a of the trenton formation and its past future

43
A REVIEW OF THE TRENTON FORMATION AND ITS PAST AND FUTURE PRODUCTION IN NORTHWESTERN OH1 0 GARY MITISKA J

Upload: others

Post on 26-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

A REVIEW OF THE TRENTON FORMATION AND ITS PAST AND FUTURE

PRODUCTION IN NORTHWESTERN O H 1 0

GARY MITISKA J

A REVIEW OF THE TRENTON FORMATION AND ITS PAST AND FUTURE

PRODUCTION I N NORTHWESTERN O H I O

ABSTRACT

Beginning i n t h e l a t e 1800's i n northwestern Ohio,

d i scover ie s o f n a t u r a l gas and l a t e r o i l gradual ly revealed

what today i s known a s t h e Lima-Indiana f i e l d , one o f t h e

l a r g e s t eve r in -Nor th America. The production o f t h i s

f i e l d was i n i t i a l l y q u i t e s t rong, However, because gas

r a t h e r than o i l was the sought resource, and primative

recovery techniques were used, i t was shor t - l ived , I t i s

q u i t e probable t h a t a l a r g e percent o f t h e o i l remains,

o i l previous ly unprof i t ab le t o a t t a i n , V i r t u a l l y a l l the

production came from t h e Trenton Formation, an extensive

l imestone, l o c a l l y dolotimized, c r e a t i n g porous zones

capable of t rapping hydrocarbons, S t r u c t u r a l f e a t u r e s and

s t r a t i g r a p h y , along with porous i ty , con t r ibu te t o t h e

Trenton 's r e s e r v o i r c h a r a c t e r i s t i c s . A s energy and economic

demands f o r o i l and gas cont inue t o climb, renewed production

and increased recovery become more d e s i r e a b l e and f u r t h e r

d e t a i l e d a n a l y s i s o f t h i s genera l ly abandoned a r e a may be

worthwhile,

INTRODUCTION

The production zones of t h e Lima-Indiana f i e l d w i l l

be our main concern, although it w i l l be use fu l t o note

t h e geology of the surrounding a r e a s as wel l , More speci-

f i c information w i l l h i g h l i g h t t h e productive t e r r i t o r y

wi th in Ohio, and f i g . 2 i n d i c a t e s count ies within t h i s

area. Current production i n t h i s a rea i s n o t completely

absent , a s small independent and noncommercial d r i l l i n g

p r o j e c t s continue, The Ohio Dept. of Natural Resources

r epor ted 60 new wel l s i n t h e Trenton Formation i n 1981,

inc luding 24 i n Seneca, 13 i n Van Wert, and 9 i n Paulding

Counties. A more d e t a i l e d t a b l e i s shown i n f i g . 1. Also,

it might be noted t h a t 5,585 w e l l s i n 1981 s e t t h e new

record f o r t o t a l d r i l l i n g opera t ions i n t h e s t a t e . After

a review and re-evaluat ion of the pas t , and newly discovered

a r e a s , l a rge - sca le p r o j e c t s i n t h e Trenton may become

f e a s i b l e .

0 3 SUMMARY OF NEW OIL AND GAS WELL DRILLING BY PRODUCING ZONES-1981

O o d s OUwd* bmblmtlonwdb ToWpoduclng wdla Dr l hdn low TOW %h muchg- ND. UcM Ft ' No. W d H No. Ydd B*d R k Ydd Bold FI Wa. O d u d k . P m Ivaman (umkcrmaalsd) 16 4.404 13.931 7 18 5.886 3 62 12 2223 2U 4.466 30 22.054 8 5.104 34 27.154 7647

UpwM'wrrwpm (wadlermUIed) 4 830 6.716 1 1 770 6 241 76 9,032 1 1.071 77 16.488 0 0 1 1 6 . 4 ~ lmm L w e i M~uIulPp*yI ( l a 62od &OI) 114 20,997 193.416117 385 122.260 371 28.822 1.165 645.9% 602 49.819 1.550 961.602 51 51.908 653 1.013.510 9218

avoman OhaSrvls 299 45.340 949.298 3 156 10.382 227 21.714 3.755 753.655 529 67 .W 3.911 1,713,335 6 16.983 535 1.lj0.318 9687

De-wsn Gordon 72 7,154 179.476 2 24 4.711 80 11.117 493 M0.345 154 18.271 517 384.532 2 4,Wl 158 389.333 9871

Dnonu, 'QW 2 535 7.626 0 0 0 0 0 0 0 2 535 0 7.626 0 0 2 7.626 lWOD

DN0h.n OtiOMy 5 1,460 18.285 0 0 0 5 1.942 125 18.129 10 3.402 125 36.414 0 0 10 36.414 lmm

Sl"Mn B a s s I V M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2.752 1 2 . 7 ~ m m

Ll"0sn -0 3 1.825 7.551 0 0 0 1 45 6 4.901 4 1.870 6 12.452 1 4,630 5 17.082 8000

Sunan Chnwn.Medm8 728 234.631 3100.574 254 2.821 857.077 2.703 418.947 23.515 :0.913.750 3.681 653.578 26.136 14.971.401 213 l.CW.587 3 . M 16.034.%8 945.3

U WOrdonM L m 0 0 0 1 5 m o o 0 0 0 1 0 5 m o o 0 t OQ) 1 m m

L w t OmDvrUn TnnlorrRoreRn 13 1.285 4.375 7 78 1O.W 19 2.077 97 54.238 39 3.362 175 110.673 3l 0.214 69 190.887 99

CImbnm ~ U M f U n a h l U d t 0 0 0 6 62 18.986 4 410 1 s 1 5 3 ~ 10 410 215 %.a39 40 12g.a)t 50 1 ~ 0 . 4 ~ 0 2000

RecwnOfmn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 9,879 4 9.879 mw ToW 1.256 318.461 4.823.24 38( 3.350 [email protected] 3.419 485,377 29.397 12,617,532 5.089 803.838 32.747 18.271.812 356 1.365.919 5.42s 19.637.751 9143

~ S o u r c a hoCapamnsnd~ra R n o u ~ , O I L Or anm

I

WILLIAMS F U LTON 4

L,

HENRY I

DEFIANCE W O O D 0

ROWLING GRLE N

PAULDING 1 SENECA

P U T N A M H A N C O C K

f PNDL A V 4 A

VAN WE RT - -ALLEN

HARDIN 0

1 LIMA 1 J' I

A U G L A I Z E

A 0 2 0

f 4 - MI

0 SCALE IN MILES ,, w

K M

Fig . 2

OIL AND GAS HISTORY

A s i n a l l geologic ventures , t h e key t o the present

i s t h e pas t . The h i s to ryof t h e gas d i scover ie s o f nea r ly

100 years ago, and t h e beginnings o f the petroleum indus t ry

i n northwestern Ohio a r e a s follows.

Natural gas from t h e Trenton Formation was f irst

discovered i n t h i s reg ion i n November, 1884, i n Findlay,

Ohio, Hancock Co., a t t h e Karg wel l (Orton 1888). A t t h a t

time gas was t h e valued commodity and any o i l t h a t was

found was considered a nuisance. By 1885, uses f o r o i l

were more popular and o i l production accompanied t h a t of

gas. Rich t e r r i t o r i e s were found i n Wood and Allen Counties,

and production soon spread throughout the neighboring counties

as well.

The a r e a o f production i s shown i n f i g . 3, and remains

nea r ly a s it w a s i n 1900. This includes a b e l t extending

from Lucas and Ottawa Counties, southwest t o VanWert and

Mercer Counties, and f u r t h e r west i n t o Indiana.

Orton (1898) r e p o r t s seve ra l l a r g e gas w e l l s with

i n i t i a l productions of 12 - 32 mi l l ion cubic f e e t per day.

Orton (1888) and Bownocker (1903) mention severa l l a rge

o i l we l l s producing from 350 t o 10,000 b a r r e l s per day.

On t h e average, we l l s produced smal ler amounts, and Buehner

(1971) e s t ima tes 540 bbls/acre i n Ohio, wi th maximums

ranging from 1,000 t o 9,000 bbls/acre, and 535 bbls/acre

i n Indiana.

Pig, 3

Production not iceably increased from j u s t over one

m i l l i o n bbls/d i n 1886 t o n e a r l y t e n m i l l i o n bbls/d i n

1888, (Bownocker, 1903) as l o c a l towns developed n a t u r a l

gas companies and d i s t r i b u t i o n f a c i l i t i e s f o r p r i v a t e

hea t ing as we l l a s i n d u s t r i a l uses , e.g., g l a s s f a c t o r i e s ,

Production peaked around 1896 a t over 20 mi l l ion bbls/d,

and a s quickly decl ined t o almost t en mi l l ion bbls/d i n

1906, and almost one m i l l i o n bbls/d by 1934 (Alki re , 1951),

Fig, 4 i s a complete l i s t of Trenton production from 1886

to 1939. Bownocker (1903) e s t ima tes a 12,5$/year decrease

i n production, l a s t i n g on the average f o r t e n t o twelve years ,

This r a t h e r shor t - l ived production was due t o s e v e r a l

causes, Being a cheap, seemingly l i m i t l e s s supply of f u e l ,

i t w a s r a p i d l y used by l o c a l consumers and industry. Perhaps

more important , recovery techniques were improper and ine f -

f i c i e n t , and sometimes uncontrol led, A s gas was t h e ch ie f

concern of the d r i l l e r s , i ts necessary d r iv ing pressures

r a p i d l y dec l ined , making it inc reas ing ly d i f f i c u l t t o br ing

up t h e v a s t amounts of o i l , l eaving a poss ib ly l a r g e percent

s t i l l i n place. I n a d d i t i o n , abandoned w e l l s were f r equen t ly

l e f t unplugged, f u r t h e r r e t a r d i n g pressures .

Well records were n o t properly kept , and accura te

production f i g u r e s a r e unavai lable . However, cu r ren t t o t a l

e s t i m a t e s of Trenton production from the Lima-Indiana f i e l d

are 483 m i l l i o n bb l s from 100,000 we l l s on 650,000 a c r e s ,

380 m i l l i o n bb l s from Ohio a r e a s alone (Buehner, 1971).

TRENTON OIL PRODUCTION IN NORTHWESTERN OHIO

Year

627,000 582,000

Not available from 1939 on

CumuIarive production (barrels)

1.064,02 5 5,7 14,400

1 5,397,083 27,550,272 42,565,154 59,881,132 75,050,639 88,697,443

102,305,287

- 1 18,155,896 1 38,73 1,034 - 157,413,711 174,004,127 190,38 1,30 1 207,265,659 223,441,952 239,319,682 254,213,535 267,563,595 278,893,519 288,774,703 296,767,760 303,s 16,436 309,431,793 314,525,929 3 19,061,804 323,017,701 326,834,744 330,561,831 333,955,664 337,OY 1,63 1 340,002,492 342,345,656 344,859,656 346,974,656 349,116,656 351,141,656 353,295,656 355,313,656 357,253,656 359,133,656 360,842,656 362,423,656 363,907,656 365,2 19,656 366,334,656 367,39 1,656 368.4 17,656 369,393,656 370,300,656

? ? ?

375,000,000 estimated final cumulative production

Information compiled from "Mineral Resources of the United States" published by U.S. Geological Survey

Fig. 4

GENERAL STRATIGRAPHY AND HISTORY OF THE TRENTON

Production i n t h e Lima-Indiana f i e l d c e n t e r s from t h e

Trenton Formation, This formation was named by Lardner

Vanuxem i n 1838 a f t e r the Trenton F a l l s i n Oneida County,

New York, (Vanuxem, 1838). The Trenton i s a widespread

carbonate sediment extending from New England t o the Rocky

Mountains, and from n o r t h of Hudson Bay t o the southern

Alleghanies i n Alabama and Tennessee (Orton, 1888). It i s

mid-Ordovician i n age, deposi ted during t h e Champlanian

s e r i e s . The o l d e s t formation i n t h i s s e r i e s , and a familiar

reference po in t , i n t h e S t , P e t e r Sandstone, unconformable

a t i t s base where i t o v e r l i e s the lower Ordovician Canadian

s e r i e s . It is a l s o unconformable above, where t h e Glenwood

Shale o v e r l i e s it. Conformable on t o p of the Glenwood l i e

t h e Black River and Trenton Limestones r e spec t ive ly , These

carbonate d e p o s i t s a r e covered by var ious sha les of t h e

Cincinnat i s e r i e s , A more d e t a i l e d s t r a t i g r a p h y and geologic

h i s t o r y w i l l fol low,

REGIONAL STRUCTURE

The s t r a t a i n t h e s u b j e c t a rea d i r e c t l y r e f l e c t the

s t r u c t u r a l f e a t u r e s present i n what is p a r t of t h e "Eastern

I n t e r i o r Regionw (Buschback, 1971). A look a t f i g , 5 i s a

genera l map of these f a m i l i a r f e a t u r e s which include l a r g e

arches , bas ins , domes, and l o c a l i z e d f a u l t i n g . Perhaps

the most i n f l u e n t i a l i n t h e a r e a of d iscuss ion i s the

nearby Cinc inna t i arch, Its a x i s s t r i k e s nor th-nor theas ter ly ,

and extends from nor thern Indiana and t h e Michigan basin t o

Tennessee and t h e Miss i s s ipp i embayment, The Cincinnat i

a rch a p p l i e s t o t h e e n t i r e f e a t u r e , i t s named and unnamed

components, Northwestern Ohio l i e s on what is c a l l e d t h e

Indiana-Ohio platform and t h e adjo in ing Findlay arch ,

Here, t h e bedrock on t h e e a s t limb of t h e arch i s a t r e l a t i v e l y

shallow depths, 2600 f t . (Buehner, 1971, p.35). and i s

covered by t h e f a i r l y small sequence of Paleozoic rocks

which inc lude t h e Trenton Formation, Fig. 6 i l l u s t r a t e s

t h i s , As one m i g h t expect, sediments th icken away from the

a rch on i t s limbs, Another important f e a t u r e i s t h e Bowling

Green monocline w i t h a s soc ia ted f r a c t u r e s and f a u l t i n g , which

extends northwest-southeast from Lucas, through Wood, m d

hancock, t o Hardin Counties, Production has been except ional ly

h igh i n t h e s e a reas ,

A b r i e f s t r a t i g r a p h i c and geologic h i s t o r y w i l l b e s t

review how these sediments were deposi ted the way they a r e ,

and how t h e s t r u c t u r e s i n t h i s a rea developed,

Depths to the Precambrian basement in Ohio, contour interval 500 feet

STRATIGRAPHY AND GEOLOGIC H I STORY (See s t r a t i g r a p h i c column, Fig, 7)

The basement of t h e s e c t i o n i n t h e s u b j e c t a r e a i s t h e

Grenville-aged (800-1000 m,y, o ld ) metamorphic complex. I t

belongs t o t h e Precambrian e r a , although it i s sometimes

r e f e r r e d t o a s Eocambrian. I t c o n s i s t s o f g l a c i a t e d boulder

depos i t s , i n t r u s i v e s , metamorphics, and some carbonate

sequences, The carbonates a r e bituminous and could be source

rocks f o r overlying r e s e r v o i r s (Buehner, 1971), P l a t e

t e c t o n i c s were an inf luencing f a c t o r throughout t h i s time,

although t o what e x t e n t i s uncer ta in , A major unconformity

covers these basement rocks.

The next mappable u n i t above t h e unconformity, t h e

Potsdam supergroup, begins Paleozoic depos i t ion and includes

the M t . Simon Sandstone, t h e Eau Cla i re Formation, and the

Dresbach Sandstone i n ascending order. These a r e mid-

Cambrian i n age and were deposi ted during the extensive

r i s e i n sea l e v e l t h a t t ransgressed t h e cra ton throughout

t h e Cambrian.

The Knox supergroup, which follows t h e Potsdam, includes

the F'ranconia Sandstone and t h e Trempeal Dolomite, l a t e

Cambrian i n age. By t h i s time, e p e i r i c seas covered much of

the shal lower cra ton and carbonate depos i t ion began t o

dominate sands (Bat ten and Dott , 1981). These lower Ordovician

depos i t s of the Canadian s e r i e s include i n ascending order ,

t h e Oneota Dolomite, t h e New Richmond Sandstone, and the

Shakopee Dolomite. Throughout t h i s time, continuing p l a t e

a c t i v i t y was a f f e c t i n g t h e emergence and submergence o f t h e

c ra tons , and regressive/transgressive phases continued a s

well . By the c lose of t h e Canadian, t h e region we a r e con-

cerned w i t h had become t i l t e d t o t h e south. The Kankakee

a rch had become evident i n nor thern Indiana (Buschback, 1971),

and the p o s i t i v e a r e a separa t ing the Appalachian and I l l i n o i s

bas ins r a n nor the r ly through c e n t r a l Ohio, near what today

is known as t h e Waverly arch (Woodward, 1961).

Following a r e t r e a t

o f t h e s e a s , a widespread

unconformity w a s eroded

ac ross t h e previous Sauk

sequence. (Sequences a r e

groups of s t r a t a bounded

by major unconformities . ) Fig. 8 shows the su r face

of t h e "Knox unconformity" . Maximum r e l i e f on t h i s

sur face was 100 meters

(Bat ten and Dott , 1 9 8 1 ) ~

The St . P e t e r

Sandstone o v e r l i e s t h e Fig. 8

b o x supergroup, I t i s t h e b a s a l u n i t o f t h e Tippecanoe

sequence and t h e Champlainian s e r i e s . I t was deposi ted

during renewed t r ansgress ion as i s i l l u s t r a t e d by f i g . 9,

I t is very widespread, composed of fine-medium, mature,

qua r t z g r a i n s , redeposi ted from t h e cen te r of t h e cra ton

(Bat ten and Dott , 1981).

During t h e time following t h i s (Chazy), e ros ion c u t

down through these o l d e r sediments as deep a s Cambrian

rocks. The r e s u l t i n g channels were f i l l e d by Glenwood

s h a l e s (lower Chazy) and/or Ottawa carbonates, c r e a t i n g

p o t e n t i a l l y i d e a l o i l t r a p s of t runcated porous beds,

covered by impermeable cap rocks. The St . P e t e r Sandstone

is one such porous bed which pinches out updip t o the west.

I t i s t h e Ottawa supergroup which c o n s i s t s of t h e

Black River and Trenton Limestones. The deposi t ion o f these

r e l a t i v e l y pure carbonates l a s t e d f o r seve ra l mi l l ion yea r s

and i s q u i t e extensive. The depos i t ion of these t h i n ,

uniform beds, t r aceab le over such g r e a t d i s t ances , i n d i c a t e s

a f a i r l y s t a b l e craton. The depos i t iona l environment was

apparent ly a shallow, we l l c i r c u l a t e d , marine a rea as would

be expected. Much f o s s i l debr i s i n d i c a t e s a s h e l l y f a c i e s

o r e l a s t i c na tu re (Bat ten and Dott , 1981). Est imates of

p a s t c o n t i n e n t a l l o c a t i o n s place North America much c l o s e r

t o t h e equator than a t present . This more sub t rop ica l

paleoclimate would be more c o n s i s t e n t with t h e environments

necessary f o r t h e depos i t ion of highly f o s s i l i f e r o u s carbo-

n a t e s and evapor i t e s t h a t a r e present .

J u s t a s t h e bedrock d ips southward, s o do the over-

l y i n g sediments. The Ottawa carbonates thicken southward

from about 300 ft. i n nor thern I l l i n o i s t o 1400 f t . a t t h e

nor thern edge of t h e Miss iss ippi embayment i n northwestern

Kentucky (Buschback, 1971). There is a l s o a s l i g h t thinning

westward a s a r e s u l t of minor u p l i f t of t h e Indiana-Ohio

platform, t h e Findlay and Waverly arches.

Isopachs on t h e Trenton show considerable v a r i a t i o n

i n northwestern Ohio, The average th ickness of t h e Ottawa

here i s 625 f e e t . I t ranges from 475-650 f t . along an a x i s

from Greenvi l le , i n Darke County, t o Sandusky i n E r i e Countyi

and 430-600 f t . from Georgetown, i n Brown County, Indiana,

t o Columbus, i n Frankl in County (S tou t , 1941). I t ranges

from 62 f t . i n Fayet te County, i n e a s t e r n Indiana t o 550 f t .

i n Lee County, Vi rg in ia (Ca lve r t , 1962). Est imates of the

Trenton a lone , range from 60 f e e t i n t h e southeas t t o 300 f e e t

i n t h e nor th , and inc reas ing r a p i d l y t o t h e northwest ( S t i e g l i t z ,

i n p r e s s ) . I n pas t a r e a s of production it i s smal ler ,

ranging between 150 and 300 f e e t ( S t i e g l i t z , 1981). Fig, 10

i s an isopach map of northwestern Ohio.

The t o p of the Trenton Formation is a r e l a t i v e l y f l a t

sur face , wi th f a i r l y shallow i r r e g u l a r i t i e s , a few f e e t a t

t h e most. I t i s e a s i l y recognizable as wel l a s mappable,

Fig, 11 shows t h e s t r u c t u r e on top of t h e Trenton i n Ohio a s

we l l as surrounding areas . Fig. 12 shows t h e s t r u c t u r e i n

t h e production a r e a alone.

Fig. 10

As the map in Fig. 13

shows, the Trenton

lies at fairly shallow

depths in northwestern

Ohio. Averaging 1300

f e e t in the production

areas, it is deepest

near the Mlchigan basin

at 2600 f ee t , r i s ing

eastward to 1900 feet

in n o r t h Ottawa County,

and then gradually

deepening again i n t o the

Fig, 12

Appalachian basin,(Stieglitz, in press), Near the Bowling

Green structure, in central Hancock and Wood Corn t i e6 it lies

between 1050 and 1100 f ee t , and quickly deepens westward to

1700 f e e t in the western Wood C o u n t y and toward t h e Illinois

basin ( S t i e g l i t z , 1981). It outcrops in very few locations,

most of them o u t of t h i s state , It is, however, exposed

along the Ohio river east sf Cincinnati in Brown and Hamilton

Counties,

The following deposition of t h e Trenton Formation, a

broad area from the Findlay arch t o the eastern edge of the

Ozark dome, was raised and exposed to erosion (Rooney, 1966).

As durfne a l l regressions, carbonates once stable are d isso lved

by solutions and altered to other forms, Landes (1970) feels

DEFIANCE

MI

DEPW /NTER V A L o SCALE IN MILES

250 F 7 L

K M

Fig. 1 3

t h a t most o f the dolo t imiza t ion and f u r t h e r weathering of

t h e Trenton i n Ohio took place a t t h i s time, Fauna a r e

a l s o g r e a t l y a f f e c t e d during such times, and f o s s i l s a r e

n o t as we l l preserved a f t e r a l t e r a t i o n processes,

The s tar t of t h e Cincinnat i epoch, l a t e Ordovician,

was accompanied by another westward t r ansgress ion of the

e p e i r i c waters. During t h i s t ime, the Maquoketa supergroup

was deposi ted, only t o be p a r t i a l l y eroded away a t t h e end

of t h e per iod, The Maquoketa includes the Cynthiana

formation and the Ut ica Shale , and make up the impermeable

rocks t h a t o v e r l i e t h e Trenton, These cap rocks a r e c h i e f l y

dzrk s h a l e s , graywackes, end c h e r t l aye r s . Some volcanics

a r e a l s o present , which r e f l e c t t h e Taconic a c t i v i t y , 2nd

t h e developing con t inen ta l margin t o t h e e a s t (Bat ten and

Dott , 1981). Fig, 14 shows the ex ten t of t h e l a t e Ordovician

depos i t s . Fig. 15 shows t h e paleogeography during t h a t

time, and t h e l o c a t i o n of t h e equator should be noted. A t

t h i s time Cincinnat i arch was s t i l l n o t evident i n Kentucky

o r Ohio (Buschback, 1971). al though smal ler components, t h e

Findlay and Waverly arches , were a l ready developed i n Ohio,

a f f e c t i n g overlying s t r a t a (Woodward, 1961 ) ,

Regression and eros ion followed, and above t h i s uncon-

formity begins the S i l u r i a n period, the Hunton supergroup,

and t h e Kaskaskia sequence, During S i l u r i a n time the

Cincinnat i arch began developing i n Kentucky and Tennessee

(Buschback, 1971), The Cincinnat i arch was more of a b a r r i e r ,

, UPPER ORDOVlClAN ,

SEOlMENTARY FACIES

IC~nc~nna:ran)

{about 430 my. ago)

Fig, 14

ORDOV1CfAN

P4LEOG EOG RAPHY

(about 430 my. ago)

Fig. 15

s e r v i n g a s a hinge f o r the th ickening wedge t o the e a s t than

a s u p p l i e r of sediment, The Michigan basin a l s o deepened

much during t h i s period.

S i l u r i a n formations present i n t h i s s e c t i o n include

t h e Medina Shale o f t h e Alexandrian s e r i e s , and the- Clinton

and Niagara Limestones o f t h e Niagaran-Cayugan s e r i e s , The

l a t t e r i s known f o r massive carbonate r e e f s , a s wel l a s

per iods o f increased water depth due t o reduced sedimentation,

Very success fu l o i l and gas production i n the Clinton Formation

has r e c e n t l y been developed i n the nor theas t p a r t o f t h e

s t a t e .

Regression accompanied emergence, and another uncon-

formity was eroded on top of t h e uppermost S i l u r i a n , The

Devonian rocks t h a t fol low a r e t h e youneest i n the s e c t i o n ,

and include the basa l Oriskany Sandstone ad t h e Ohio Shale ,

S i l u r i a n , and e s p e c i a l l y Devonian s t r a t a , comprise l i t t l e

th ickness i n t h e sub jec t a r e a and along the arches,

DESCRIPTION AND COMPOSITION

The a b i l i t y of the Trenton Formation t o be a r e s e r v o i r

rock i s i n p a r t due t o i ts varying l i t h o l o g y ; t h a t is, i t s

upper dolo t imiza t ion , Much work has been spent analyzing

i t s a l t e r a t i o n f e a t u r e s and i ts composition, A br ie f

d e s c r i p t i o n is a s follows,

The Trenton Formation genera l ly c o n s i s t s o f a f i n e t o

medium gra ined , buff-brown o r It. gray blue, s l i g h t l y

fer ruginous , h ighly f o s s i l i f e r o u s , c l a s t i c l imestone, I ts

dense, impermeable, s i l t - s i z e d matrix binds much pebble-

s i zed l imestone d e b r i s , including c r ino ids , brachiopods

and bryozoa, Bedding is t h i n t o massive, Environment of

depos i t ion was shallow-marine ,

Upper p a r t s of the Trenton have been i r r e g u l a r l y a l t e r e d

t o a coa r se ly c r y s t a l l i n e dolomite, f r e e of s i l i c e o u s

impur i t ies . Thickness of these zones v a r i e s from a few

f e e t t o t h e Trenton 's t o t a l th ickness , approximately 600

f e e t , The dolomite is vugular and i r r e g u l a r , some l a r g e r

vugs being l i n e d with euhedral dolomite c r y s t a l s (Buehner,

1971) , This is respons ib le f o r l o c a l l y good porousi ty ,

Permeabil i ty , however, i s v a r i a b l e , l i m i t i n g communication

o f zones. Contacts between the limestone and dolomite a r e

sharp, f i e l d edges near v e r t i c a l , and a l t e r a t i o n doesn ' t

appear ou t s ide the f i e l d s of production (Buehner, 1971 ) . This may imply a l t e r a t i o n along f r a c t u r e s and/or f a u l t i n g ,

Also present i n the Trenton a r e t h i n , f i n e l y porous,

calcareous s h a l e p a r t i n g s , and very f i n e grained sand.

These a r e n o t p resen t i n t h e dolotimized, producing a reas ,

S l i g h t l y d i f f e r i n g l i t h o l o g i e s are repor ted a t both

the uppermost and basa l por t ions of the Trenton. S t i e g l i t z

( i n p ress ) descr ibes t h e lowest beds a s containing cher ty ,

a r g i l l a c e o u s and organic ma te r i a l s as wel l a s some anhydri te ,

Some bentoni te beds a r e a l s o present , Rooney (1966)

descr ibes t h e upper f e e t of t h e Trenton a s p i t t e d , phosphatic

and rubbly. A t h i n l a y e r of angular c h e r t fragments i n

highly fer ruginous dolomite i s present on top o f the

weathered zone, Traces of p y r i t e a r e a l s o common and

abundant i n these upper beds, Such zones may r e p r e s e n t

changing environments which accompanied t h e depos i t ion o f

d i f f e r e n t formations,

The Trenton d i f f e r s from the underlying Black River

Limestone i n t h a t it con ta ins more insoluble r e s idues , i , e , ,

sand, sha le , c h e r t , and s i l i c i f i e d f o s s i l s , while t h e Black

River i s a very f ine-grained, l i thograph ic , massive, micro-

c r y s t a l l i n e l imestone, with few f o s s i l s ,

Analyses show q u i t e no t i ceab le d i s t i n c t i o n s between

t h e composition of t h e dolomit ic , producing rock and t h e

otherwise impermeable, unal te red l imestone, The upper,

a l t e r e d beds, mostly wi th in 50 f e e t from t h e t o p of t h e

formation, a r e only 50-60s limey, vs , t h e usua l ly higher

80-90 percentages of calcium, T h i s decreased limey na ture

is due t o a h igher magnesium composition. Orton (1888)

r e p o r t s t h e magnesium carbonate is g r e a t e r than 23s i n

the productive f i e l d s . Pure dolomite is almost 46%.

Bownocker (1903) s i t e s these percentages:

i n s o l . CaC03 MgC03 res idues A1203 6c Fe203

Findlay Gas Rk. 53.50 43.50 1 .70 1 ,25

Bowling Green Gas Rk. 51.78 36.80 4.89 - Lima O i l Rk. 55.90 38.85 e75 2.94

THE CAUSES AND EXTENT OF ALTERATION

I N THE TRENTON

Dolomitization of the Trenton can be divided

i n t o two kinds, A l a r g e p a r t was a l t e r e d over a

broad, shallow region , while a smal ler percentage

was centered around l o c a l f r a c t u r e s and j o i n t s , The

Bowling Green a r e a i s an example of t h e l a t t e r ,

where a l t e r a t i o n has gone deeper i n t o t h e formation,

F rac tu res here, a s throughout Trenton, were probably.

p a r t i a l l y caused by l o c a l tens ions and s t r e s s e s t h a t

developed a s neighboring bas ins subsided (Woodward,

1961) 2 Deeper sea ted f a u l t s may have a l s o played a

pa r t . Buschback (1971) desc r ibes those near Bowling

Green a s a system o f high-angle, poss ib ly s l i p -

s t r i k e f a u l t s and f r a c t u r e s , The main t rend is north-

west-southeast , with eastward protrudinp, complementary

f r a c t u r e s . T h i s reg ion i s q u i t e s i m i l a r t o t h e Albion

and Sc ip io f i e l d s o f southern Michigan, which a r e

a l s o l i n e a r , dolotimized Trenton r e s e r v o i r s , Figs. 16

and 17 show these f i a d s which were developed between

1959 and 1963, y i e l d i n g almost 88 m i l l i o n b a r r e l s of

o i l and 94.5 m i l l i o n mcf o f gas ,

The causes o f t h i s dolomi t iea t ion a r e a l s o two-

fo ld , Landes (1946) f e e l s t h a t s o l u t i o n s picked up

g r e a t e r amounts of magnesium as they ascended through

ALBION FIELD (CaI-Lee -Sheridan-A lbion)

Cal houn & Jackson Counties,Mich.

Contour interval; 5 0 f t -

Fig. 16

SClPlO FIELD - (Pulaski- Scipio- North Adams 1

Jackson &Hillsdale Counties, Mich.

Contour interval; 50 f t

Fig. 17

o lde r dolomites, a l t e r i n g t h e younger l imestones t h a t

eventua l ly trapped them, Perhaps more o f a cause

was the s o l u t i o n , leaching , and weathering t h a t took

place a f t e r t h e emergence and s u b a e r i a l e ros ion o f

t h e Trenton, following its deposi t ion.

Rooney (1966) f e e l s a d i s t i n c t unconformity e x i s t s

on t o p of t h e Trenton as a r e s u l t , I n add i t ion t o

dolo t imiza t ion , numerous c rev ices and honeycomb

s t r u c t u r e s seem apparent on the upper surface. D r i l l e r s

r e p o r t h i t t i n g such openings, t h e i r b i t s dropping

s e v e r a l f e e t a t times. Some descr ibe the su r face a s

k a r s t topography, where s o l u t i o n and weathering have

dissolved c a v i t i e s and enlarged previous cracks and

holes , Such an i r r e g u l a r a l t e r a t i o n i s cons i s t en t

with the va r i ab le permeabil i ty t h a t e x i s t s , zones n o t

connected forming l a r g e r pools o f production.

F ig , 18 shows t h e a r e a of exposure, Rooney (1966)

f e e l s t h a t a h ingel ine running along the Findlay and

Cincinnat i arch regions separated t h e a r e a of e ros ion

t o the west from t h e a r e a of continued depos i t ion t o

t h e southeas t . I t seems appropr ia te t h a t the production

zone l i e s i n the exposed reg ion where dolomi t iza t ion

would dominate. Dolomitization l a r g e l y covers the

following counties: Mercer, VanWert, Auglaize, Allen,

Hancock, Wood, Sandusky, and Lucas. I t p a r t i a l l y covers

these: W i l l i a m s , Ful ton, Henry, Defiance, Paulding,

Putnam, Seneca, Ottawa, Hardin, and Wyandot.

Fig. 18

OIL RECOVERY

Production p o t e n t i a l i n the Lima-Indiana f i e l d is

f a r l e s s than i t was i n i t i a l l y i n the e a r l y l9OO's,

Buehner (1971) s t a t e s t h a t some f i e l d s have been

discovered i n the previously explored regions , although

these haven ' t had much commercial s ign i f i cance , Most

of t h e gas r e se rves have been depleted. I n the hurry t o

remove t h e gas though, pressures decreased r a t h e r

quickly and most of t h e o i l wasn't removed, remaining

i n place. Unplugged, leaky we l l s , as well as ground

water concerns, probably prevent adequate r e p r e s s u r i -

za t ion of t h e a rea , which may hold 60% or more of t h e

o r i g i n a l r e se rves ( S t i e g l i t z , 1981), I t i s such o i l

t h a t makes up t h e probable t a r g e t s f o r f u t u r e d r i l l i n g

operat ions. These w i l l be through d i scover ie s of new

production a r e a s o r improved recovery methods,

I n the p a s t , o i l was produced pr imar i ly from a

zone 20 t o 25 f e e t t h i c k wi th in the upper 50 f e e t , and

l a t e r , t o a l e s s e r e x t e n t from deeper zones associa ted

w i t h f r a c t u r e s , such a s Bowling Green (Coogan and

Maxey, 19R2). With continued t e s t i n g and uses of

geophysics and o the r modern sub-surface techniques,

deeper pay zones may be discovered. The Trenton is

a c t u a l l y f a i r l y recognizable through e l e c t r i c logging

methods, The lower, unal te red sec t ions y i e l d higher

sonic v e l o c i t i e s , r e s i s t i v i t i e s , neutron responses,

and negat ive s e l f - p o t e n t i a l s ; lower gamma r a d i o a c t i v i t y ,

a s compared t o more porous, a l t e r e d zones and overlying

Maquoketa s h a l e s ( ~ t h e r t o n and o the r s , 1964).

Although most of t h e hydrocarbons l i e i n s t r a t i -

graphic t r a p s of some kind, S t i e g l i t z ( i n p r e s s )

d i s t ingu i shes these as fol lows, 1) S t r u c t u r a l c losures

on top of the Trenton where i t c rosses t h e broad a n t i -

c l i n e s o f nearby arches. 2) Frac ture zones, s i m i l a r

t o the Albion-Scipio f i e l d s such a s i s found near

Bowling Green, 3 ) Updip f a c i e s changes i n t o the Utica

Shale , and between dolomite and l imestone wi th in t h e

formation. 4) And l a s t l y , a reas of nosing and t e r r a c i n g

t h a t may be p resen t i n the Trenton. These l o c a t i o n s

provide s e t t i n g s f o r more s u b t l e , undiscovered t r a p s ,

i f they e x i s t . Improved s t imula t ion methods, a s wel l

as production techniques unknown t o p a s t d r i l l e r s , may

g r e a t l y improve y i e l d s ,

Current f i g u r e s do show s t e a d i l y increas ing

d r i l l i n g p r o j e c t s i n t h e s t a t e ; permits up t o 12,547

i n 1981, compared t o 5820 i n 1978 (Gannan, 1982).

Costs play a major r o l e i n t h i s , and a s o i l p r i c e s

inc rease , r e s e r v e s once unprof i tab le t o produce become

more reasonable,

Possibly o f g r e a t e r p o t e n t i a l a r e secondary

and t e r t i a r y recovery methods of mining and dra in ing

such a s S t i e g l i t z (1981) d iscusses . Such mining

c u r r e n t l y seems t o be the most economical p o s s i b i l i t y ,

where shallowness would allow much lower d r i l l i n g and

mining c o s t s . I t ' s p a s t p roduc t iv i ty and competent

surrounding s t r a t i g r a p h y t o support s h a f t s a l s o f avor

such p r o j e c t s , ( S t i e g l i t z , 1981). Removal of Black

River Limestone could be used i n the lime indus t ry

t o he lp o f f s e t cos t s . I n conclusion, it seems f u r t h e r

ana lys i s of t h e a r e a , and continued t e s t i n g , would

n o t be wasted e f f o r t , and could possibly prove q u i t e

p r o f i t a b l e .

PICTURE CREDITS

Fig, 1

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Summary of new o i l and gas wel l d r i l l i n g

by producing zones - 1981 (Ohio Dept, of

Natural ~ e s o u r c e s )

Location map of northwestern Ohio ( S t i e g l i t z ,

1981, Fig. 1, p. 527)

Ordovician production, Ottawa (Buehner, 1971,

Fia. 2 , p. 38)

Trenton o i l production from northwestern

Ohio (U.S. Geological Survey)

S t r u c t u r a l f e a t u r e s of the Eas tern I n t e r i o r

Region (Buschback, 1971, Fig, 1, p.22)

Depths t o Precambrian basement i n Ohio

( C l i f f o r d , 1975, Fig, 2, p, 3 )

S t r a t i g r a p h i c column by Gary Mit iska

S t r u c t u r e on top of the Sauk Sequence

( ~ a l v e r t , 1962, Fig. 6 , p. 10)

Pre-middle Ordovician Paleogeology

(Bat ten and Dott , 1981, Fig. 12.3, p.258)

Thickness o f Trenton Formation ( S t i e g l i t z ,

1981, Fig, 2C, p. 528)

Generalized s t r u c t u r e on top of Trenton

Formation ( S t i e g l i t z , 1981, Fig. 2B, p, 528)

Trenton S t r u c t u r e (Green, 1957, Fig. 1)

Depth t o top of Trenton Formation

( S t i e g l i t z , 1981, Fig, 2D, p, 528)

Fig, 14 Upper Ordovician Sedimentary Facies

(Bat ten and Dott , 1981, Fig. 12.7, pa 261)

Fig, 15 Late Ordovician Paleogeography (Bat ten and

Dott , 1981, Fig, 12.8, p, 262)

Fig, 16 Trenton S t r u c t u r e o f Albion F ie ld , Michigan

(Buehner, 1971, Fig. 3 , p, 39)

Fig, 17 Trenton S t r u c t u r e o f Sc ip io F ie ld , Michigan

(Buehner, 1971, Fig, 4, p, 40)

Fig, 18 Unconformity a t top of Trenton Limestone

(Rooney, 1966, Fig. 1, p, 534)

REFERENCES CITED and BIBLIOGRAPHY

Alkire , R,L,, 1951, O i l and Gas Production, History,

Regulation, Secondary Recovery and Bibliography:

Ohio Geologic Survey Report of Inves t iga t ions 8,

pt. 2, 95 p.

Atherton, Eo, B e l l , A o H , , Buschback, T.C,, and

Swann, D O H , , 1964, Deep O i l P o s s i b i l i t i e s of The

I l l i n o i s Basin: I l l i n o i s S t a t e Geological Survey

C i r c u l a r 368.

Batten, RoL, and Dott , R.H., Jr. , 1981, Evolution of

The Ear th , p. 229 - 278.

Bownocker, J o A . 9 1903, The Occurrence and Exp lo i t a t ion

of Petroleum and Natural Gas i n Ohior Ohio Geol.

Survey, Ser , 4, Bull. 1, 325 p.

B r i s t o l , H o M e and Buschback, T.C., 1973, Ordovician

Galena Group renton on) of I l l i n o i s - S t r u c t u r e and

O i l F i e lds : I l l i n o i s S t a t e Geol. Survey, I l l ,

Petroleum 99,

Buehner, JoH., 1971, Future O i l and Gas Production of

The Cinc inna t i Arch - North I l l i n o i s S t a t e Geol,

Survey, Ill. Petroleum 95, p, 35 - 43,

Buschback, T.C., 1971, Background Mater ia ls For

Symposium on Future Petroleum P o t e n t i a l of NPC

Region 9 ( I l l i n o i s Basin, Cinc innat i Arch, and

Miss i s s ipp i ~mbayment): I l l i n o i s S t a t e Geol.

Survey, 111, Petroleum 96,

Calver t , W.L., 1962, Sub-Trenton Rocks From Lee County,

V i r g i n i a t o Fayet te County, Ohio : Ohio Geol.

Survey Report o f Inv. 45, 57 p.

------------- 1964, Summary o f O i l and Gas Act iv i ty

i n Ohio During 1963: Ohio Geol. Survey Report of

Inv. 56,

Carmen, J . E , , and S tou t , W., 1934, Rela t ion of

Accumulation of O i l t o S t r u c t u r e and Porousi ty I n

The Lima-Indiana Field: American Association of

Petroleum Geologis t s ; Problems of Petroleum

Geology, p. 521-529.

C l i f fo rd , M. J., 1975, Preliminary Report on P o t e n t i a l

Hydrocarbon Reserves Underlying The Ohio Por t ion of

Lake E r i e , Ohio Dept. o f Natural Resources, Div.

o f Geol. Survey, Geol, Note 1.

Cohee, G. , 1948, Cambrian and Ordovician Rocks i n

Michigan Basin and Adjoining Areas: Am. Assoc. o f

Petro. Geol. Bull., v 32, p. 1417-1448.

Coogan, A.H., and Maxey, M.M., 1982, O i l and Gas

Occurrence I n The Trenton Limestone Reservoir,

Northwestern Ohio, Kent S t . Universi ty .

Fe t tke , C.R., 1948, Subsurface Trenton and Sub-

Trenton Rocks i n Ohio, New York, Pennsylvania,

and West Virginia: Am. Assoc, of Petroleum Geol.

Bull. , ~ 0 3 2 , p. 1457-1492.

Gannan, L., 1982, Despite Lessening Consumption,

Petroleum Search By Independents Expands I n 1981 - Annual Reviewt Northeast O i l Reporter.

Green, D.A,, 1957, Trenton S t r u c t u r e i n Ohio, Indiana,

and Northern I l l i n o i s t Am. Assoc. of Petroleum

Geol. Bull , v.41, p. 627-642,

Landes,K.K., 1946, Porousi ty Through Dolomitazationt Am,

Assoc. of Petroleum Geol. Bul l , , v.30, p. 305-318.

Orton, E , , 1888, The Trenton Limestone A s A Source of

O i l and Gas i n Ohiot Ohio Geol. Survey Report, v.6,

P O 101-310,

---------- 1890, Origin of The Rock Pressure of Natural

Gas i n The Trenton Limestone of Ohio and Indianat

Geol, Socie ty of Am. Bul l , 1,

Rooney, L.F., 1966, Evidence o f Unconformity A t The

Top o f Trenton Limestone i n Indiana and Adjacent

S t a t e s t Am. Assoc. o f Petroleum Geologis ts Bul l , ,

v.50, p* 533-5460

Rummerfield, B.F., and Morrisey, N.S., 1971, A

Review of Pas t Resu l t s and Future P o t e n t i a l s o f

Using Geophysics i n NPC 91 I l l i n o i s S t a t e Geol,

Survey, I l l . Petroleum 95, p. 12-14,

Shearrow, G.G., 1955, An Old Pay With A Future

( P a r t 2 ) . Where The Trenton Produces i n Ohio:

O i l and Gas Journa l , v. 54, no. 9 , p. 157.

-------------- 1957, Geologic Cross Sect ion o f The

Paleozoic Rocks From Northwestern To Southwestern

Ohiot Ohio Geol. Survey Report of Inv. 33, 42p.

S t i e g l i t z , R.D., 1975, Sparry White Dolomite and

Porous i ty i n Trenton Limestone (Middle Ordovician)

o f Northwestern Ohio: Am. Assoc, of Petroleum Geol,

B u l l * , v* 59, p. 530-533.

S t i e g l i t z , R.D., 1981, Trenton Formation ( ~ i d d l e

~ r d o v i c i a n ) of Northwestern Ohio : Possible Target

For Petroleum Mining: Am. Assoc. o f Petroleum

Geol, Bu l l , , v. 65, p* 526-530.

--------------- I n p ress , The Trenton Formation

( ~ r d o v i c i a n ) of Northwestern Ohio: Ohio Geol,

Survey,

S tou t , W., 1947, Generalized Sect ion of Rocks i n Ohio:

Ohio Geol. Survey Info. C i rcu la r , Se r , 4, No. 4.

Vandenberg, J., 1979, Petroleum Indus t ry i n I l l i n o i s ,

O i l and Gas Developments: I l l i n o i s I n s t i t u t e o f

Natural Resources, S t a t e Geol. Survey Div. 120,

Vanuxem, L., 1838, Of So Much of The Geologic Survey

of The Third D i s t r i c t of The S t a t e of New York as

Re la tes To Objects of Immediate U t i l i t y ,

Second Annual Report I New York Geol. Survey,

p, 253-286.

Verweibe, W.A., 1929, Unconformity on Top of Trenton

i n Lima-Indiana D i s t r i c t : Am. Assoc. o f Petroleum

Geol. Bull., v. 13, p. 688-689.

Wasson, I , B . , 1932, Sub-Trenton Formations i n Ohio:

Journal of Geology, v. 40, No. 8 , p, 673-687,

Woodward, H.P., 1961, Prel iminary Subsurface Study

o f Southeastern Appalachian I n t e r i o r Plateau:

Am. Assoc, o f Petroleum Geol. Bull . , v. 45,

p. 1634-1655,