a guide to generalized nevanlinna-pick theoremsn distinct points in a unit disc (initial data) n...

29
A guide to generalized Nevanlinna-Pick theorems Rachael M. Norton Northwestern University Midwest Women in Math Symposium University of Iowa April 13, 2019 Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Upload: others

Post on 18-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

A guide to generalized Nevanlinna-Pick theorems

Rachael M. Norton

Northwestern University

Midwest Women in Math SymposiumUniversity of Iowa

April 13, 2019

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 2: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Recall...

Let D = {z ∈ C | |z | < 1}.

Bounded analytic function

For an analytic function f : D→ C, define the sup norm of f by‖f ‖∞ := sup{|f (z)| | z ∈ D}. We say f is bounded if ‖f ‖∞ <∞.

Positive semidefinite matrix

Let A be an N × N square matrix with entries in C. AssumeA = A∗, where A∗ is the conjugate transpose of A. We say that Ais positive semidefinite if any of the following are true:

1 〈z ,Az〉 ≥ 0 for all z ∈ CN .

2 All the eigenvalues of A are nonnegative.

3 All its leading principal minors are nonnegative.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 3: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Classical Nevanlinna-Pick Theorem

Theorem (Pick 1915)

Given N distinct points z1, . . . , zN ∈ D and N pointsλ1, . . . , λN ∈ C, there exists an analytic function f : D→ C suchthat ||f ||∞ ≤ 1 and

f (zi ) = λi , i = 1, . . . ,N,

if and only if the Pick matrix[1−λiλj1−zizj

]Ni ,j=1

is positive semidefinite.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 4: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Distilled version

Given

N distinct points in a unit disc

N points

there exists an interpolating function f with ‖f ‖ ≤ 1 ⇐⇒ acertain matrix is positive semidefinite.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 5: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Distilled version

Given

N distinct points in a unit disc (initial data)

N points (target data)

there exists an interpolating function f with ‖f ‖ ≤ 1 ⇐⇒ acertain matrix is positive semidefinite (Pick matrix).

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 6: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Early Generalizations

(Nagy-Koranyi 1956) Target data in Mn(C).

(Sarason 1967) Commutant lifting inH∞(D) = {f : D→ C | f is analytic and bounded} impliesclassical Nevanlinna-Pick theorem and Nagy-Koranyi theorem.

(Ball-Gohberg 1985) Initial data in Mm(C) and target data inMn(C), proved via commutant lifting.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 7: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

More generalizations

(Ball-Gohberg 1985) Initial data in Mm(C)= B(Cm) andtarget data in Mn(C)= B(Cn), proved via commutant lifting.

(Constantinescu-Johnson 2003) Initial data in B(H)n andtarget data in B(H), proved via displacement equation.

(Muhly-Solel 2004) Initial data in a W ∗-correspondence andtarget data in B(H), proved via commutant lifting.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 8: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Goal

Understand the relationship between Constantinescu-Johnson’stheorem and Muhly-Solel’s theorem

1 Understand Constantinescu-Johnson’s setting

2 Brief introduction to W ∗-correspondences

3 Generalize Constantinescu-Johnson’s theorem to theW ∗-correspondence setting

4 Compare C-J’s theorem with M-S’s theorem

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 9: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H.

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

the target data are in B(H)

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 10: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

the target data are in B(H)

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 11: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η}the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 12: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η}the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 13: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η}the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 14: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η}the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 15: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η} (intertwiningspace)

the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 16: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Constantinescu-Johnson’s setting

Fix

a Hilbert space H

the bimodule Cn over Cthe homomorphism σ : C→ B(H) given by σ(a) = aIH .

Then

the initial data are in {η =

η1...ηn

| ηi ∈ B(H)}

= {η : H → Cn ⊗ H | η ◦ aIH = aICn⊗H ◦ η} (intertwiningspace)

the target data are in B(H)= {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M} (commutant ofσ(C) in B(H))

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 17: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

W ∗-algebra

Definition

A W ∗-algebra M is a C ∗-algebra that is a dual space. Inparticular,

norm ‖ · ‖ on M

involution ∗ on M

‖a∗a‖ = ‖a∗‖‖a‖ for all a ∈ M

Examples of W ∗-algebras

CMn(C)

B(H), where H is a Hilbert space

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 18: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

W ∗-correspondence

Definition

A W ∗-correspondence E over a W ∗-algebra M is

right Hilbert C ∗-module over M

right M-moduleM-valued inner product on Ecomplete w.r.t. norm induced by inner product

self-dual ( =⇒ all bounded operators on E are adjointable)

left action of M on E .

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 19: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Examples of W ∗-correspondences

M = E = Ca · c · b = acb〈c , d〉 = cd

M = C, E = Cn

a ·

c1...cn

· b =

ac1b...acnb

⟨c1...

cn

,d1...dn

⟩ =∑

cidi

Any Hilbert space H is a W ∗-correspondence over CAny W ∗-algebra is a W ∗-correspondence over itself

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 20: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

W ∗-correspondence setting

Fix

a Hilbert space H

a W ∗-correspondence E over a W ∗-algebra M

a faithful, normal homomorphism σ : M → B(H)

define

the intertwining spaceEσ := {η : H → E ⊗ H | ησ(a) = (ϕ(a)⊗ IH)η ∀a ∈ M}the commutantσ(M)′ = {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 21: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

W ∗-correspondence setting

Fix

a Hilbert space H

a W ∗-correspondence E over a W ∗-algebra M

a faithful, normal homomorphism σ : M → B(H)

define

the intertwining spaceEσ := {η : H → E ⊗ H | ησ(a) = (ϕ(a)⊗ IH)η ∀a ∈ M}the commutantσ(M)′ = {x ∈ B(H) | xσ(a) = σ(a)x ∀a ∈ M}

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 22: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Generalization of Constantinescu-Johnson’s theorem

Let E be a W ∗-correspondence over the W ∗-algebra M, and letσ : M → B(H) be a faithful, normal homomorphism.

Theorem (N. 2017)

Let z1, . . . , zN be N distinct elements of Eσ with ‖zi‖ < 1 for all i ,and let Λ1, . . . ,ΛN ∈ σ(M)′. There exists X ∈ H∞(Eσ) with‖X‖ ≤ 1 such that

X (zi ) = Λi , i = 1, . . . ,N,

if and only if the operator matrix[C (zi )

∗(IF (E) ⊗ (IH − Λ∗i Λj))C (zj)]Ni ,j=1

is positive semidefinite.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 23: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Muhly-Solel’s theorem

Theorem (Muhly-Solel 2004)

Let z1, . . . , zN be N distinct elements of Eσ with ‖zi‖ < 1 for all i ,and let Λ1, . . . ,ΛN ∈ B(H). There exists Y ∈ H∞(E ) with‖Y ‖ ≤ 1 such that

Y (z∗i ) = Λi , i = 1, . . . ,N,

if and only if the map from MN(σ(M)′) to MN(B(H)) defined by

[Bij ]Ni ,j=1 7→[

C (zi )∗(IF (E) ⊗ Bij)C (zj)− ΛiC (zi )

∗(IF (E) ⊗ Bij)C (zj)Λ∗j]Ni ,j=1

is completely positive.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 24: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Muhly-Solel’s theorem

Theorem (Muhly-Solel 2004)

Let z1, . . . , zN be N distinct elements of Eσ with ‖zi‖ < 1 for all i ,and let Λ1, . . . ,ΛN ∈ B(H). There exists Y ∈ H∞(E ) with‖Y ‖ ≤ 1 such that

Y (z∗i ) = Λi , i = 1, . . . ,N,

if and only if the map from MN(σ(M)′) to MN(B(H)) defined by

[Bij ]Ni ,j=1 7→[

C (zi )∗(IF (E) ⊗ Bij)C (zj)− ΛiC (zi )

∗(IF (E) ⊗ Bij)C (zj)Λ∗j]Ni ,j=1

is completely positive.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 25: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Comparing the generalizations: An implication

Let z1, . . . , zN be distinct elements of Eσ with ‖zi‖ < 1 for all i ,and let Λ1, . . . ,ΛN ∈ σ(M)′. If there exists Y ∈ H∞(E ) with‖Y ‖ ≤ 1 such that

Y (z∗i ) = Λ∗i , i = 1, . . . ,N

in the sense of (Muhly-Solel 2004), then there exists X ∈ H∞(Eσ)with ‖X‖ ≤ 1 such that

X (zi ) = Λi , i = 1, . . . ,N

in the sense of (N. 2017). However, a simple example shows thatthe converse is not true.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 26: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Comparing the generalizations: An equivalence

Define Z(Eσ) = {η ∈ Eσ | a · η = η · a ∀a ∈ M}.

Theorem (N.)

Let z1, . . . , zN be N distinct elements of Z(Eσ) with ‖zi‖ < 1 for alli , and let Λ1, . . . ,ΛN ∈ Z(σ(M)′). The following are equivalent:

1 There exists Y ∈ H∞(Z(E )) with ‖Y ‖ ≤ 1 such that

Y (z∗i ) = Λ∗i , i = 1, . . . ,N

in the sense of (Muhly-Solel 2004).

2 There exists X ∈ H∞(Z(Eσ)) with ‖X‖ ≤ 1 such that

X (zi ) = Λi , i = 1, . . . ,N

in the sense of (N. 2017).

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 27: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Summary of results

(N. 2017) and Muhly-Solel’s theorem are distinct.

=⇒ Constantinescu-Johnson and Muhly-Solel’s theorems aredistinct.

However, when the W ∗-correspondence and W ∗-algebra arecommutative, the theorems yield the same result.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 28: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

Future work: more generalizations

In 2017, Jennifer Good proved a generalization ofMuhly-Solel’s theorem for a weighted Hardy algebra.

Goal: Generalize (N. 2017) to the setting of the weightedHardy algebra.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems

Page 29: A guide to generalized Nevanlinna-Pick theoremsN distinct points in a unit disc (initial data) N points (target data) there exists an interpolating function f with kfk 1 ()a certain

References

T. Constantinescu and J. L. Johnson, A Note onNoncommutative Interpolation, Canad. Math. Bull. 46 (1)(2003), 59-70.

P. Muhly and B. Solel, Hardy Algebras, W∗-correspondencesand interpolation theory, Math. Ann. 330 (2004), 353-415.

R. Norton, Comparing Two Generalized NoncommutativeNevanlinna-Pick Theorems, Complex Analysis and OperatorTheory (2017) 10.1007/s11785-016-0540-9.

Rachael M. Norton A guide to generalized Nevanlinna-Pick theorems