a computational study of a class of multivaluedsanum.github.io/2016/slides/fasondini.pdf · a...

104
A computational study of a class of multivalued tronqu´ ee solutions of the third Painlev´ e equation Marco Fasondini University of the Free State Supervisors: Andr´ e Weideman Stellenbosch University Bengt Fornberg University of Colorado at Boulder

Upload: others

Post on 01-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • A computational study of a class of multivaluedtronquée solutions of the third Painlevé equation

    Marco Fasondini University of the Free State

    Supervisors:

    André Weideman Stellenbosch University

    Bengt Fornberg University of Colorado at Boulder

  • Introducing PIII

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    Phase portrait

    u(z) = r(z)eiθ(z)

    Modulus plot

    • Poles: u ∼ cz − z0

    , z −→ z0

    c = ±1, (red/yellow)• Zeros: u ∼ c(z − z0), z −→ z0c = ±1, (purple/green)

  • Introducing PIII

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    uPhase portrait

    u(z) = r(z)eiθ(z)

    Modulus plot

    • Poles: u ∼ cz − z0

    , z −→ z0

    c = ±1, (red/yellow)• Zeros: u ∼ c(z − z0), z −→ z0c = ±1, (purple/green)

  • Tronquée PIII solutions

    Tronquée solutions, Boutroux [1913]

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    Lin, Dai and Tibboel [2014] provedthe existence of tronquée PIIIsolutions whose pole-free sectorshave angular widths of

    • π and 2π if γ = 1 and δ = −1, and

    •3π

    2and 3π if α = 1,γ = 0 and δ = −1.

    McCoy, Tracy and Wu [1977] derived asymptotic formulaefor tronquée solutions with parameters α = −β = 2ν, γ = 1and δ = −1 and applied their results to the Ising model.

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+

    σ(λ) =2

    πarcsin(πλ) ,

    B(σ, ν) = 2−2σΓ2(12(1− σ)

    )Γ(12(1 + σ) + ν

    )Γ2(12(1 + σ)

    )Γ(12(1− σ) + ν

    )−1π< λ <

    1

    π

    u(x; ν,−λ) = 1u(x; ν, λ)

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    The MTW solutions: α = −β = 2ν, γ = 1, δ = −1

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutionsThe MTW solutions: α = −β = 2ν, γ = 1, δ = −1. For the case λ > 1

    π,

    let λ =cosh(πµ)

    π, µ > 0, then [u(x; ν,−λ) = 1/u(x; ν, λ)]

    Green u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Redu(x)

    x∼ 1

    µ(1− cos [φ(x, ν, µ)]) + sin [φ(x, ν, µ)]

    }, x→ 0+

    φ(x, ν, µ) = 2µ ln(x/4)− 4 arg [Γ(µi)] + 2 arg [Γ(ν + µi)]

  • Tronquée PIII solutions

    As λ is varied, multiple tronquée solutions occur on sheetsother than the main sheet of the MTW solutions

    Lin, Dai and Tibboel [2014] proved the existence of tronquéePIII solutions whose pole-free sectors have angular widthsof

    • π and 2π if γ = 1 and δ = −1, and

    •3π

    2and 3π if α = 1,γ = 0 and δ = −1.

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutions

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z.

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 16 tronquée solutions if ν 6∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 6, 4, 2

    k = 8, 6, 4

    k = 8, 6

    k = 8

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 7, 5, 3

    k = 7, 5

    k = 7

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 72 tronquée solutions if ν ∈ Z. They have the properties

    u(z) ∼ i, |z| → ∞, kπ < arg z < (k + 1) π

    k = 8, 7, 6, 5, 4, 3, 2, 1

    k = 8, 7, 6, 5, 4, 3

    k = 8, 7, 6, 5

    k = 8, 7

    u(z) ∼ −i, |z| → ∞, kπ < arg z < (k + 1) π

    k = 8, 7, 6, 5, 4, 3, 2

    k = 8, 7, 6, 5, 4

    k = 8, 7, 6

    k = 8

    Conjecture: The sequences continue indefinitely

  • Tronquée PIII solutionsAs λ is varied, multiple tronquée solutions occur on sheets other thanthe main sheet of the MTW solutions, u(z)

    On the region {z ∈ C | π ≤ arg z ≤ 9π} we have found

    • 72 tronquée solutions if ν ∈ Z. They have the properties

    u(z) ∼ −1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 7, 6, 5, 4, 3, 2, 1

    k = 8, 7, 6, 5, 4, 3

    k = 8, 7, 6, 5

    k = 8, 7

    u(z) ∼ 1, |z| → ∞,(k +

    1

    2

    )π < arg z <

    (k +

    3

    2

    k = 8, 7, 6, 5, 4, 3, 2

    k = 8, 7, 6, 5, 4

    k = 8, 7, 6

    k = 8

    Conjecture: The sequences continue indefinitely

  • Future plans

    • Survey tronquée PIII solutions with α = 1,γ = 0 andδ = −1• Survey single-valued PIII solutions• Survey triply branched PIII solutions• Extend computational method for PIII to

    PV :d2u

    dz2=

    (1

    2u+

    1

    u− 1

    )(du

    dz

    )2− 1z

    du

    dz+

    (u− 1)2

    z2

    (αu +

    β

    u

    )+ γ

    u

    z+ δ

    u(u + 1)

    u− 1

    and

    PV I :d2u

    dz2=

    1

    2

    (1

    u+

    1

    u− 1+

    1

    u− z

    )(du

    dz

    )2−(

    1

    z+

    1

    z − 1+

    1

    u− z

    )(du

    dz

    )+u(u− 1)(u− z)z2(z − 1)2

    (α + β

    z

    u2+ γ

    z − 1(u− 1)2

    + δz(z − 1)(u− z)2

    )

  • How to compute PIII?Challenges:

    • Moveable poles: the ‘Pole Field Solver’ (PFS), Fornberg & Weideman [2011]

    u(z), u′(z) −→ Taylor coefficients −→ Padé approximation at z + heiθ

    Stage 1: pole avoidance on a coarse grid

    Stage 2: compute the solution on a fine grid

    Single-valued Painlevé transcendents: PI, F & W [2011] ;PII, F & W [2014, 2015] ; PIV , Reeger & F [2013, 2014]• Multivaluedness

  • How to compute PIII?Challenges:

    • Moveable poles: the ‘Pole Field Solver’ (PFS), Fornberg & Weideman [2011]

    u(z), u′(z) −→ Taylor coefficients −→ Padé approximation at z + heiθ

    Stage 1: pole avoidance on a coarse grid

    Stage 2: compute the solution on a fine grid

    Single-valued Painlevé transcendents: PI, F & W [2011] ;PII, F & W [2014, 2015] ; PIV , Reeger & F [2013, 2014]• Multivaluedness

  • How to compute PIII?Second challenge: MultivaluednessMake the paths run in the right direction

    −10 −5 0 5 10−4

    −2

    0

    2

    4

    1st sheet

  • How to compute PIII?Second challenge: MultivaluednessMake the paths run in the right direction

    −10 −5 0 5 10−4

    −2

    0

    2

    4

    1st sheet

    −10 −8 −6 −4 −2 0 2−4

    −2

    0

    2

    4

    counterclockwise sheet

  • How to compute PIII?

    Second challenge: Multivaluedness

    PIII :d2u

    dz2=

    1

    u

    (du

    dz

    )2− 1z

    du

    dz+αu2 + β

    z+ γu3 +

    δ

    u

    Let z = eζ/2, u(z) = e−ζ/2w(ζ) in PIII , then

    P̃III :d2w

    dζ2=

    1

    w

    (dw

    )2+

    1

    4

    (αw2 + γw3 + βeζ +

    δe2ζ

    w

    ),

    and all solutions of P̃III are single-valued

    Hinkkanen & Laine [2001]. (z = 0⇒ ζ = −∞)

  • How to compute PIII?

    z = eζ/2, u(z) = e−ζ/2w(ζ)

  • Tronquée PIII solutions

    u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    u(x) ∼ Bxσ, x→ 0+, −1π< λ <

    1

    π

  • Tronquée PIII solutions

    MTW solutions: u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Limiting solution: u(x) ∼ 1− kx−ν−(1/2)e−2x, x→∞

  • Tronquée PIII solutions

    MTW solutions: u(x) ∼ 1− λΓ(ν + 12

    )2−2νx−ν−(1/2)e−2x, x→∞

    Limiting solution: u(x) ∼ 1− kx−ν−(1/2)e−2x, x→∞