a flexible parameterization of gpds & their role in dvcs & neutral meson...

41
1 A Flexible Parameterization of GPDs & Their Role in DVCS & Neutral Meson Leptoproduction Gary R. Goldstein Tufts University Simonetta Liuti, S. Ahmad, Osvaldo Gonzalez-Hernandez University of Virginia Presentation for PANIC MIT July 2011 These ideas were developed in Trento ECT*, INT, Jlab, DIS2011, Frascati INF, . . . 1

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    A Flexible Parameterization of GPDs & Their Role in DVCS & Neutral Meson

    Leptoproduction

    Gary R. Goldstein Tufts University

    Simonetta Liuti,S. Ahmad, Osvaldo Gonzalez-Hernandez

    University of Virginia

    Presentation for PANIC

    MIT July 2011 These ideas were developed in Trento ECT*, INT, Jlab, DIS2011, Frascati INF, . . .

    1

  • 2

    Outline

      New “Flexible” parameterization for Chiral Even GPDs

    Regge ✖ diquark spectator model

      Satisfies all constraints

      Results for DVCS (transverse γ* transverse γ)

      cross sections & asymmetries

      Extend to Chiral Odd GPDs via diquark spin relations

      Some simple relations between Chiral even & odd helicity amps

      π0, η, η’ production data involve sizable γ*Transverse (factorization shown at leading twist for γ*Longitudinal [Collins, Franfurt, Strikman])

    γ*T requires chiral odd GPDs

      Q2 dependence for π0 depends on γ*+(ρ, b1)π0

      π0 cross sections & asymmetries

    PANIC2011 GR.Goldstein

  • 3 3

    t

    DVCS & DVMP γ*(Q2)+P→(γ or meson)+P’ 
partonic picture

    P'+=(1-ζ)P+P’T=-Δ

    k+=XP+ k'+=(X-ζ)P+

    q q+Δk'T=kT-ΔkT

    P+

    }{

    ζ→0 Regge Quark-spectator

    quark+diquark

    Factorized “handbag” picture

    }

    X>ζ DGLAP ΔT -> bT transverse spatialX

  • 4 7/24/11 4

    Momentum space nucleon matrix elements of quark field correlators see, e.g. M. Diehl, Eur. Phys. J. C 19, 485 (2001).

    Chiral even GPDs -> Ji sum rule

    Chiral odd GPDs -> transversity

    PANIC2011 GR.Goldstein

    Jqx= 12 dx H (x, 0, 0)+ E(x, 0, 0)[ ]x!

  • 5 5

    How to determine GPDs?Flexible Parameterization Recursive Fit

    CHIRAL EVENS: O. Gonzalez Hernandez, G. G., S. Liuti, arXiV:1012.3776 PRD accepted

    Constraints from Form Factors Dirac

    Pauli, etc.including Axial& Pseudoscalar

    How can these be independent of ξ?Constraints from Polynomiality

    dx x nH(x,!, t) = An ,kk = 0, 2,..

    n"#1

    + 1

    $ ( t)! k +1# (#1) n

    2Cn(t)! n +1

    dxH(x,!, t)0

    1

    " = F1 (t)

    dxE (x,!,t)0

    1

    " = F2 ( t)

    dx x n E (x,!,t)"1

    1

    # = Bn ,k (t)! k k= 0,2,...

    n

    $ - 1- (-1)n

    2Cn(t)!n +1

    Result of Lorentz invariance & causality. Not necessarily built into models

    7/24/11 PANIC2011 GR.Goldstein

    Constraints from pdf’s:H(x,0,0)=f1(x),H~(x,0,0)=g1(x), HT(x,0,0)=h1(x)

  • 6

    Spectator inspired model of GPDs •  2 directions –

      1. getting good parameterization of H, E & ~H, ~E satisfying many constraints

    (see O. Gonzalez-Hernandez, GG, S. Liuti arXiv: 1012.3776)  2. getting 8 spin dependent GPDs

    •  Chiral Odd GPDs π0 production is testing ground (New results – preliminary)

    •  Simplest Spectator -- scalar diquark – helicity amps for Pq ::::: q’P’ Spin simplicity - Pq+diq and q’+diqP’ are spin disconnected => Chiral even related to Chiral odd GPDs

    H, E, . . helicity amp relations HT, ET, . . •  Axial diquark: more complex linear relations & distinction between u & d flavors

    7/24/11 PANIC2011 GR.Goldstein 6

  • 7

    Spectator inspired model (cont’d) •  u + scalar (ud+du) -> u struck quark

    •  axial (uu, ud-du, dd) -> d and u struck

    : 3 – relations among helicity amps => at ξ & t not 0

    •  E=-ξET + ET~ , ξE~ = - 2HT~ - ET + ξET~ (multiplied by √(t0-t)) HT +(t0-t)HT~/4M2= (H+H~)/2–ξ[(1+ξ/2)E+ξE~]/(1-ξ2) and HT~ in terms of chiral evens Could apply to u-quark GPDs – part that has scalar if same Regge factors

    •  Regge-like behavior 1/xα(t) could differentiate among GPDs depending on

    t-channel quantum numbersPANIC2011 GR.Goldstein

  • 8

    k+=XP+ k’+=(X-ζ)P+

    P’+=(1- ζ)P+ PX+=(1-X)P+

    Vertex Structures

    P+ PX+=(1-X)P+

    λ

    Λ

    S=0 or 1

    E !"++

    *(k ',P ')"

    + # (k,P) +" + #*(k ', P ')"

    + +(k,P)

    First focus e.g. on S=0 pure spectator

    H !"+ +

    *(k ', P ')"

    ++(k, P) + "

    #+

    *(k ',P ')" #+ (k, P)

    Vertex functions Φ

    λ’

    Λ’

    PANIC2011 GR.Goldstein

    !H !"++

    *(k ',P ')"

    ++(k,P) #"

    #+

    *(k ',P ')"#+ (k,P)

    !E!"++

    *(k ',P ')"

    +# (k,P) #"+#

    *(k ',P ')"

    ++(k,P)

  • 9

    k+=XP+ k’+=(X-ζ)P+

    P’+=(1- ζ)P+ PX+=(1-X)P+

    Vertex Structures

    P+ PX+=(1-X)P+

    λ

    Λ

    S=0 or 1

    E !"++

    *(k ',P ')"

    + # (k,P) +" + #*(k ', P ')"

    + +(k,P)

    First focus e.g. on S=0 pure spectator

    H !"+ +

    *(k ', P ')"

    ++(k, P) + "

    #+

    *(k ',P ')" #+ (k, P)

    Vertex function Φ

    Note that by switching λ- λ & Λ -Λ (Parity) will have chiral evens go to ± chiral odds giving relations – before k integrations A(Λ’λ’;Λλ) ±A(Λ’,λ’;-Λ,-λ) but then (Λ’-λ’)-(Λ-λ) ≠(Λ’-λ’)+(Λ-λ) unless Λ=λ

    λ’

    Λ’

    PANIC2011 GR.Goldstein

    !H !"++

    *(k ',P ')"

    ++(k,P) #"

    #+

    *(k ',P ')"#+ (k,P)

    !E!"++

    *(k ',P ')"

    +# (k,P) #"+#

    *(k ',P ')"

    ++(k,P)

  • 10

    Helicity amps (q’+N->q+N’) are linear combinations of GPDs

    7/24/11 PANIC2011 GR.Goldstein 10

    In diquark spectator models A++;++, etc. are calculated directly. Inverted -> GPDs

  • 11

    Invert to obtain model for GPDs

    7/24/11 PANIC2011 GR.Goldstein 11

    A++,-+= - A++,+- A-+,++ = - A+-,++ A++,++ = A++,--

    double flip

  • 12

    Fitting Procedure e.g. for H and E ✔  Fit at ζ=0, t=0 ⇒ Hq(x,0,0)=q(X)

    ✔  3 parameters per quark flavor (MXq, Λq, αq) + initial Qo2 ✔  Fit at ζ=0, t≠0 ⇒

    ✔  2 parameters per quark flavor (β, p)

    ✔  Fit at ζ≠0, t≠0 ⇒ DVCS, DVMP,… data (convolutions of GPDs with Wilson coefficient functions) + lattice results (Mellin Moments of GPDs)

    ✔  Note! This is a multivariable analysis ⇒ see e.g. Moutarde, Kumericki and D. Mueller, Guidal and Moutarde

    Regge factor

    Quark-Diquark

    R = X![!+! '(1!X )p t+" (# )t ]

  • 13

    Reggeized diquark mass formulation

    Following DIS work by Brodsky, Close, Gunion (1973)

    Diquark spectral function

    ρ

    MX2

    ∝ (MX2)α

    ∝δ(MX2-MX2)

    “Regge”

    + Q2 Evolution

    PANIC2011 GR.Goldstein

  • 14

    Flexible Parametrization of Generalized Parton Distributions from Deeply Virtual Compton Scattering Observables Gary R. Goldstein, J. Osvaldo Gonzalez Hernandez , Simonetta Liuti arXiv:1012.3776

    PANIC2011 GR.Goldstein

  • 15 PANIC2011 GR.Goldstein

  • 16

    Compton Form Factors Real & Imaginary Parts

    PANIC2011 GR.Goldstein

  • 17 PANIC2011 GR.Goldstein

  • 18

    Observables

    PANIC2011 GR.Goldstein

    Note GPD & Bethe-Heitler separate amplitudes -> interference linear in GPD

  • 19

    Hall B data ALU(90o)

  • 20

    Hermes data

    PANIC2011 GR.Goldstein

  • 21

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    10-2

    10-1

    1 1

    Hermes kinematics

    x=0.097Q

    2=2.5 GeV

    2-t=0.118 GeV

    2

    x=0.097-t=0.118 GeV

    2

    Q2=2.5 GeV

    2

    Hermes kinematics

    no DVCS

    -t (GeV2) Q

    2 (GeV

    2) x

    Bj

    10-1

    ALU(90o)

    PANIC2011 GR.Goldstein

  • 22

    Interference contribution to cos(φ) term in DVCS cross section

    PANIC2011 GR.Goldstein

  • 23 PANIC2011 GR.Goldstein

  • 24 24

    N N

    πo +1,0

    +1/2 -1/2

    +1/2

    +1/2

    +1/2

    -1/2

    -1/2

    e.g. f+1+,0-(s,t,Q2)

    +1,0

    g+1+,0- A++,- -

    HT

    q nos of C-odd 1- - exchange

    1+- exchange b1 & h1

    What about coupling of π to q→q′ ? Assumed γ5 vertex Then for mquark=0 has to flip helicity for q→π+q′ and q⋅q′ ≠ 0. Naïve twist 3 ψbar γ5 ψ

    Rather than γµγ5 – does not flip twist 2. But q’ γµγ5q will not contribute to transverse γ. Differs from t-channel approach to Regge factorization

    N N

    πo

    +1/2 -1/2

    +1,0 b1 & h1

    Exclusive Lepto-production of πo or η, η’ to measure chiral odd GPDs

    7/24/11 PANIC2011 GR.Goldstein

  • 25

    Q2 dependent form factors t-channel view

    25 7/24/11 PANIC2011 G.R.Goldstein

    see Belitsky, Ji, Yuan (2007) & Ng (2007)

  • 26

    New Chiral Odd GPDs & exclusive π0 electroproduction

    xBj=0.41

    Q2=3.2 GeV

    2

    -t (GeV2)

    Cro

    ss S

    ecti

    on

    -20

    -10

    0

    10

    20

    30

    40

    50

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    σT +εσL

    σLT

    σTT

    PANIC2011 GR.Goldstein

  • 27

    New Chiral Odd GPDs & exclusive π0 electroproduction

    xBj=0.41

    Q2=3.2 GeV

    2

    -t (GeV2)

    Cro

    ss S

    ecti

    on

    -20

    -10

    0

    10

    20

    30

    40

    50

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    σT +εσL σLT σTT data:Q2≈3.2 GeV2, x ≈0.41 preliminary data courtesy V. Kubarovsky, HallB

    PANIC2011 GR.Goldstein

  • 28

    New Chiral Odd GPDs & exclusive π0 electroproduction

    σT +εσL

    σLT

    σTT

    xBj=0.19

    Q2=2.3 GeV

    2

    -t (GeV2)

    Cro

    ss S

    ecti

    on

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    PANIC2011 GR.Goldstein

  • 29

    New Chiral Odd GPDs & exclusive π0 electroproduction

    σT +εσL σLT

    σTT

    xBj=0.19

    Q2=2.3 GeV

    2

    -t (GeV2)

    Cro

    ss S

    ecti

    on

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    data:Q2≈2.3 GeV2, x ≈0.34 preliminary data courtesy V. Kubarovsky, HallB

    PANIC2011 GR.Goldstein

  • 30 7/24/11 PANIC2011 G.R.Goldstein 30

    -1.00E-04

    -5.00E-05

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    3.00E-04

    -2-1.5-1-0.50

    sigma_L

    sigma_T

    sigma_TT

    simga_LT

    sigma_LT'

    Q2=1.3 GeV2, x =0.13 data:Q2≈1.6 GeV2, x ≈0.19

    preliminary data courtesy V. Kubarovsky, HallB

    large s, small t, but Q2 too small for GPDs

  • 31 7/24/11 PANIC2011 G.R.Goldstein 31

    data:Q2≈2.3 GeV2, x ≈0.32 preliminary data courtesy V. Kubarovsky, HallB

    -4.00E-05

    -2.00E-05

    0.00E+00

    2.00E-05

    4.00E-05

    6.00E-05

    8.00E-05

    1.00E-04

    -2-1.5-1-0.50

    sigma_L

    sigma_T

    sigma_TT

    sigma_LT

    Q2=2.3 GeV2, x =0.27

  • 32

    •  delicate interplay among amps, GPDs & Compton Form factor phases. very sensitive to physical parameters – tensor charges, “anomalous transversity”

    •  AUT (sin(Φ-Φs)) AUT’ (sinΦs) α (beam pol’z’n) AUL (“long.”)

    7/24/11 32

    -0.08-0.06-0.04-0.02

    00.020.040.060.08

    0.10.12

    0 0.5 1 1.5 2

    Asymmetries Q^2=3.5, x=0.36

    A_UT

    A_UT'

    alpha

    A_UL

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0 0.5 1 1.5 2

    Asymmetries Q^2=2.5, x=0.25

    A_UT

    A_UT'

    alpha

    A_UL

    PANIC2011 G.R.Goldstein

  • 33 PANIC2011 GR.Goldstein

  • 34 34

    Conclusions  Flexible Model GPDs → phenomenology (DVCS & DVMP)  Spectator models relate Chiral even to Chiral odd GPDs. How far broken? Regge behavior  Exclusive π0 electroproduction observables (depend on axial vector 1+- exchange quantum numbers)  Pseudoscalar form factor without π0 limits E~ coupling for π0  GPD HT yield values of δu & δd also have κTu & κTd .   dσT/dt, dσTT/dt, AUT, beam asymmetry, beam-target correlations, dσL/dt, dσLT/dt

      FUTURE: DVCS & π0 along with η, ρ, ω production will narrow range of basic parameters of GPDs, transversity & hadronic spin.

    7/24/11 PANIC2011 GR.Goldstein

  • 35

    backup slides

    PANIC2011 GR.Goldstein

  • 36

    Spectator inspired model (cont’d) •  recall that TMDs f1Tperp = h1perp in scalar diq model with gluon

    exchange/gauge link/f.s.i. (Gamberg & Goldstein 2002)

    •  E=-ξET + ET~ integrated over x at ξ=0

    •  ξE = - 2HT - ET + ξET integrated over x at ξ=0,t=0 No – overall √(t0-t) on both sides => only sensible for

    non-zero t

    •  at t->t0 HT = (H+H )/2-ξ[(1+ξ/2)E+ξE ]/(1-ξ2) integrated over x at ξ=0 for u with“scalar diquark” remnant & 2 . . . .

    (this roughly Torino analysis) Saturates Soffer bound at low Q2

    •  Departure from these simple results -> contributionPANIC2011 GR.Goldstein

  • 37

    Observables

    7/24/11 PANIC2011 G.R.Goldstein 37

  • 38

    more observables

    7/24/11 PANIC2011 G.R.Goldstein 38

  • 39 39

    All GPDs Ahmad, GRG, Liuti, PRD79, 054014 (2009)

    7/24/11 PANIC2011 G.R.Goldstein

  • 40 40

    All GPDs Ahmad, GRG, Liuti, PRD79, 054014 (2009)

    7/24/11 PANIC2011 G.R.Goldstein

  • 41 41

    Regge-cut model Beam-spin asymmetry α data R. De Masi et al.,Phys.Rev.C77, 042201 (2008).

    Regge-cut predictions - comparisons involve εL, ε Ahmad, GRG, Liuti, PRD79, 054014 (2009) blue

    GPD predictions (preliminary) red

    σLT’~ Im [ f5*(f2+f3) + f6*(f1-f4)]

    7/24/11 PANIC2011 G.R.Goldstein