a mixture of bose and fermi superfluids · bose einstein condensate superconductivity 103 years of...

24
C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 A Mixture of Bose and Fermi Superfluids

Upload: others

Post on 09-Jun-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

C. Salomon

Enrico Fermi School Quantum Matter at Ultralow Temperatures

Varenna, July 8, 2014

A Mixture of Bose and Fermi Superfluids

The ENS Fermi Gas Team

I. Ferrier-Barbut M. Delehaye S. Laurent M. Pierce A. Grier B. Rem

F. Sievers, D. Fernandes N. Kretschmar M. Rabinovic

F. Chevy, Y. Castin, F. Werner, C.S.

D. Suchet

L. Khaykovich

U. Eismann A.  Bergschneider T. Langen N. Navon S. Nascimbène K. Jiang

Lithium Exp. Lithium-Potassium Exp.

arXiv:1404.2548

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon

To appear in Science, July 17

Bose Einstein condensate Superconductivity

103 years of quantum fluids

4He

dilute gas BEC Fermi gas superfluid

T~ 2.2 K

High Tc 77 K

100 nK

2.5 mK 3He

Superfluid mixtures Bose-Bose superfluid mixtures first observed long ago: Two hyperfine states in Rb at JILA (Myatt et al. ’97) and vortex production Spinor condensates at MIT, Hamburg, Berkeley, ENS, …. Dark-bright soliton production in two Rb BEC, Engels group, PRL 2011

Rb

Bose-Bose and Bose-Fermi Mixtures

•  Experiment with 6Li-7Li •  Excitation of center of mass modes: first sounds •  Simple model •  Critical velocity and perspectives

Bose-Fermi mixtures

7Li - 6Li at ENS, Rice 23Na - 6Li at MIT, 6Li-133Cs in Chicago, Heidelberg, 40K - 87Rb at LENS, Hamburg, ETH, JILA, Innsbruck, Singapore,Taiyuan,… 23Na-40K at MIT, MPQ Isotopes of Yb, Kyoto and Sr Innsbruck, ……

But no Bose-Fermi superfluids simultaneously ! Decades of attempts with 4He and 3He

Bose-Bose superfluid mixtures first observed long ago: Two hyperfine states in Rb at JILA (Myatt et al. ’97) and vortex production Dark-bright soliton production in two Rb BEC, Engels group, PRL 2011

Molecular condensate Strongly bound Size: a << n-1/3

n-1/3: average distance between particles

On resonance na3 >> 1 kFa ≥ 1 Pairs stabilized by Fermi sea Size of pairs hvF/Δ~kF

-1

BCS regime: kF|a|<<1 Cooper pairs k, -k Well localized in Momentum: k~kF Delocalized in position

Fermi Superfluid in the BEC-BCS Crosover 10 year anniversary !

6Li Fermions with two spin states and attractive interaction

N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729-732 (2010) S. Nascimbène, N. Navon, K. Jiang, F. Chevy, C. Salomon, Nature 463 (2010)

Pressure  equa)on  of  state  

Equation of State in the crossover

BCS-­‐BEC  crossover    at  T~  0  

BEC of pairs

BCS regime

P/P0= f(1/kF a)

7Li and 6Li isotopes

Tuning interactions in 7Li and 6Li

6Li in states |1> and |2> X 1/100

7Li in state |2>

6Li-7Li 40.8 a0

Experimental Setup

Absorption imaging of the in-situ density distributions or Time of Flight

Magneto-optical trap of bosonic 7Li and fermionic 6Li After evaporation in a magnetic trap we load the atoms in a single beam optical trap (OT) with magnetic axial confinement. T~ 40 µK

Evaporative cooling of mixture in OT

~ 4 second ramp, T~ 100 nK

In situ Profiles

Lifetime of mixture : 7s in shallowest trap

NF=2 105

T= 90 nK=0.16TF TF= 560nK Upper bound for T

Trap frequencies: vz=15.6 Hz for bosons, vrad= 440 Hz

NB=2 104

T=90 nK N0/NB> 80% T<Tc/2

7Li BEC

6Li Fermi gas at unitarity

6Li SF

|1> 6Li |2> 6Li

7Li BEC in ToF

Mixture of Bose and Fermi Superfluids

Superfluid Core

Method used at MIT ’06, Rice ’06, ENS ‘09

T< Tc / 2 for Fermi SF

First sounds in mixture of superfluids Superfluids have collective excitations In a mixture of two superfluids, one expects two first sound modes ie density waves excitations Volovik, Mineev, Khalatnikov, JETP, 42, 342,(1975) In a trap the lowest acoustic mode corresponds to center of mass oscillations of the clouds (dipole mode) We displace the axial position of the clouds by having the waist of the dipole trap shifted from the magnetic trap minimum.

6

7

2 17.06(1)2 15.40(1)

HzHz

ω π

ω π

= ×

= ×

%%

Coupled Superfluids

Long-lived Oscillations of both Superfluids

6

7

2 17.14(3)2 15.63(1)

HzHz

ω π

ω π

= ×

= ×

Single Superfluid Ratio = (7/6)1/2 =(m7/m6)1/2

Fermi Superfluid

BEC

Relative displacement of superfluids

No damping only when the max relative velocity < 2 cm/s

Oscillations of both superfluids

Very small damping ! Modulation of the 7Li BEC amplitude by ~30% at πωω 2/)~~( 76 −

BEC

Fermi SF

4 s 0

Mean field model

πωω 2/)~~( 76 −

267

67 6 6767

2( ) ( )effaV V r g n r with g

= + =h

67 6 7 6 7/ ( )m m m m m= +

1.5% down shift in 7Li BEC frequency

Weak interaction regime: kFa67<<1 and N7<<N6

Boson effective potential

LDA 0 06 6 6( ) ( ( ))n r n V rµ= −

is the Eq. of State of the stationary Fermi gas. )(6 µnWhere

BEC osc. amplitude beat at frequency

For the small BEC: 06)( µ<<rV 0

0 0 66 6 6

6

( ) ( ) ( ) ....dnn r n V rd

µµ

≈ − +Expand

(0)6

67 6 676 0

(0) ( ) 1effdnV g n V r gdµ

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

(0)

7 7 676 0

1 dngd

ω ωµ

⎛ ⎞= − ⎜ ⎟

⎝ ⎠%

38.02/)3( 63/2

622

6 == ξπξµ withmn

With TF radius of BEC<< TF radius of Fermi SF, we get:

The potential remains harmonic with rescaled frequency

At unitarity

67 6 677 7 7(0) 5/4

6

3 (0) 131 14 7

Fg n k aω ω ω

µ π ξ

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠%

Effective potential

We simply get

From Thomas Fermi radius of 6Li superfluid, we find Very close to the measured value:

Hz43.152~7 ×= πω

7 2 15.40(1) Hzω π= ×%

Bertsch param.

Amplitude modulation

7 6 7cos( ) (1 )cos( )z t tε ω ε ω= − + +% %

Sum-rule approach: mapping onto a coupled oscillator problem

6 6 7(1 )cos( ) cos( )z t tερ ω ερ ω= − +% %

with 7

6

NN

ρ = and

Include now back-action on the Fermions

Hence a significant modulation of the amplitude of z7 at the beat frequency

6 7ω ω−% %

7 7 7

7 6 7

2 0.3mm m

ω ωε

ω

⎛ ⎞−= ⎜ ⎟

− ⎝ ⎠

%:

=14

Coherent energy exchange between both gases amplified by quasi-degeneracy of pendulum frequencies

Amplitude modulation: theory vs expt

BEC alone

Coupled BEC Fermi SF

theory

theory

Bose-Fermi Coupling in BEC-BCS crossover

From EoS in the crossover N. Navon et al, Science 2010

MIT ’12

67

6

6.190 aa

Shift in BEC limit

Undamped oscillations of two BEC’s B= 790 Gauss, molecular BEC side

In contrast to damping observed in Rb condensate mixtures, Myatt, PRL 1997 and dark-bright soliton trains in Engels group, PRL 2011

7Li

Reduction of critical velocity by a factor ~2

Critical velocity

Time(ms)

1/4

5F

svv ξ

=

13.1 sγ −=

vc is very close to the speed of sound of unitary gas in elongated trap MIT experiment: vc = 0.32 vF

Summary

•  Production of a Bose-Fermi double superfluid •  Measurement of critical velocity at unitarity •  first sounds in low temperature limit •  critical velocity of SF mixture: work in progress. Y. Castin, S. Stringari, Hui Zhai Perspectives Temperature effects and nature of excitations Flat bottom trap for fermions when abb=abf Molmer 1997, Trento group, ArXiv 1405.7187 FFLO Phase with spin imbalanced gas ? Second sound, higher modes, vortices, Bose-Fermi Superfluids in optical lattices and counterflow