a. wojciktamu x. wang, d.m. mittleman, and j. konorice s.a. crookernhmfl, los alamos alexey belyanin...

19
A. Wojcik TAMU X. Wang, D.M. Mittleman, and J. Kono Rice S.A. Crooker NHMFL, Los Alamos Alexey Belyanin Texas A&M University Terahertz studies of collective excitations and microscopic physics in semiconductor magneto-plasmas NSF CAREER NSF OISE

Post on 18-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

A. Wojcik TAMUX. Wang, D.M. Mittleman, and J. Kono RiceS.A. Crooker NHMFL, Los Alamos

Alexey Belyanin

Texas A&M University

Terahertz studies of collective excitations and microscopic physics in semiconductor

magneto-plasmas

NSF CAREERNSF OISE

N-doped InSb: a classic narrow-gap semiconductor

~ 0.2 eV

~ 0.8 eV

McCombe & Wagner 1975

Strong non-parabolicity;Non-equidistant cyclotron transitions

Small band gapSmall electron mass ~ 0.014 m0

Palik & Furdyna 1970

Many frequency scales in doped semiconductors fall intothe THz spectral range

1 THz = 4.1 meV

• Plasma frequency

• Fermi energy

• Electron scattering rates

• Cyclotron frequency in the magnetic field of ~ 1 Tesla

• Intra-donor transition frequencies

• Phonon frequencies

• Rich information can be extracted from THz spectroscopic studies

• Exotic conditions for atoms and plasma in superstrong magnetic fields

• Potential for optoelectronic devices utilizing THz coherence

THz time-domain spectroscopy

B

TransmitterReceiver

CPA laser1 KHz, 800 nm

CPA laser1 KHz, 800 nm

Current Amplifier

Lock_in amplifier

ZnTe1/4

WC

Delay stage

ZnTe

Sample: n-doped InSb crystalSample #1: density = 2.1E14 cm-3 Sample #2: density = 3.5E14 cm-3Sample #3 density = 6.1E14 cm-3

T = 1.6-300 Kf = 0.1-2.5THzB = 0-10 T

Incident and transmitted THz pulses

15

10

5

0

-5

x10-3

-30 -20 -10 0 10 20 30

1.375 Tesla

main peak1st multiple refleciton (MR) peak (sample)

2nd MR peak (sample)

1st MR peak from inner window

1st MR from outer window

The transmittance contour map of sample # 1

Magnetic field, Tesla

Fre

qu

ency

, T

Hz

• Plasma edge• Cyclotron resonance• Intra-donor transition lines at low T and high B• Interference features

T = 1.6 K T = 40 K

0.4

0.2

0.0210

1.5 Te

0.4

0.2

0.0

1 Td

0.4

0.2

0.0

0.25 Tb

0.4

0.2

0.0

0 T

a

0.4

0.2

0.0

Tra

nsm

ittan

ce

0.5 Tc

Experiment Theory

210

1.5 Tj

1 Ti

0.5 Th

0.25 Tg

0 T

f

Frequency (THz)

Transmittance at 40 K: only free-carrier effects expected

Free-carrier effects: interference of normal magnetoplasmon modes

“Cold” plasma approximation: ,,|| FTVk

FMS

n2

impuritiesphononsii

nhBh

ph

eBe

pee

)()(

222

...)()(

222

hBh

ph

eBe

peo iin

CRI CRA

BEi

~ 16

CRACRI

he

hehpe m

Ne

,

,2

2,

4 cm

Be

hehBe

,,

||

BepeBeoe 22,0 4

2

1

0.4

0.2

0.0210

1.5 Te

0.4

0.2

0.0

1 Td

0.4

0.2

0.0

0.25 Tb

0.4

0.2

0.0

0 T

a

0.4

0.2

0.0

Tra

nsm

ittan

ce

0.5 Tc

Experiment Theory

210

1.5 Tj

1 Ti

0.5 Th

0.25 Tg

0 T

f

Frequency (THz)

Transmittance at 40 K: only free-carrier effects expected

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5

0.05

0.1

0.15

0.2

CRI

CRA

a

dc

b

experiment

theory

Interference structure is very sensitive to the cyclotron transition energy and the density of free electrons

Yields information on the electron cyclotron mass, band non-parabolicity, compensation ratio, and binding energy on donors (Tellurium) as a function of magnetic field

2/1

*2||

22

||2

1

22

1

4

Bg

m

knE

EE B

eBeg

gn

]2/exp[~ TkENN Bbindne

3/13/12*

2

~)(

~ Bra

eE

BBohrstbind

eB

crB

2 A

ema

e

stBohr 600~~

2

2*

a

dc

bexperiment

theory

Temperature map at B = 0.9 T

0.20

0.15

0.10

0.05

0.00

Tra

nsm

ittan

ce

250200150100500

Temperature (K)

e

experiment

-0.2

-0.1

0.0

0.1

0.2

Tra

nsm

itted

Fie

ld

250200150100500

Temperature (K)

b

ordinary extraordinary interference

100

80

60

40

20

0

Imag

inar

y n e

, o

250200150100500

Temperature (K)

d

ne

no

400

300

200

100

0

Rea

l ne,

o

250200150100500

Temperature (K)

c

ne

no

0.20

0.15

0.10

0.05

0.00

Tra

nsm

ittan

ce

250200150100500

Temperature (K)

f

theory

5x1014

4

3

2

1

0

n i (

cm-3

)

20016012080

Temperature (K)

a

doping density

Position of the peak is very sensitive to thermal band gap EgT :

]2/exp[~ 2/3 TkETn BgTi

EgT = 0.215 eV

Electron scattering rate

0.4

0.3

0.2

0.1

0.0

(T

Hz)

3002001000Temperature (K)

(a)

8x105

6

4

2

0

(c

m-2

/Vs)

3002001000

Temperature (K)

(b)

Temperature dependence at B = 0.9 T

Impurity scattering

Polar optical phononsElectron-hole scattering

Scattering mechanisms:

• Ionized and neutral impurities• Acoustic deformation potential• Piezoelectric• Optical deformation potential• Polar optical phonons• intrinsic carriers

Electron-”ion” scattering in a strong magnetic field

http://hyperphysics.phy-astr.gsu.edu

TkEb

e

Tk

eb

b

LbrLbB

BkinsstBst

s

s

DsBDs

~~from~where

,ln~:or,0

22

2

Debye radius pe

FermiTD

VVL

],max[

~

s

BsDBs b

rbLrb ln~: 2Gyroradius:

classical~

quantum

pe

ThermalB

B

Vr

eB

cr

2

)(~from~where~:

223/1

2

23/42 effBe

effststeffeffDsB

bm

b

e

B

mcbBbLbr

Similar to magnetic white dwarfs and neutron stars!

Low-temperature effects: donor absorption lines and field-induced localization

measurements

1.6 K 40 KNn = 2.1x1014 cm-3

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tra

nsm

ittan

ce (a.

u)

1.00.80.60.40.2

Frequency (THz)

2T

2.5T

3T

4T

5T

6T

7T

8T

8.5T

9T

9.5T

10T

Donor (tellurium) transition lines

McCombe & Wagner 1975

CRA 1s-2p+ transition (000)-(110)

CRI 1s-2p- transition (000)-(0-10)

Cyclotron resonance

Low-temperature effects: field-induced localization

T = 1.6 K, Nn = 2.1x1014 cm-3

Quantum phase transition metal-insulator?

Gradual magnetic freeze-out of carriers?

25.0~*3/1Bohrn aN

B = 0: Nn ~ 6x1013 cm-3

Edwards & Sienko 1978

T1~3/1*2*

cBohrBBohr Bara

Gao et al., APL 2006Shayegan et al. PRB 1988

]2/exp[~ TkENN Bbindne

3/13/12*

2

~)(

~ Bra

eE

BBohrbind

Mani et al., PRB 1989,1991

Freeze-out picture:

3/1]/1ln[~ln BNexx

Low-temperature effects: field-induced localization

T = 1.6 K, Nn = 2.1x1014 cm-3

Not compatible with a gradual magnetic freeze-out?

Trying scaling behavior of dielectric constant … scBB

Efros & Shklovskii 1976 etc.

“Releasing” electrons at B ~ Bc

• Coherent time-domain THz spectroscopy provides quantitative

information on the band structure, electron scattering processes,

and collective excitations

• Intriguing low-temperature behavior of the dielectric response;

nature of the magnetic field-induced localization is still unclear

• Also for future studies: dispersion , deviation from ideal

plasma, kinetic effects near the cyclotron resonance

Conclusions

)(k