7.bjt transistor modeling.ppt

Upload: ramana-varala

Post on 13-Apr-2018

320 views

Category:

Documents


4 download

TRANSCRIPT

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    1/49

    BJT Transistor ModelingCHAPTER 5

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    2/49

    2

    Topic objectives

    At the end of the course you will beable to

    Understand about the small signalanalysis of circuit network using remodel and hybrid equivalent model

    Understand the relationship between

    those two available model for smallsignal analysis

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    3/49

    3

    To begin analyze of small-signal AC response of BJTamplifier the knowledge of modeling the transistor is

    important.

    The input signal will determine whether its a small signal

    (AC) or large signal (DC) analysis.The goal when modeling small-signal behavior is to make of

    a transistor that work for small-signal enough to keep

    things linear (i.e.: not distort too much) [3]

    There are two models commonly used in the small signal

    analysis:

    a) remodel

    b) hybrid equivalent model

    INTRODUCTION: TRANSISTOR

    MODELING

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    4/49

    4

    How does the amplification be

    done? Conservation; output

    power of a system

    cannot be large than its

    input and the efficiencycannot be greater than 1

    The input dc plays the

    important role for the

    amplification tocontribute its level to the

    ac domain where the

    conversion will become

    as =Po(ac)/Pi(dc)

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    5/49

    5

    Disadvantages

    Remodel

    Fails to account the output impedancelevel of device and feedback effect from

    output to input

    Hybrid equivalent model

    Limited to specified operating condition

    in order to obtain accurate result

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    6/49

    6

    VS

    VCC

    C1

    C2

    C3

    +

    -

    Vo

    RS

    Vi

    +

    -

    RE

    RC

    R1

    R2

    VS

    +

    -

    Vo

    RS

    Vi

    +

    -

    RCR1

    R2

    I/p couplingcapacitors/c

    Large values

    Block DC and

    pass AC signal Bypass

    capacitors/c

    Large values

    DC supply

    0 potential

    Voltage-divider configurationunder AC analysis

    Redraw the voltage-divider

    configuration after removing dc

    supply and insert s/c for the

    capacitors

    O/p coupling

    capacitors/c

    Large values

    Block DC and

    pass AC signal

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    7/49

    7

    VS

    RS

    R2R1 R

    c

    Transistor small-

    signal ac

    equivalent cct

    Vo

    Zi

    Ii

    Zo

    Io

    Vi

    ++

    - -

    B

    E

    C

    Redrawn for small-signal AC analysis

    Modeli ng of

    BJT begin

    HERE!

    VS

    +

    -

    Vo

    RS

    Vi

    +

    -

    RC

    R1

    R2

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    8/49

    8

    1. Kill all DC sources

    2. Coupling and Bypass capacitors are short circuit.

    The effect of there capacitors is to set a lower cut-

    off frequency for the circuit.

    3. Inspect the cct (replace BJTs with its small signal

    model:reor hybrid).

    4. Solve for voltage and current transfer function, i/o

    and o/p impedances.

    AC bias analysis

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    9/49

    9

    Input impedance, ZiOutput impedance, ZoVoltage gain, AvCurrent gain, Ai

    Input Impedance, Zi(few ohms M)

    The input impedance of an amplifier is the value as a loadwhen connecting a single source to the I/p of terminal of the

    amplifier.

    IMPORTANT PARAMETERS

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    10/49

    10

    VS Two-port

    systemVi

    Rsense

    Ii

    Zi

    +

    -

    Determining Zi

    +

    -

    sense

    isi

    R

    VVI

    i

    ii

    I

    VZ

    Two port system

    -determining input impedance Zi

    The input impedance of transistor can beapproximately determined using dc biasingbecause it doesnt simply change when the

    magnitude of applied ac signal is change.

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    11/49

    11

    Demonstrating the impact of Zi

    VS=10mV

    Two-portsystem

    Vi

    Rsource

    Zi

    +

    -

    +

    -

    1.2 k

    600

    mV6.6600k2.1

    )m10(k2.1

    RZ

    VZV

    600Rimpedance,sourceWith

    systemthetoapplied10mVFull

    0Rsource,Ideal

    sourcei

    sii

    source

    source

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    12/49

    12

    Example 6.1: For the system of Fig. Below,

    determine the level of input impedance

    VS=2mV Two-port

    systemV

    i=1.2mV

    Rsense

    Zi

    +

    -

    +

    -

    1 k

    A8.0k1

    m8.0

    k1

    m2.1m2

    R

    VVI

    sense

    isi

    :So l u t i o n

    k5.18.0

    m2.1

    I

    VZ

    i

    ii

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    13/49

    13

    Output Impedance, Zo(few ohms2M)

    The output impedance of an amplifier is determined

    at the output terminals looking back into the system

    with the applied signal set to zero.

    Two-port

    system

    Rsource

    Vs=0V

    Rsense

    V

    +

    -

    +

    -

    Io

    Zo

    Vo

    Determining Zo

    sense

    oo

    R

    VVI

    o

    oo

    I

    VZ

    cctopenbecomeZRZ oLo R

    LZo=R

    o

    Iamplifier

    IRo

    IL

    RoL

    Lo

    II

    RRFor

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    14/49

    14

    Example 6.2: For the system of Fig. below,

    determine the level of output impedance

    Two-portsystem

    Vs=0V

    Rsense

    V=1 V

    +

    -

    +

    -

    Zo

    Vo=680mV

    20 k

    A16k20

    m320

    k20

    m6801

    R

    VVIsense

    oo

    :So l u t i o n

    k5.4216

    m680

    I

    VZ

    o

    oo

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    15/49

    15

    Example 6.3: For the system of Fig. below, determine Zoif

    V=600mV, Rsense=10kand Io=10A

    Two-port

    system

    Rsource

    Vs=0V

    Rsense

    V

    +

    -

    +

    -

    Io

    Zo

    Vo

    mV500

    k1010m600

    RIVV

    R

    VVI

    senseoo

    sense

    oo

    :So l u t i o n

    k5010

    m500

    I

    VZ

    o

    o

    o

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    16/49

    16

    Example 6.4: Using the Zoobtained in example 6.3,

    determine ILfor the configuration of Fig below if

    RL=2.2 kand Iamplifier=6 mA.

    RLZ

    o=R

    o

    Iamplifier

    IRo

    IL

    mA747.5 k2.2k50

    )m6(k50

    RZ)(IZI

    :ruledividerCurrent

    Lo

    amplifieroL

    :So l u t i o n

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    17/49

    17

    Voltage Gain, AV

    DC biasing operate the transistor as an amplifier. Amplifier

    is a system that having the gain behavior.The amplifier can amplify current, voltage and power.

    Its the ratio of circuits output to circuits input.

    The small-signal AC voltage gain can be determined by:

    i

    ov

    V

    VA

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    18/49

    18

    VS AvNL

    Vi

    Rsource

    Zi

    +

    -

    +

    -

    Vo

    +

    -

    Determining the no load voltage gain

    By referring the network below the analysis are:

    cct)(openR

    i

    oLvNL

    V

    VA

    loadno

    vNLARZ

    Z

    V

    VA

    :resistancesourcewith

    si

    i

    s

    ovs

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    19/49

    19

    Example 6.5: For the BJT amplifier of fig. below,

    determine: a)Vi b) Ii c) Zi d) Avs

    VS=40mV

    BJT amplifierA

    vNL=320

    Vi

    Rs

    Zi

    +

    -

    +

    -V

    o=7.68V

    +

    -

    1.2 k

    mV24320

    7.68

    A

    VV

    V

    VAa)

    vNL

    oi

    i

    ovNL

    :Solution

    sources

    s

    isi

    RR

    A33.13k2.1

    m24m40

    R

    V-VIb)

    k8.133.13m24

    IVZc)

    i

    ii

    192)320(k2.1k8.1

    k8.1A

    RZ

    ZAd) vNL

    si

    ivs

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    20/49

    20

    Current Gain, Ai

    This characteristic can be determined by:

    i

    oiIIA

    BJT

    amplifierV

    i

    Zi

    +

    -

    Vo

    +

    -

    Ii

    RL

    Determining the loaded current gain

    Io

    L

    ivi

    RZAA

    Li

    io

    ii

    Lo

    RVZV

    Z/VR/V

    L

    oo

    R

    VI

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    21/49

    21

    Employs a diode and controlled current source toduplicate the behavior of a transistor.

    BJT amplifiers are referred to as current-controlled

    devices.

    Common-Base Configuration

    Common-base BJT transistor

    remodel

    reequivalent circuit

    reTRANSISTOR MODEL

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    22/49

    22

    E

    BB

    C

    Common-base BJT transistor - pnp

    Ic

    Ie

    e

    b b

    c

    ec II

    IcIe

    remodel for the pnp common-base

    configuration

    e

    b b

    c

    ec II

    IcI

    e

    common-base reequivalent cct

    re

    currentemitter

    oflevelDCtheisII

    26mVr E

    E(dc)

    e

    isolation

    part,

    Zi=re

    e

    b b

    c

    A0Ic

    Ic

    Ie=

    0A

    Determining Zofor common-base

    re

    Vs=0V

    Zo

    Therefore, the input impedance, Zi = re

    that less than 50.

    For the output impedance, it will be as

    follows;

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    23/49

    23

    The common-base

    characteristics

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    24/49

    24

    e

    b b

    c ec II Ie

    re

    Defining Av

    =Vo

    /Vi

    for the common-base configuration

    BJT common-base

    transistor amplifier

    Vi Vo

    +

    -

    +

    -

    Zi

    oZ RL

    Io

    LeLcLoo RIRIRIV

    e

    L

    e

    Lv

    r

    R

    r

    RA

    gain,Voltage

    eeiei rIZIV

    ee

    Lev

    rI

    RI

    Vi

    VoA

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    25/49

    25

    1A

    gain,Current

    i

    e

    e

    e

    c

    i

    oi

    I

    I

    I

    I

    I

    IA

    e

    b b

    c ec II Ie

    re

    Defining Ai=Io/Iifor the common-base configuration

    BJT common-base

    transistor amplifier

    Vi Vo+

    -

    +

    -

    ZioZ RL

    Io

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    26/49

    26

    Example 6.6: For a common-base configuration in figure

    below with IE=4mA, =0.98 and AC signal of 2mV is

    applied between the base and emitter terminal:

    a) Determine the Zib) Calculate Avif RL=0.56kc) Find Zoand Ai

    e

    b b

    c

    ec II

    IcIe

    common-base reequivalent cct

    re

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    27/49

    27

    Solution:

    5.6

    m4

    m26

    I

    26mrZa)

    E

    ei

    43.845.6

    )k56.0(98.0

    r

    RAb)

    e

    Lv

    98.0I

    IA

    Zc)

    i

    oi

    o

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    28/49

    28

    e

    b b

    c

    ec II

    IcIe

    common-base re equivalent cct

    re

    iI

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    29/49

    29

    Example 6.7: For a common-base configuration in previous

    example with Ie=0.5mA, =0.98 and AC signal of 10mV is

    applied, determine:

    a) Zi b) Voif RL=1.2k c) Av d)Ai e) Ib

    20m5.0

    m10

    I

    VZa)

    :Solution

    e

    ii

    88mV5

    (1.2k)0.98(0.5m)

    RIRIVb) LeLco

    8.58m10

    m588

    V

    VAc)

    i

    ov

    98.0Ad) i

    A10

    )98.01(m5.0

    )1(m5.0

    I-II-IIe)

    ee

    ceb

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    30/49

    30

    Common-emitter BJT transistorremodel

    reequivalent cct.

    Still remain controlled-current source (conducted

    between collector and base terminal)Diode conducted between base and emitter

    terminal

    Input OutputBase & Emitterterminal

    Collector & Emitterterminal

    Common-Emitter Configuration

    c

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    31/49

    31

    common-emitter BJT transistor

    EE

    B

    C

    Ib

    Ic

    bc II

    e e

    b

    Ic

    Ib

    remodel npn common-emitter configuration

    bc II

    c

    e e

    b

    Ic

    Ii=I

    b

    Determining Ziusing r

    eequivalent model

    re

    Ie+

    -

    Vbe

    +

    -

    Vi

    (1)

    Ii

    ViZi

    gives(1)intosubtitute

    andIbreIereVbeVi

    b

    eb

    b

    be

    I

    rI

    I

    VZi

    erZi

    7k~6tohundredbetweenrangesi

    Z

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    32/49

    32

    The output graph

    Output impedance Z

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    33/49

    33

    bI

    c

    e

    bIi=I

    b

    remodel for the C-E transistor configuration

    re ro

    e

    0AbI

    c

    e

    bIi=I

    b

    re

    ro

    e

    Vs=0V

    = 0A

    oZ

    impedance)highcct,(openZ

    thethusignoredisrif

    rZ

    o

    o

    oo

    Output impedance Zo

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    34/49

    34

    e

    b b

    c

    bco III Ii=Ib

    re

    Determining voltage and current gain for the

    common-emitter amplifier

    BJT common-emitter

    transistor amplifier

    Vi Vo

    +

    -

    +

    -

    oZ RL

    Io

    ei rZ

    e

    Lv

    r

    RA

    Ib

    Ib

    Ib

    Ic

    Ii

    IoA

    gain,Current

    i

    LbLcLoo RIRIRIV

    ebiii rIZIV

    eb

    Lb

    i

    ovrIRI

    VVA

    gain,Voltage

    iA

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    35/49

    35

    Example 6.8: Given =120 and IE(dc)=3.2mA for a common-

    emitter configuration with ro= , determine:

    a) Zi b)Av if a load of 2 kis applied c) Ai with the 2 kload

    975)125.8(120rZ

    125.8m2.3

    m26

    I

    26mra)

    ei

    Ee

    :Solution

    15.246125.8

    k2

    r

    Rb)A

    e

    Lv

    120I

    IAc)

    i

    oi

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    36/49

    36

    Example 6.9: Using the npn common-emitter configuration,

    determine the following if =80, IE(dc)=2 mA and ro=40 k

    a) Zi b) Ai if RL=1.2k c) Av if RL=1.2k

    k04.1)13(80rZ

    13m2

    m26

    I

    26m

    ra)

    ei

    Ee

    :Solution

    bI

    cbIi=I

    b

    remodel for the C-E transistor configuration

    re

    ro

    e

    RL

    Io

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    37/49

    37

    67.77

    )80(

    k2.1k40

    k40

    Rr

    r

    I

    Rr

    )I(r

    A

    Rr

    )I(rI

    I

    I

    I

    IiAb)

    (cont)Solution

    Lo

    o

    b

    Lo

    bo

    i

    Lo

    boL

    b

    L

    i

    o

    6.89

    13

    k40k2.1

    r

    rRvAc)

    e

    oL

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    38/49

    38

    Hybrid Equivalent Model

    re model is sensitive to the dc level of operationthat result input resistance vary with the dcoperating point

    Hybrid model parameter are defined at anoperating point that may or may not reflect theactual operating point of the amplifier

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    39/49

    39

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    40/49

    40

    Hybrid Equivalent Model

    The hybrid parameters: hie, hre, hfe, hoeare developed andused to model the transistor. These parameters can be found

    in a specification sheet for a transistor.

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    41/49

    41

    Determination of parameter

    0VVo

    i

    12

    0VVi

    i

    11

    o12i11i

    o

    o

    V

    Vh

    I

    Vh

    VhIhV

    0AIo

    o22

    0VVo

    i21

    o

    o22i21O

    o

    o

    V

    Ih

    IIh

    ,0VVSolving

    VhIhI

    H22is a conductance!

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    42/49

    42

    General h-Parameters for any

    Transistor Configuration

    hi = input resistance

    hr = reverse transfer voltage ratio (Vi/Vo)

    hf = forward transfer current ratio (Io/Ii)

    ho = output conductance

    C itt h b id

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    43/49

    43

    Common emitter hybrid

    equivalent circuit

    C b h b id i l t

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    44/49

    44

    Common base hybrid equivalent

    circuit

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    45/49

    45

    Simplified General h-Parameter ModelThe model can be simplified based on these approximations:

    hr 0 therefore hrVo = 0 and ho (high resistance on the output)

    Simplified

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    46/49

    46

    Common-Emitter re vs. h-Parameter

    Model

    hie = re

    hfe =

    hoe = 1/ro

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    47/49

    47

    Common-Emitter h-Parameters

    acfe

    eie

    h

    rh

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    48/49

    48

    Common-Base re vs. h-Parameter

    Model

    hib = re

    hfb = -

    C

  • 7/26/2019 7.BJT Transistor Modeling.ppt

    49/49

    49

    Common-Base h-Parameters

    1

    fb

    eib

    hrh