using a fermi gas to create bose-einstein condensates

33
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates

Upload: pegeen

Post on 22-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Using a Fermi gas to create Bose-Einstein condensates. D. Jin. JILA, NIST and the University of Colorado. $ NIST, NSF. Outline. Intro and motivation A little quantum physics Basics of the experiment Interactions - An amazing new knob Experimental demonstration - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Using a Fermi gas to create Bose-Einstein condensates

D. Jin

JILA,NIST and

the University of Colorado

$ NIST, NSF

Using a Fermi gas to create Bose-Einstein condensates

Page 2: Using a Fermi gas to create Bose-Einstein condensates

Outline

I. Intro and motivationa) A little quantum physicsb) Basics of the experiment

II. Interactions - An amazing new knoba) Experimental demonstrationb) Implications (more motivation)

III. Condensates of correlated fermion pairs

Page 3: Using a Fermi gas to create Bose-Einstein condensates

Outline

I. Intro and motivationa) A little quantum physicsb) Basics of the experiment

II. Interactions - An amazing new knoba) Experimental demonstrationb) Implications (more motivation)

III. Condensates of correlated fermion pairs

Page 4: Using a Fermi gas to create Bose-Einstein condensates

Quantum Gases

d

high T low T

deBroglie d

classical behavior quantum behavior

matter waves

1 0

1 0

1 0 0

1 0

1

0 .1

0 .0 1

1 0

1 0

1 0

1 0

1 0

1 0

4

3

-3

-4

-5

-6

-7

-8

Page 5: Using a Fermi gas to create Bose-Einstein condensates

There are two types of quantum particles found in nature - bosons and fermions.

Bosons like to do the same thing.

Fermions are independent-minded.

Atoms, depending on their composition, can be either.

bosons: 87Rb, 23Na, 7Li, H, 39K, 4He*, 85Rb, 133Cs

fermions: 40K, 6Li

Quantum Particles

Page 6: Using a Fermi gas to create Bose-Einstein condensates

Bosons and Fermions half-integer spin

other fermions: protons, electrons, neutrons,

liquid 3He

integer spin

T = 0Atoms in a harmonic potential.

Bose-Einstein condensation

1995

other bosons: photons, liquid 4He

Fermi sea of atoms1999

EF= kbTF

(two spin states)

Page 7: Using a Fermi gas to create Bose-Einstein condensates

Ultracold atomic gases low density n ~ 1013 – 1014 cm-3

N~106

ultralow T ~ 100 nK

• amenable to theoretical analysis• unique experimental control• dramatic detection of condensation

Page 8: Using a Fermi gas to create Bose-Einstein condensates

Bose-Einstein condensationBEC shows up in condensed matter, nuclear physics, elementary particle physics, astrophysics, and atomic physics.

Excitons, biexcitonsin semiconductors

Cooper pairs of electrons in

superconductors

4He atoms in superfluid

liquid He

3He atom pairs in superfluid

3He-A,BNeutron pairs,

proton pairs in nuclei and neutron stars

Mesons in neutron star

matter

Alkali atomsin ultracold atom gases

Page 9: Using a Fermi gas to create Bose-Einstein condensates

Condensates with Fermions? Condensation requires bosons.

Material bosons are composite particles, made up of fermions.

Starting with a gas of bosonic atoms, you can only explore the behavior of bosons.

87Rb, 23Na, … By starting with a gas of fermionic atoms we can explore

the behavior of fermions AND BOSONS.

40K, 6Li, …

Page 10: Using a Fermi gas to create Bose-Einstein condensates

Cooling a gas of atoms1. Laser cooling and trapping

2. Magnetic trapping and evaporative cooling

300 K to 1 mK109 atoms

1 mK to 1 K108 → 106 atoms

spin 1spin 2

Page 11: Using a Fermi gas to create Bose-Einstein condensates

3. Optical trapping and evaporative cooling

4. Probing the atoms

Cooling a gas of atoms

1 K to 50 nK106 → 105 atoms

can confine any spin-state

can apply arbitrary B-field

Page 12: Using a Fermi gas to create Bose-Einstein condensates

Quantum degeneracy velocity distributions

T/TF=0.77

T/TF=0.27

T/TF=0.11

Fermi sea of atoms

EF

EF

n0= 0.28

n0= 0.944

n0= 0.99984

Page 13: Using a Fermi gas to create Bose-Einstein condensates

Outline

I. Intro and motivationa) A little quantum physicsb) Basics of the experiment

II. Interactions - An amazing new knoba) Experimental demonstrationb) Implications (more motivation)

III. Condensates of correlated fermion pairs

Page 14: Using a Fermi gas to create Bose-Einstein condensates

Interactions Interactions are characterized by the s-wave scattering length, a

In an ultracold atomic gas, we can control a!

a > 0 repulsive, a < 0 attractiveLarge |a| → strong interactions

0 scattering length

Page 15: Using a Fermi gas to create Bose-Einstein condensates

215 220 225 230-3000

-2000

-1000

0

1000

2000

3000

sc

atte

ring

leng

th (

a o)

B (gauss)

Magnetic-field Feshbach resonance

C. A. Regal and D. S. Jin, PRL 90, 230404 (2003)

repulsive

attractive

spectroscopic measurement of the mean-field energy shift

Page 16: Using a Fermi gas to create Bose-Einstein condensates

Magnetic-field Feshbach resonance

R

V(R)

RR R

a<0, attractivea>0, repulsive

215 220 225 230-3000

-2000

-1000

0

1000

2000

3000

scat

terin

g le

ngth

(a o)

B (gauss)

Page 17: Using a Fermi gas to create Bose-Einstein condensates

Magnetic-field Feshbach resonance

R

V(R)

RR R

a<0, attractivea>0, repulsive

molecules

→ ←B>

atoms

Page 18: Using a Fermi gas to create Bose-Einstein condensates

Turning atoms into molecules

Ramp across Feshbach resonance from high to low B

215 220 225 230-3000

-2000

-1000

0

1000

2000

0

5.0x105

1.0x106

1.5x106

scat

terin

g le

ngt

h (

ao)

B (G)

ato

m n

umbe

r

The atoms reappear if we sweep back to high B

ener

gy

B

→ ←

up to 90% conversion to molecules!

Page 19: Using a Fermi gas to create Bose-Einstein condensates

molecules are extremely weakly bound !

molecules can survive many collisions !

Bosonic molecules

220 221 222 223 224

-500

-400

-300

-200

-100

0

atoms molecules binding energy theory

(Ticknor, Bohn)

(

kHz)

B (gauss)

Interestingregime

Theory: D.S. Petrov et al., cond-mat/0309010, Expts: Rice, ENS, Innsbruck, JILA

rf photodissociation

C. Regal et al. Nature 424, 47 (2003)

Page 20: Using a Fermi gas to create Bose-Einstein condensates

BEC of diatomic molecules

BCS superconductivity/superfluidity

Something in between?

Making condensates with fermions

1. Bind fermions together.

2. BEC

Condensation of Cooper pairs of atoms

(pairing in momentum space,

near the Fermi surface)

EF

spin spin

BCS-BEC crossover (“generalized Cooper pairs”)

Page 21: Using a Fermi gas to create Bose-Einstein condensates

1 05

1 0- 5

1 010

1 00

1 0- 2

1 0- 4

1 0- 6

2 / k TB F

T/T

c F

BCS-BEC landscape

energy to break fermion pair

tra

nsiti

on

tem

per

atu

re

BEC

BCSsuperfluid 4He

alkali atom BEC

high Tc superconductors

superfluid 3He

superconductors

M. Holland et al.,PRL 87, 120406 (2001)

interactions

Page 22: Using a Fermi gas to create Bose-Einstein condensates

Outline

I. Intro and motivationa) A little quantum physicsb) Basics of the experiment

II. Interactions - An amazing new knoba) Experimental demonstrationb) Implications (more motivation)

III. Condensates of correlated fermion pairs

Page 23: Using a Fermi gas to create Bose-Einstein condensates

Magnetic-field Feshbach resonance

molecules

→ ←

attractive

repulsive

B>

free atoms

Page 24: Using a Fermi gas to create Bose-Einstein condensates

repulsive

Changing the interaction strength in real time

molecules

attractive

B>

EF

2 s/G

: FAST

Page 25: Using a Fermi gas to create Bose-Einstein condensates

Changing the interaction strength in real time: SLOW

molecules

attractive

B>

EF

40 s/G

Page 26: Using a Fermi gas to create Bose-Einstein condensates

Changing the interaction strength in real time: SLOWER

molecules

attractive

B>

EF

4000 s/G

Cubizolles et al., PRL 91, 240401 (2003); L. Carr et al., cond-mat/0308306

Page 27: Using a Fermi gas to create Bose-Einstein condensates

Molecular Condensate

M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

Time of flightabsorption image

initial T/TF: 0.19 0.06

Page 28: Using a Fermi gas to create Bose-Einstein condensates

repulsive

40 s/G

Observing a Fermi condensate

attractive

B>

EF?4000 s/G

?

Page 29: Using a Fermi gas to create Bose-Einstein condensates

-0.5 0.0 0.5

0

1x105

2x105

3x105

N m

olec

ules

Condensates w/o a two-body bound state

C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Dissociation of moleculesat low density

B = 0.12 G B = 0.25 G B=0.55 G

T/TF=0.08

B (gauss)

Page 30: Using a Fermi gas to create Bose-Einstein condensates

Fermionic condensate

-0.5 0 0.5 1.00

0.05

0.10

0.15

N0/

N

B (G)

Clearly see condensation on the “atom-side” of the resonance!

T/TF=0.08

molecules atoms -0.5 0 0.5 1.0

0

0.05

0.10

0.15

N0/

N

B (G)

two-bodymoleculespairing dueto many-bodyeffects

Page 31: Using a Fermi gas to create Bose-Einstein condensates

-2 -1 0 10

0.05

0.10

0.15

0.20

1/(kFa)

T/T

F

-0.0200.0100.0250.0500.0750.1000.1250.1500.175

-2 -1 0 10

0.05

0.10

0.15

0.20

1/(kFa)

T/T

F

-0.0200.0100.0250.0500.0750.1000.1250.1500.175

BCS-BEC Crossover

BCS (atoms) BEC (molecules)

N0/N0

C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Page 32: Using a Fermi gas to create Bose-Einstein condensates

Conclusion An atomic Fermi gas provides experimental access to the BCS-BEC crossover region.

Fermi gas ↔ molecular BEC interconversion has been explored.

Condensates of correlated fermionic atom pairs have been achieved !

• generalized “Cooper pairs” with strong interactions

Many opportunities for further experimental and theoretical work ...

Next…

Page 33: Using a Fermi gas to create Bose-Einstein condensates

Current group members:

M. GreinerJ. GoldwinS. InouyeC. RegalJ. SmithM. Olsen