7 papanastasiou p hydraulic fracturing

Upload: alizareiforoush

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    1/41

    Hydraulic Fracturing:Basic Concepts and Numerical Modelling

    Panos Papanastasiou

    Department of Civil and Environmental Engineering University of

    Cyprus

    1991-2002 in Schlumberger Cambridge Research

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    2/41

    2 Initials11/9/2006

    Hydraulic fracturing

    Petroleum engineering

    stimulate oil and gas reservoirs,

    cuttings re-injection

    Environmental engineering

    waste disposal in shallow formations,

    cleaning up contaminated sites

    Geotechnical engineering

    injection of grout, dam construction

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    3/41

    3 Initials11/9/2006

    Outline

    Basic fracturing theory: controlling parameters fracture opening, propagation, modes, initiation, closure

    Perforating for fracturing

    Fracture geometry

    deviated and horizontal wellbores

    tortuosityand multiple fractures

    Hydraulic fracturing modeling

    physical processes, geometrical models, height growth, net-pressure

    Fracturing weak formations

    elastoplastic modeling, experiments on soft rocks (DelFrac)

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    4/41

    4 Initials11/9/2006

    Why hydraulic fracturing in Petroleum engineering?

    Bypass near-wellbore formation

    damage

    drilling induced, fines invasion-migration,

    chemical incompatibility

    Extend a conductive path deep into

    the formation

    increase area exposure to flow

    Reservoir management tool

    change flow, fewer wells, wellplacement, IVF, frac&pack, screen-less

    completion

    h

    packer

    packer

    hydraulicfracture

    water

    gas

    Oil

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    5/41

    5 Initials11/9/2006

    Fracture Openingmin

    pf w

    2L x

    y

    min

    yy

    Fracture opens if the net pressure

    pnet=pf - min >0

    Fracture opening

    w(x)=4 pnet (L2-x2)1/2/E

    E=E/(1-2) is the plane strain modulus

    maximum width for x=0

    for constant height: W=4 pnet L/E

    for radial fracture: W=8 pnet R/ ( E)

    singular stress at the crack tip, for x=L

    yy=pnet [x/(x2-L2)1/2-1]

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    6/41

    6 Initials11/9/2006

    Fracture Propagation The stresses ahead of the crack tip are singular

    characterized by the stress intensity factor KI

    ij= [KI / (2 r )1/2] f() + ...

    example: an elliptical crack, KI = pnet L 1/2

    A crack will propagate if

    KI = KIC

    KIC is a material parameter called fracture toughness.

    Typical values for rocks are 0.1 - 2 MPa m1/2

    ij

    r

    pnet

    L

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    7/41

    7 Initials11/9/2006

    Fracture Modes

    p p

    p

    p p p

    I. opening mode II. sliding mode III. tearing mode

    tensile fractureshydraulic fractures

    drilling induced

    faultsshear fractures andturning of fracturesnear wellbore

    splitting of thecrack front,multiple fractures

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    8/41

    8 Initials11/9/2006

    Fracture Initiation in Open Holes

    Fracture initiation at lower pressures

    large contrast between insitu stresses

    high pore pressure, e.g. eject at low rates prior pressurization

    preexisting flaws and natural fractures

    h

    H

    breakout

    Pb = 3h

    -H

    -p+T

    p is the formation pressureT is the tensile strength

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    9/41

    9 Initials11/9/2006

    Breakdown pressure

    Pb = 3h-H-p+T

    p is the formation pressure

    T is the tensile strength

    no fluid penetration, upper bound

    Closure stress

    ISIP in low permeability formations

    2ndcycle

    time

    BHP breakdown pressure

    ISIP

    closure stress

    Pore pressure

    tensile strength

    flow rate

    open

    valves

    Pressure vs Time Analysis

    Fracture Initiation and Closure

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    10/41

    10 Initials11/9/2006

    Perforated Cased Holes

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    11/41

    11 Initials11/9/2006

    weak rocks

    1. reduce multiples2. risk of sanding

    h

    H preferentialdirection

    1. low breakdown pressures

    h

    Hpreferentialdirection

    strong rocks

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    12/41

    12 Initials11/9/2006

    Near Wellbore Fracture Geometry

    h

    H preferential direction

    High flow rates and viscosityresults in high breakdownand smooth fracture paths

    Low flow rates and bad cementbond results in breakdownpressures:multiple fractures and tortuosity

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    13/41

    13 Initials

    Experiments in Delft Fracturing Consortium (1997)

    Deviated and Horizontal Wells

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    14/41

    14 Initials11/9/2006

    Fracture Tortuosity

    Gradual or sharp fracture re-orientation to the preferred plane resultsin width restriction near the well

    Tortuosityoccurs

    in high differential stress fields

    in deviated wells

    in long perforated intervals and in phased perforations

    in reservoirs with natural fractures

    Problems near-wellbore friction resulting in pressure drop

    premature screen-out due to proppant bridging

    H

    h

    Multiple Fractures

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    15/41

    15 Initials11/9/2006

    Propagation of multiple fractures away from the wellbore area

    Multiples occur

    in multiple or long perforated intervals with phased perforations

    in deviated wells where the separation between fractures is large compared to the

    fracture height

    in reservoirs with natural fractures

    Problems

    increase treating net-pressure

    reduced fracture widths: increase screenout potential

    increased leakoff: lower efficiency

    Reduced fracture length

    Multiple Fractures

    h

    L

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    16/41

    16 Initials11/9/2006

    surface

    reservoir

    v

    axial fracturestransverse fractures

    wellbore drilled // tomaximum horizontal stress

    wellbore drilled // tominimum horizontal stress

    overburden

    h

    Horizontal Wellbores

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    17/41

    17 Initials11/9/2006

    Modelling Hydraulic Fracture Propagation

    Optimize the treatment (pumping schedule, proppant stages)

    increase well production

    reduce cost

    Control where the fracture is growing

    avoid fracturing near layers with different content: oil, gas, water

    create long fractures in some layers

    Predict the response during treatment

    Post-evaluation of the treatment

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    18/41

    18 Initials11/9/2006

    Physical Processes in Hydraulic Fracturing

    Viscous fluid flow in the fracture

    Fluid leakoff in the formation

    Rock deformation

    Fracture propagation

    Proppant transport

    pw

    vl

    wp

    net

    v vpf

    KI=KIC

    vs

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    19/41

    19 Initials11/9/2006

    Pressure Loading on Fracture Surfaces

    Pressure drop: dp/dx=12 q/w3

    Net pressure pnet=pf - hgives KI(+)>0

    Closure stress over fluid-lag gives KI

    (-)

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    20/41

    20 Initials11/9/2006

    HF Geometrical Models

    h

    L

    flow

    PKN

    L

    h

    o

    w

    KGD

    Planar 3D

    flow

    Radial

    R

    flow

    Fully 3D

    D MODELS

    Fracture Profiles in Layered Formations

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    21/41

    21 Initials11/9/2006

    Fracture Profiles in Layered Formations

    shale 1

    shale 2

    shale 3

    sandstone1

    sandstone 2

    pay zone

    stress profile

    verticalwidthprofile

    T-shape fracture

    Fracture may not penetrate deep to

    the optimum length

    Fracture may connect several pay

    zones separated by shale layers

    Fracture may grow in non-productive

    layers

    Problems with proppant placement

    Indirect Vertical Fracturing (IVF) forsand control

    F t ti

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    22/41

    22 Initials11/9/2006

    Fracture tip

    High net-pressures (pnet=pfrac-min)

    high apparent fracture toughness: due to scale effect, confining

    pressure, heterogeneities and plasticity

    flow behaviour near the tip: fluid-lag, rock dilation

    underestimation of the closure stress (min

    )

    3,max

    1,min

    pfrac

    high shear stress:

    plastic zonefluid lag

    cohesive zone

    Elasto plastic HFmodel

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    23/41

    23 Initials11/9/2006

    Elasto-plastic HF model

    Fluid-flow in the fracture

    Newtonian viscous fluid, lubrication theory:

    dp/dx=12 q/w3

    Rock deformation Mohr-Coulomb flow theory of plasticity

    Fracture propagation

    Cohesive model

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0.003

    0 2 4 6 8

    fracture length (m)

    fracturehalf

    -width(m)

    Finite element analysis

    fully coupled solution, special

    continuation algorithm

    meshing/remeshing

    Fl id fl

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    24/41

    24 Initials11/9/2006

    Fluid-flow

    Boundary conditions

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    25/41

    25 Initials11/9/2006

    Rock deformation

    Propagation criterion

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    26/41

    26 Initials11/9/2006

    Propagation criterion

    I iti l l ti

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    27/41

    27 Initials11/9/2006

    Initial solution

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    28/41

    28 Initials11/9/2006

    Numerical Implementation

    Finite Element Discretization

    8 node element 6 node interface elements

    Finite Differences for Fluid Flow

    Coupling of fluid-flow with rock-deformation

    Arc-length algorithm based on volume control

    Meshing/ remeshing

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    29/41

    29 Initials11/9/2006

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    30/41

    30 Initials11/9/2006

    Fracture propagation

    -3.7

    -2.7-1.7

    -0.7

    0.3

    1.3

    2.3

    3.3

    4.3

    0 0.5 1 1.5 2

    fracture length (m)

    n

    et-pressure(MP

    a)

    0

    0.0002

    0.0004

    0.0006

    0.0008

    0.001

    0.0012

    0.0014

    0 0.5 1 1.5 2

    fracture length (m)

    fra

    cturehalf-width

    (m)

    plasticity

    plasticity

    elasticity

    elasticity

    tiptip

    Plastic fractures are wider and shorterthan the elastic fractures

    Fluid-lag is smaller in the plasticfracture

    Apparent fracture toughness

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    31/41

    31 Initials11/9/2006

    Apparent fracture toughness

    0

    1

    2

    3

    4

    5

    6

    7

    0.5 1 1.5 2 2.5

    fracture length (m)

    n

    et-pressure(MP

    a)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 0.05 0.1 0.15 0.2

    fractu re extension (m)

    apparen

    ttoughness(MP

    am^0.5

    )

    elasticity

    plasticity plasticity

    elasticity

    Apparent fracture toughness ishigher for the plastic fracture

    Fracture closure

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    32/41

    32 Initials11/9/2006

    Fracture closure

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0.003

    0 2 4 6 8

    fracture length (m)

    fracturehalf-width(m)

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    0 2 4 6 8

    fracture length (m)

    net-pressu

    re(MPa)

    plasticity propagation

    closure

    Plastic fracture closes first nearthe tip Fracture is open at zero net-pressureand closes at negative values

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    33/41

    33 Initials11/9/2006

    0

    2

    4

    6

    8

    10

    12

    14

    0 5 10 15

    distance from the wellbore (m)

    princ

    ipalstresses(M

    Pa)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 5 10 15

    distance from fracture face (m)

    yieldfactorf failure line

    S_z

    S_h

    S_H

    Stresses after fracturing

    The rock formation is more stable afterfracturing

    The closure stress on proppant is lowernear the wellbore

    Dislocation model

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    34/41

    34 Initials11/9/2006

    Dislocation model

    Position and strength of super-

    dislocations

    zero stress intensity factor at the crack

    tip

    stresses satisfy Mohr-Coulomb yieldcriterion at dislocations

    total crack-opening-displacement is

    maximized

    Papanastasiou and Atkinson (2000)

    Fracturing WeakRocks

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    35/41

    35 Initials11/9/2006

    Fracturing Weak Rocks

    Rock dilation: narrower fracture near the tip is a wronghypothesis

    Plastic yielding: plays a shielding mechanism increasing

    the effective fracture toughness

    contrast of insitu stresses

    effective Youngs modulus, rock strength pumping parameters: flow rate x viscosity

    Fractures are wider and shorter, compared with the elastic

    model

    B k i l i d li d t fl t t f t

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    36/41

    36 Initials11/9/2006

    Break in slope in pressure decline does not reflect true fracture

    closure, for soft rocks. Closure stress might be underestimated

    Use apparent toughness and unloading modulus in the HF

    simulators.

    Closure stress on proppant

    higher near the tip and lower near the wellbore

    more uniformly distributed with increasing fracture length

    Formation Stability

    decrease of stresses after fracturing

    reduced risk of formation failure

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    37/41

    37 Initials11/9/2006

    Experimental Set-up (DelFrac)

    pump

    h

    pressure

    transducer

    fracture

    c

    clamps lvdt

    Acoustictransducer

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    38/41

    38 Initials11/9/2006

    Rough fracture surface with dry tip

    fluid front

    fracture tip

    Pressure andwidth in plaster experiments

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    39/41

    39 Initials11/9/2006

    Pressure and width in plaster experiments

    ch , ch ,

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    40/41

    40 Initials11/9/2006

    Closure in plaster

    confining stress

    confining stress

    Strong Plaster: Weak Plaster

    Delft Fracturing Consortium Results

  • 8/11/2019 7 Papanastasiou P Hydraulic Fracturing

    41/41

    41 Initials11/9/2006

    Optimum completion configuration

    Perforations with 0/180 gave best link-up, but perforation spacing must be very

    small for link-up

    Fractures at unfavourable perfs propagated only at low stress contrast;

    optimum phasing different for high/low stress contrast

    Perforation orientation has little impact

    Multiple fractures may be induced even for good perforation link-up

    Fracture pressure has a strong positive influence on fracture

    geometry

    Fracturing in the annulus is important in practice. It has a large

    impact on pressure and geometry.