³$Ê7g ] v ç7 & %© Ó · ³$Ê7g ] v ç7 & %© Ó >&># b k t ^ ± Ý ¹ ] à...

17
29 GaN ZnO (Tbit) (THz) (Non-volatile) GaN, ZnO, TiO 2 CMOS GaN, ZnO, TiO2 (MBE ) 2000 5000 300 MBE (Co-doping) N O Zener Kanamori-Goodenough (LDA) LDA+U LDA (Self-Interaction Correction) MBE MBE MBE GaN, ZnO, TiO2 (Mg,N) (H,Li,O,Si) GaN, ZnO, TiO2 (LDA) LDA+U LDA (Self-Interaction Correction) MBE MBE MBE

Upload: others

Post on 03-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 29 -

GaN ZnO

(Tbit) (THz) (Non-volatile)

GaN, ZnO,

TiO2

CMOS

GaN, ZnO, TiO2

(MBE )

2000 5000

300 MBE

(Co-doping)

N O

Zener

Kanamori-Goodenough

(LDA)

LDA+U LDA

(Self-Interaction Correction)

MBE MBE MBE

GaN, ZnO, TiO2

(Mg,N) (H,Li,O,Si)

GaN, ZnO, TiO2

(LDA) LDA+U LDA

(Self-Interaction Correction)

MBE MBE MBE

Page 2: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 30 -

GaN MBE MBE

f

ZnO, TiO2 MBE

p

Page 3: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 31 -

3d

p p-d

-Goodenough Td

d2 d7 II-VI

III-V

Td II-VI III-V

(t2 e ) (Double-exchange

Interaction) (Super-exchange Interaction) FM

AF WFM

d2 d7

Page 4: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 32 -

SIC-LDA

LDA SIC-LDA (Ga, Mn)N (a)Mn-3d (b)Mn-Mn (c)

(a) (b) Mn 5%

(Ga,Mn)As Mn Zener p-d

Page 5: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 33 -

(Zn,Cr)Te Zener

II-VI

(Ga,Mn)N, (Ga,Cr)N, (Zn,Co)O, (Zn,V)O

Zener

Zener p-d Zener

(Ga,Mn)As, (Ga,Mn)Sb

Zener p-d (Ga,Mn)N,

(Ga,Cr)N, (Zn,Co)O, (Zn,V)O Zener

—Goodenough

(Ga,Mn)N, (Ga,Cr)N, (Zn,Co)O, (Zn,V)O

Zener

Page 6: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 34 -

Page 7: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 35 -

3d

2005 6 30 7 21.

6 301.2.3. X4. - ( )5. L10 FePt6.7. ( )8. ( : )9. Ni3Al10. La(FexSi1-x)137 1 11. AuCu MnRh ( )12. AuCu Mn- ( CREST )13. CoVSb14.15. ( )16. ( )18. NaxCoO2 yH2O

Page 8: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 36 -

19. 5f UCo0.98Fe0.02Al ()

20. ( )21. : 2022. Closing Remarks ( )

X 1X

(Y,Ca)TiO3

MI

L10 FePtcoherent

rotationSEM MFM

Mn

LLGs-d

Ni3Al B,C HCPA

Page 9: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 37 -

FeLa(Fe,Si)13

2

Mn

AuCu FeRhMnRh

Mn

AuCu Mn-Mn

CoVSbCo

3

CoVSb

NiCo

4

4

3

30 60 90T (K)

2

4

6

(10-2

B/T

)

1.2

1.31.4

0 50 100 150 200 250T (K)

0

5

10

-1 (1

0 T/

B)

0.0 GPa

1.30.9 0.5

(1.2)

1.2

2

Page 10: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 38 -

Co2CrAl

NaxCoO2 yH2ONMR

NMR

U(Co,Fe)Al5f

1

Co Mn(As,Sb)

FeFe

Materials Transaction ”Researches on new magnetic properties and applications to materials science in itinerant-electron systems”

Materials Transactions, Vol.47 No.3 (2006) Special Issue on Researches on New Magnetic Properties and Applications to Materials Science in Itinerant-Electron Systems

455-455 : PREFACE Kazuo Watanabe, Asaya Fujita, Keiichi Koyama 456-459 :

Page 11: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 39 -

Structure and Magnetism of Fe(Rh,Pd) Alloys Kazuhiko Uebayashi, Hisashi Shimizu and Hideji Yamada 460-463 : Grüneisen's Approach to Magnetovolume Effect of Itinerant Electron Ferromagnets Yoshinori Takahashi and Takeshi Kanomata 464-470 : Effect of Chemical Disorder on Half-Metallicity of Fe2CrZ (Z = IIIb, IV, Vb Element) Shoji Ishida, Sou Mizutani, Sinpei Fujii and Setsuro Asano 471-474 : Magnetovolume Effect and Negative Thermal Expansion in Mn3(Cu1-xGex)N Koshi Takenaka and Hidenori Takagi 475-477 : Electronic Structure of Ni3AlXy (X = B, C, H; 0 < y < 1) Izumi Hase 478-481 : Concentration Dependence of Pressure Effect in La(FexSi1-x)13 Compounds Asaya Fujita, Kazuaki Fukamichi and Tsuneaki Goto 482-485 : Control of Working Temperature of Large Isothermal Magnetic Entropy Change in La(FexTMySi1-x-y)13 (TM = Cr, Mn, Ni) and La1-zCez(FexMnySi1-x-y)13

Shun Fujieda, Naoyuki Kawamoto, Asaya Fujita and Kazuaki Fukamichi 486-491 : Effects of Heat Treatment on the Magnetic Phase Transition and Magnetocaloric Properties of Mn1+ As1-xSbx

Hirofumi Wada, Chie Funaba and Tetsuya Asano 492-495 : X-ray Powder Diffraction Studies of Mn3Ga0.97Al0.03C in Magnetic Fields Keiichi Koyama, Takeshi Kanomata, Tatsuo Watanabe, Takanobu Suzuki, Hironori Nishihara and Kazuo Watanabe 496-500 : Magnetic Properties of Weak Itinerant Electron Ferromagnet CoVSb Takeshi Kanomata, Toshiyuki Igarashi, Hironori Nishihara, Keiichi Koyama, Kazuo Watanabe, Klaus -U. Neumann and Kurt R. A. Ziebeck 501-503 : Pressure-Induced Metal-Insulator Transition in the Itinerant Antiferromagnet Nb12-xTixO29

(x = 0 and 0.2) Takashi Naka, Takayuki Nakane, Yuji Furukawa, Tadafumi Adschiri and Akiyuki Matsushita

Page 12: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 40 -

Page 13: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 41 -

Fig.1. Schematic illustration of the sample

structure of Co2MnSi/Cr/Co2MnSi.Fig.2. Diffraction patterns for a

Co2MnSi/Cr/Co2MnSi film.

Fig.3. Cross-sectional TEM image for a Co2MnSi/Cr/Co2MnSi film.

Page 14: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 42 -

Δ

Δ

Fig. 5. EELS mapping for a Co2MnSi/Cr/Co2MnSi film.

Fig.6. Magnetoresistance curves at RT and 77K for a Co2MnSi/Cr/Co2MnSi microfabricated pillar.

Page 15: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 43 -

Fig. 7. Schematic illustration of the sample

structure of perpendicularly magnetized

FePt/Au/FePt nano-pillars.

Fig.8. Relationship between resistance and

injected current for a FePt/Au/FePt.

Page 16: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 44 -

Fig. 9. Schematic illustration of spin-

dependent single electron tunneling nano-

structure of Fe/MgO/Fe-nanoparticles/MgO

/Co. Fig. 10. HAADF image for a Fe/MgO/Fe-

nanoparticles/MgO/Co film.

Fig. 11. Atomic force microscopy image for a FePt nanoparticles grown on a thin MgO layer.

Page 17: ³$Ê7g ] V ç7 & %© Ó · ³$Ê7g ] V ç7 & %© Ó >&># b K t ^ ± Ý ¹ ] à º Á ä º Ô ´ È Ú WGaN wZnO b >e µ = { f>c µ a n7¹ Ä B ^ ñ X 7 Y7¹ Ä

- 45 -