a bpp-based dinuclear ruthenium photocatalyst for visible

13
A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible Light-Driven Oxidation Reactions Seán Hennessey a , Pau Farràs a,b* , Jordi Benet-Buchholz c , Antoni Llobet b,c* Supporting Information Figure S1: Cyclic voltammograms of out-[3-Cl] 2+ showing degradation under ambient light over time periods of 2 hours in CH2Cl2, scan rate 0.1 V/s. out-[1] 2+ shown for comparison.______________________________ 2 Figure S2: Stacked 1 H-NMR spectra of impure out-[3-Cl] 2+ before light irradiation (above) and after light irradiation (below) performed in MeOD. Apodization for bottom spectra: Exponential: 1.60 Hz, Integral- to-noise effect : 5.129 s. _________________________________________________________________ 2 Figure S3: Stacked 1 H-NMR spectra of in-[3-Cl] 2+ in (CD3)2CO (above) and impure out-[3-Cl] 2+ before light irradiation performed in MeOD (below). ____________________________________________________ 3 Figure S4: 19 F NMR comparisons between; a) in-[3-OH2] 3+ in D2O b) in-[3-OCOCF3] 2+ in acetone-d6. The 19 F NMR of free trifluoroacetate in D2O (c) and free potassium hexafluorophosphate in D2O (d) are shown for comparison ____________________________________________________________________________ 3 Figure S5: UV-vis redox titration of in-[3-OH2] 3+ at pH = 1, upon addition of 0.1 eq. (up to 4 eq.) of Ce(IV) over time. _________________________________________________________________________________ 4 Figure S6: UV-Vis absorbance spectra over time for an aqueous solution of in-[3-OH] + at pH = 12 under air. The arrow indicates the decrease in absorption at the MLCT as a result of precipitation of the complex. ____ 5 Figure S7: Vis-NIR spectra of in-[3-OH2] 3+ in CF3SO3H (pH = 1). Values between 1000-2000 nm multiplied by 10 for visibility. Inset: Vis-NIR spectra of in-[3-OH2] 3+ in CF3SO3H (pH = 1) at a concentration of 2.0 mM. vmax (cm -1 ) = 8422. __________________________________________________________________________ 5 Figure S8: Cyclic voltammograms of in-[3-Cl] 2+ and in-[3-CH3CN] 3+ in a deoxygenated solution of CH2Cl2 with supporting electrolyte TBAF (0.1 M) scan rate of 0.01 Vs -1 . ______________________________________ 6 Figure S9: 1 H-NMR spectrum of in-[3-Cl] 2+ performed in (CD3)2CO. ____________________________________ 7 Figure S10: 13 C-NMR spectrum of in-[3-Cl] 2+ performed in (CD3)2CO. ___________________________________ 7 Figure S11: 1 H-NMR spectrum of in-[3-CH3CN] 2+ performed in CD3CN. _________________________________ 8 Figure S12: DEPT spectrum of in-[3-CH3CN] 2+ performed in CD3CN. ____________________________________ 8 Figure S13: 1 H-NMR spectrum of in-[3-OOCCF3] 2+ performed in (CD3)2 CO. ______________________________ 9 Figure S14: 13 C-NMR spectrum of in-[3-OOCCF3] 2+ performed in (CD3)2 CO. _____________________________ 9 Figure S15: COSY spectrum of in-[3-OOCCF3] 2+ performed in (CD3)2 CO. _______________________________ 10 Figure S16: HSQC spectrum of in-[3-OOCCF3] 2+ performed in (CD3)2 CO. _______________________________ 10 Figure S17: HMBC spectrum of in-[3-OOCCF3] 2+ performed in (CD3)2 CO. ______________________________ 11 Figure S18: 1 H-NMR of in-[3-OH2] 3+ in D2O. ______________________________________________________ 11 Figure S19: Full HPLC chromatogram of dyad mixture after reaction (iv). Fractions assigned by mass spec. Fraction 1 - Ru(tpy)2 derivative, Fraction 2 – 2 2+ , Fraction 3 – in-[3-OCOCF3] 3+ . _____________________ 12 Figure S20: ESI-MS of pure fraction from HPLC dissolved in OH2 to give, in-[3-OH2] 3+ , performed in MeOH with the addition of OH2. m/z (M 3+ ) = 493.2. ____________________________________________________ 12 Figure S21: ESI-MS of in-[3-CH3CN] 2+ performed in MeOH with the addition of H2O. _____________________ 13 Figure S22: DFT optimized structures of (a) in-3-Cl (b) out-3-Cl (c) in-3-CH3CN (d) out-3-CH3CN. Hydrogen atoms are omitted for clarity. ___________________________________________ Error! Bookmark not defined. Table S1. Crystallographic data for complexes in-[3-L](PF6)2/3 where; L = CH3CN or Cl. ......................................... 4 Table S2: NMR spectroscopy data .......................................................................................................................... 6 a. School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland. b. Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain. c. Departament de Química, Universidad Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain. *Correspondence: [email protected]; Tel.: +353 91 492765 (P.F.); [email protected]; Tel.: +34 977 920 000 (A.L.). Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 01-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible Light-Driven Oxidation Reactions

Seán Hennesseya, Pau Farràsa,b*, Jordi Benet-Buchholzc, Antoni Llobetb,c*

Supporting Information

Figure S1: Cyclic voltammograms of out-[3-Cl]2+ showing degradation under ambient light over time periods of 2 hours in CH2Cl2, scan rate 0.1 V/s. out-[1]2+ shown for comparison. ______________________________ 2

Figure S2: Stacked 1H-NMR spectra of impure out-[3-Cl]2+ before light irradiation (above) and after light irradiation (below) performed in MeOD. Apodization for bottom spectra: Exponential: 1.60 Hz, Integral-to-noise effect : 5.129 s. _________________________________________________________________ 2

Figure S3: Stacked 1H-NMR spectra of in-[3-Cl]2+ in (CD3)2CO (above) and impure out-[3-Cl]2+ before light irradiation performed in MeOD (below). ____________________________________________________ 3

Figure S4: 19F NMR comparisons between; a) in-[3-OH2]3+ in D2O b) in-[3-OCOCF3]2+ in acetone-d6. The 19F NMR of free trifluoroacetate in D2O (c) and free potassium hexafluorophosphate in D2O (d) are shown for comparison ____________________________________________________________________________ 3

Figure S5: UV-vis redox titration of in-[3-OH2]3+ at pH = 1, upon addition of 0.1 eq. (up to 4 eq.) of Ce(IV) over time. _________________________________________________________________________________ 4

Figure S6: UV-Vis absorbance spectra over time for an aqueous solution of in-[3-OH]+ at pH = 12 under air. The arrow indicates the decrease in absorption at the MLCT as a result of precipitation of the complex. ____ 5

Figure S7: Vis-NIR spectra of in-[3-OH2]3+ in CF3SO3H (pH = 1). Values between 1000-2000 nm multiplied by 10 for visibility. Inset: Vis-NIR spectra of in-[3-OH2]3+ in CF3SO3H (pH = 1) at a concentration of 2.0 mM. vmax

(cm-1) = 8422. __________________________________________________________________________ 5 Figure S8: Cyclic voltammograms of in-[3-Cl]2+ and in-[3-CH3CN]3+ in a deoxygenated solution of CH2Cl2 with

supporting electrolyte TBAF (0.1 M) scan rate of 0.01 Vs-1. ______________________________________ 6 Figure S9: 1H-NMR spectrum of in-[3-Cl]2+ performed in (CD3)2CO. ____________________________________ 7 Figure S10: 13C-NMR spectrum of in-[3-Cl]2+ performed in (CD3)2CO. ___________________________________ 7 Figure S11: 1H-NMR spectrum of in-[3-CH3CN]2+ performed in CD3CN. _________________________________ 8 Figure S12: DEPT spectrum of in-[3-CH3CN]2+ performed in CD3CN. ____________________________________ 8 Figure S13: 1H-NMR spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO. ______________________________ 9 Figure S14: 13C-NMR spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO. _____________________________ 9 Figure S15: COSY spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO. _______________________________ 10 Figure S16: HSQC spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO. _______________________________ 10 Figure S17: HMBC spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO. ______________________________ 11 Figure S18: 1H-NMR of in-[3-OH2]3+ in D2O. ______________________________________________________ 11 Figure S19: Full HPLC chromatogram of dyad mixture after reaction (iv). Fractions assigned by mass spec.

Fraction 1 - Ru(tpy)2 derivative, Fraction 2 – 22+, Fraction 3 – in-[3-OCOCF3]3+. _____________________ 12 Figure S20: ESI-MS of pure fraction from HPLC dissolved in OH2 to give, in-[3-OH2]3+, performed in MeOH with

the addition of OH2. m/z (M3+) = 493.2. ____________________________________________________ 12 Figure S21: ESI-MS of in-[3-CH3CN]2+ performed in MeOH with the addition of H2O. _____________________ 13 Figure S22: DFT optimized structures of (a) in-3-Cl (b) out-3-Cl (c) in-3-CH3CN (d) out-3-CH3CN. Hydrogen atoms

are omitted for clarity. ___________________________________________ Error! Bookmark not defined.

Table S1. Crystallographic data for complexes in-[3-L](PF6)2/3 where; L = CH3CN or Cl. ......................................... 4 Table S2: NMR spectroscopy data .......................................................................................................................... 6

a. School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland. b. Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain. c. Departament de Química, Universidad Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain. *Correspondence: [email protected]; Tel.: +353 91 492765 (P.F.); [email protected]; Tel.: +34 977 920 000 (A.L.).

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2019

Page 2: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S1: Cyclic voltammograms of out-[3-Cl]2+ showing degradation under ambient light over time periods of 2 hours in CH2Cl2, scan rate 0.1 V/s. out-[1]2+ shown for comparison.

6.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.39.49.59.69.79.89.910.010.110.210.3ppm

Figure S2: Stacked 1H-NMR spectra of impure out-[3-Cl]2+ before light irradiation (above) and after light irradiation (below) performed in MeOD. Apodization for bottom spectra: Exponential: 1.60 Hz, Integral-to-noise effect : 5.129 s.

Page 3: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

6.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.810.0ppm

Figure S3: Stacked 1H-NMR spectra of in-[3-Cl]2+ in (CD3)2CO (above) and impure out-[3-Cl]2+ before light irradiation performed in MeOD (below).

Figure S4: 19F NMR comparisons between; a) in-[3-OH2]3+ in D2O b) in-[3-OCOCF3]2+ in acetone-d6. The 19F NMR of free trifluoroacetate in D2O (c) and free potassium hexafluorophosphate in D2O (d) are shown for comparison

a)

b)

c)

d)

Page 4: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Table S1. Crystallographic data for complexes in-[3-L](PF6)2/3 where; L = CH3CN or Cl.

in-[(bpy)2Ru(bpp)Ru(CH3CN)(tpy)](PF6)3 in-[(bpy)2Ru(bpp)Ru(Cl)(tpy)](PF6)2

Empirical formula C50H39F18N12P3Ru2 C51H42ClF12N11OP2Ru2

Mr (g mol-1) 1444.98 1352.48

Crystal system Triclinic Triclinic

Space group P-1 P-1

a [Å] 10.6161(10) 12.9180(4)

b [Å] 15.1085(13) 13.8310(4)

c [Å] 16.9110(14) 17.5520(6)

α [°] 90.103(3) 92.9970(19)

β [°] 94.853(2) 100.953(2)

γ [°] 105.573(2) 105.6680(18)

Volume [Å3] 2602.6(4) 2946.61(16)

Z 2 2

ρcalcd [Mg/m3] 1.844 1.524

Absorption coefficient [mm-1]

0.789 0.696

Final R indices [I>2σ(I)] R1 = 0.0412 , wR2 = 0.0925 R1 = 0.0771, wR2 = 0.2103

R indices (all data) R1 = 0.0604 , wR2 = 0.1014 R1 = 0.1404, wR2 = 0.2549

Figure S5: UV-vis redox titration of in-[3-OH2]3+ at pH = 1, upon addition of 0.1 eq. (up to 4 eq.) of Ce(IV) over time.

Page 5: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S6: UV-Vis absorbance spectra over time for an aqueous solution of in-[3-OH]3+ at pH = 12 under air. The arrow indicates the decrease in absorption at the MLCT as a result of precipitation of the complex.

Figure S7: Vis-NIR spectra of in-[3-OH2]3+ in CF3SO3H (pH = 1). Values between 1000-2000 nm multiplied by 10 for visibility. Inset: Vis-NIR spectra of in-[3-OH2]3+ in CF3SO3H (pH = 1) at a concentration of 2.0 mM. vmax (cm-1) = 8422.

Page 6: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S8: Cyclic voltammograms of in-[3-Cl]2+ and in-[3-CH3CN]3+ in a deoxygenated solution of CH2Cl2 with supporting electrolyte TBAF (0.1 M) scan rate of 0.01 Vs-1.

Table S2: NMR spectroscopy data

Complex 1D NMR data

In-[3-Cl]2+

1H NMR (400 MHz, (CD3)2CO)) δ 9.25 (d, J = 5.6 Hz, 1H), 8.91 (d, J = 8.1 Hz, 1H), 8.74 (dd, J = 13.1, 8.1 Hz, 2H), 8.56 – 8.40 (m, 6H), 8.27 (s, 1H), 8.20 (t, J = 7.5 Hz, 1H), 8.13 (dt, J = 15.0, 7.8 Hz, 2H), 8.07 – 7.95 (m, 5H), 7.93 – 7.86 (m, 2H), 7.82 (d, J = 5.9 Hz, 1H), 7.64 – 7.39 (m, 9H), 7.27 (t, J = 6.8 Hz, 1H), 7.10 (dd, J = 11.0, 5.9 Hz, 2H), 6.75 (t, J = 6.7 Hz, 2H).

13C-NMR (101 MHz, (CD3)2CO) δ: 160.30, 159.39, 158.86, 158.71, 158.57, 157.75, 156.92, 156.86, 156.32, 156.07, 155.87, 155.03, 154.85, 154.49, 152.94, 152.01, 151.96, 150.87, 150.78, 150.73, 150.39, 137.57, 137.22, 136.63, 136.48, 135.62, 135.37, 135.32, 132.31, 127.43, 127.42, 126.64, 126.56, 125.60, 124.65, 124.14, 123.28, 123.24, 123.11, 122.98, 122.52, 122.36, 122.15, 121.71, 120.91, 119.69, 104.44

In-[3-CH3CN]3+

1H-NMR (400 MHz, CD3CN) δ: 8.76 (dt, J = 5.5, 1.3 Hz, 1H), 8.64 – 8.49 (m, 3H), 8.41 (ddd, J = 18.7, 8.1, 0.9 Hz, 2H), 8.33 – 8.25 (m, 3H), 8.19 (q, J = 7.9 Hz, 2H), 8.13 – 7.98 (m, 5H), 7.97 (s, 1H), 7.84 – 7.73 (m, 2H), 7.61 (td, 2H), 7.56 – 7.34 (m, 6H), 7.29 (ddd, J = 7.4, 5.7, 1.3 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.12 (ddd, J = 7.3, 5.6, 1.3 Hz, 1H), 6.95 (ddt, J = 5.8, 1.5, 0.8 Hz, 1H), 6.90 (ddt, 1H), 6.75 (ddt, 1H). (35 protons?)

13C-NMR (101 MHz, CD3CN) δ: 158.82, 158.46, 158.18, 157.84, 157.65, 157.38, 157.30, 155.83, 155.56, 154.85, 154.17, 153.84, 152.61, 152.15, 151.84, 151.13, 150.94, 149.85, 138.53, 137.94, 137.86, 137.66, 137.46, 136.92, 136.43, 136.27, 128.50, 127.56, 127.22, 127.19, 126.17, 125.37, 124.77, 124.53, 124.33, 124.03, 123.96, 123.59, 123.36, 123.29, 122.99, 121.35, 120.09, 104.50.

In-[3-OH2]3+

1H NMR (400 MHz, D2O) δ 8.42 (dd, J = 7.0, 5.1 Hz, 2H), 8.38 – 8.12 (m, 8H), 8.06 – 7.82 (m, 11H), 7.76 (m, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.51 (m, 2H), 7.42 – 7.29 (m, 6H), 7.15 (ddd, J = 7.3, 5.7, 1.3 Hz, 2H), 7.01 (s, 1H), 6.84 (s, 1H), 6.71 (s, 1H), 6.65 (ddd, J = 7.3, 5.7, 1.3 Hz, 1H), 6.50 (t, J = 6.6 Hz, 1H).

Page 7: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5f1 (ppm)

7.07.58.08.59.09.5f1 (ppm)

6.75

6.76

7.09

7.10

7.42

7.44

7.50

7.51

7.58

7.59

7.87

7.97

7.97

7.98

7.99

8.01

8.02

8.05

8.13

8.14

8.27

8.41

8.42

8.43

8.44

8.46

8.47

8.48

8.51

8.53

8.53

8.55

8.71

8.73

8.74

8.76

8.90

Figure S9: 1H-NMR spectrum of in-[3-Cl]2+ performed in (CD3)2CO.

0102030405060708090100110120130140150160170180190200210f1 (ppm)

104.

4411

9.69

120.

9112

1.71

122.

1512

2.36

122.

5212

2.98

123.

1112

3.24

123.

2812

4.14

124.

6512

5.60

126.

5612

6.64

127.

4212

7.43

132.

3113

5.32

135.

3713

5.62

136.

4813

6.63

137.

2213

7.57

150.

3915

0.73

150.

7815

0.87

151.

9615

2.01

152.

9415

4.49

154.

8515

5.03

155.

8715

6.07

156.

3215

6.86

156.

9215

7.75

158.

5715

8.71

158.

8615

9.39

160.

30

Figure S10: 13-CMR spectrum of in-[3-Cl]2+ performed in (CD3)2CO.

Page 8: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

6.66.87.07.27.47.67.88.08.28.48.68.89.0f1 (ppm)

7.19

7.19

7.19

7.19

7.46

7.47

7.47

7.47

7.48

7.48

7.49

7.77

7.77

7.77

7.96

7.99

8.01

8.01

8.02

8.02

8.03

8.04

8.18

8.20

8.29

8.29

8.30

8.31

8.38

8.38

8.40

8.40

8.42

8.43

8.44

8.45

Figure S11: 1H-NMR spectrum of in-[3-CH3CN]3+ performed in CD3CN.

0102030405060708090100110120130140150160170180190200f1 (ppm)

104.

5012

0.09

121.

3512

2.99

123.

2912

3.36

123.

5912

3.96

124.

0312

4.33

124.

5312

4.77

125.

3712

6.17

127.

1912

7.22

127.

5612

8.50

136.

2713

6.43

136.

9213

7.46

137.

6613

7.86

137.

9413

8.53

149.

8515

0.94

151.

1315

1.84

152.

1515

2.61

153.

8415

4.17

154.

8515

5.56

155.

8315

7.30

157.

3815

7.65

157.

8415

8.18

158.

4615

8.82

Figure S12: DEPT spectrum of in-[3-CH3CN]3+ performed in CD3CN.

Page 9: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0ppm

6.66.87.07.27.47.67.88.08.28.48.68.89.09.2ppm

7.09

7.12

7.45

7.59

7.59

7.69

7.70

7.76

8.01

8.02

8.03

8.03

8.04

8.04

8.06

8.08

8.09

8.11

8.11

8.14

8.14

8.15

8.16

8.16

8.17

8.19

8.29

8.32

8.44

8.45

8.46

8.49

8.52

8.55

8.56

8.58

8.61

8.84

8.84

8.87

Figure S13: 1H-NMR spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO.

0102030405060708090100110120130140150160170180190200210ppm

104.

9012

0.31

121.

3812

2.82

123.

2612

3.54

123.

5712

3.82

123.

8812

3.91

124.

2412

4.40

124.

5212

4.73

124.

9112

5.76

126.

4512

7.47

127.

5812

7.73

127.

8412

8.79

136.

1713

6.71

136.

7513

7.22

137.

5513

7.72

137.

8913

8.12

138.

1913

8.24

138.

9015

0.01

151.

0615

1.16

152.

2215

2.25

152.

5515

2.79

154.

0815

4.11

154.

9215

4.94

155.

6815

5.91

157.

5515

7.73

157.

8615

8.10

158.

3515

8.67

158.

9315

9.12

Figure S14: 13C-NMR spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO.

Page 10: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S15: COSY spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO.

Figure S16: HSQC spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO.

Page 11: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S17: HMBC spectrum of in-[3-OOCCF3]2+ performed in (CD3)2 CO.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

6.46.66.87.07.27.47.67.88.08.28.4f1 (ppm)

7.32

7.38

7.38

7.40

7.40

7.40

7.51

7.51

7.86

7.86

7.91

7.92

7.93

7.94

7.94

7.95

7.95

7.96

7.97

7.98

7.99

8.04

8.05

8.06

8.14

8.27

8.31

8.33

8.33

8.34

8.35

8.36

8.41

8.42

8.43

8.44

Figure S18: 1H-NMR of in-[3-OH2]3+ in D2O.

Page 12: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S19: Full HPLC chromatogram of dyad mixture after reaction (iv). Fractions assigned by mass spec. Fraction 1 - Ru(tpy)2 derivative,

Fraction 2 – 22+, Fraction 3 – in-[3-OCOCF3]2+.

Figure S20: ESI-MS of pure fraction from HPLC dissolved in H2O to give, in-[3-OH2]3+, performed in MeOH with the addition of H2O. m/z (M3+) = 493.2.

Page 13: A Bpp-based Dinuclear Ruthenium Photocatalyst for Visible

Figure S21: ESI-MS of in-[3-CH3CN]3+ performed in MeOH with the addition of H2O.

Figure S22: DFT optimized structures of (a) in-[3-Cl]2+ (b) out-[3-Cl]2+ (c) in-[3-CH3CN]3+ (d) out-[3-CH3CN]3+. Hydrogen atoms are omitted for clarity.

d)

a) b)

c)