmospheric vs.

LBL

- sterile neutrinos- tests of fundamental symmetries- non-standard interactions

Page 56: A. Yu. Smirnov

Neutrino fluxes averaged over all directions

M. Honda et al astro-ph/0611418

Flavor ratiosCharge asymmetries

1.33

1.00

39

Page 57: A. Yu. Smirnov
Page 58: A. Yu. Smirnov
Page 59: A. Yu. Smirnov

Radiography of the Earth core and mantle

M. C. Gonzalez-GarciaF. Halzen, M. Maltoni, H. TanakaarXiv:0711.0745 [hep-ph]

Zhenith angle distribution of events in IceCube for different energy thresholds for PREM model

Ratio of zenith angle distribution of expected events for PREM model and for homogeneous Earth matter distribution (stat. error)

71

Page 60: A. Yu. Smirnov

Measuring oscillograms with atmospheric neutrinos

E > 2 - 3 GeV

with sensitivity to the resonance region

Huge Atmospheric Neutrino Detector

Better angular and energy resolution

Spacing of PMT ?

V = 5 - 10 MGt

Should we reconsider a possibility to use atmospheric neutrinos?

develop new techniques to detect atmospheric neutrinos with low threshold in huge volumes?

0.5 GeV

Page 61: A. Yu. Smirnov

a). Resonance in the mantle

b). Resonance in the core

c). Parametric ridge A

d). Parametric ridge B

e). Parametric ridge C

f). Saddle point

a). b).

c).

e).

d).

f).

Page 62: A. Yu. Smirnov

Y. Suzuki

- Proton decay searches- Supernova neutrinos- Solar neutrinos

Totally Immersible Tank Assaying Nucleon Decay

TITAND-II: 2 modules: 4.4 Mt (200 SK)

Under sea deeper than 100 m

Cost of 1 module 420 M $

Modular structure

Page 63: A. Yu. Smirnov

Y. Suzuki

Totally Immersible Tank Assaying Nucleon Decay

Module: - 4 units, one unit: tank 85m X 85 m X 105 m - mass of module 3 Mt, fiducial volume 2.2 Mt - photosensors 20% coverage ( 179200 50 cm PMT)

TITAND-II: 2 modules: 4.4 Mt (200 SK)

Page 64: A. Yu. Smirnov

Contours of constant oscillation probability in energy- nadir (or zenith) angle plane

P. Lipari ,T. OhlssonM. Chizhov, M. Maris, S .PetcovT. Kajita

e

Michele Maltoni

1 - Pee

exclude

d

Page 65: A. Yu. Smirnov

Fig 4

Page 66: A. Yu. Smirnov

Fig. 4

Page 67: A. Yu. Smirnov

Fig 6

Page 68: A. Yu. Smirnov
Page 69: A. Yu. Smirnov

Oscillations in matter with nearly constant density (mantle)

Parametric enhancement of oscillations

Mantle – core - mantle

Interference

constant density + corrections

Peaks due to resonance enhancement of oscillations

Low energies: adiabatic approximation

Parametric resonance parametric peaks

Smallness of 13 and m21

2/m322

in the first approximation: overlap of two 2–patternsdue to 1-2 and 1-3 mixings

interference

of modesCP-interference

interference(sub-leading effect)

Two layer transitions vacuum-matter(atmosphere-Earth)

Page 70: A. Yu. Smirnov

of oscillograms

1. One MSW peak in the mantle domain

2. Three parametric peaks (ridges) in the core domain

3. MSW peak in the core domain

1-3 mixing:

1-2 mixing:

1. Three MSW peaks in the mantle domain

2. One (or 2) parametric peak (ridges) in the core domain

1D 2D - structures regular behavior

Page 71: A. Yu. Smirnov

solar magic linesatmospheric magic linesrelative phase lines

Regions of different sign of P

Interconnectionof lines due to level crossing

factorization is not valid

Page 72: A. Yu. Smirnov

Normal hierarchy Inverted hierarchy

Level crossing schemem23

2 (Atm) = m232 (effective)

m2 (

eff

ect

ive)

74

Page 73: A. Yu. Smirnov

Earth matter effects

Flavor evolution of neutrino statesis highly adiabatic

Strong suppression of the neutronization peak: e 3

NH

Adiabaticity is broken in shock front if the relative width of the front:

R/R < 10-4 10 km

Shock wave effect

if larger – no shock wave effect:probe of the width of front

Normal mass hierarchy:

in the antineutrino channel only

Inverted mass hierarchy: in the neutrino channel only

If the earth matter effect is observed for antineutrinosNH is established!

Permutation of the electron and non-electron neutrino spectra

Page 74: A. Yu. Smirnov

Fig 7

Page 75: A. Yu. Smirnov
Page 76: A. Yu. Smirnov

Searching for sterile neutrinos

Page 77: A. Yu. Smirnov

Reduces the depth of oscillationsinterference

P(e ) = s232|Ae3|2

Modifiesphase

= arg (A22 A33*)

E Kh Akhmedov, S Razzaque,A. Y.S.

Reduces the average probability

P( ) = 1 – ½ sin2 223 - s23

4|Ae3|2 + ½ sin2 223 (1 - |Ae3|2) cos

P( ) = ½ sin2 223 - s23

2 c232|Ae3|2 - ½ sin2 223 (1 - |Ae3|2) cos

for hierarchy determination

½

½

neglecting 1-2 mass splitting

Page 78: A. Yu. Smirnov

e

2nd and 3rd parametric peaks

MSWresonance in core

MSW resonance in mantle

Page 79: A. Yu. Smirnov

P( e ) = |cos 23Ae2e i + sin 23Ae3|2

``atmospheric’’ amplitude``solar’’ amplitude

Due to specific form of matter potential matrix (only Vee = 0)

dependence on and23is explicit

P(e ) = |Ae2 Ae3| cos ( - )

P( ) = - |Ae2 Ae3| cos cos

P( ) = - |Ae2 Ae3| sin sin

For maximal 2-3 mixing

= arg (Ae2* Ae3)

= 0

Page 80: A. Yu. Smirnov

AS = 0

Pint = 0

= /2 + k

AA = 0

interference phase does not depends on

For channel

- The survival probabilities is CP-even functions of - no CP-violation- dependences on phases factorize

Pint ~ 2s23c23|AS||AA|cos cos

Dependence on disappears

Form the phase line grid32

Page 81: A. Yu. Smirnov

AS = 0

- true (experimental) value of phasef - fit value

P = P() - P(f)

P = 0

(along the magic lines)

( + ) = - ( + f) + 2 k

(E, L) = - ( + f)/2 + k

= Pint() - Pint(f)

AA = 0

int. phase condition

depends on

Interference term:

P = 2 s23 c23 |AS| |AA| [ cos( + ) - cos ( + f)]

For e channel:

Page 82: A. Yu. Smirnov
Page 83: A. Yu. Smirnov

(- 0.7 – 0.8)

(- 0.9 - 0.8)

(- 1. - 0.9)

50 Mt yr

Blue – normalRed – inverted1 error

For different zenith angle bins

O. Mena, I Mocioiu, S. Razzaque, arXiv:0803.3044

IceCubeDeep core

- Effective area – too big- Relation between neutrino and muon energies

Page 84: A. Yu. Smirnov

e

2

1

MA

SS 1

2

3

3

MA

SS

m223m2

32

m221

m221

Inverted mass hierarchyNormal mass hierarchy

?

~ Tri-bimaximal mixing

1-3 mixing

bi-maximal?

tri-maximal

FLAVOR FLAVOR

m232 = 2.4 x 10-3 eV2

m221 = 7 x 10-5 eV2

- symmetry?

Page 85: A. Yu. Smirnov

Neutrinos (resonance channels):

Pee = |Ue3|2

No earth matter effect

Antineutrinos (no resonances):

Pee = PE1e = |U1e|

2

without Earth matter effect:

the Earth matter effect in the antineutrino channel only

Disappearance of neutronization peak

~ complete permutation of spectra Partial permutation of spectra:mixed soft spectrum

p = 1 - |Ue1|2

p = 1 - |Ue3|2

~1/3

Page 86: A. Yu. Smirnov

Neutrinos (L resonance ):

= |U2e|2

without Earth matter effect

Pee = |Ue3|2

No Earth matter effect

Antineutrinos (H - resonance):

Pee = PE2e

the Earth matter effect – in the neutrino channel only

~ Complete permutation of spectra

p = 1 - |Ue2|2

Partial suppression of neutronization peak

~ 2/3

Partial permutation: mixed hard spectra

p = 1 - |Ue3|2

Page 87: A. Yu. Smirnov

Experiment Parameters Effect Construction Result Cost

Page 88: A. Yu. Smirnov

No collective effects