6.776 high speed communication circuits and systems lecture … · 2020. 7. 9. · amp amp c fixed...

32
6.776 High Speed Communication Circuits and Systems Lecture 8 Broadband Amplifiers, Continued Massachusetts Institute of Technology March 1, 2005 Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Upload: others

Post on 21-Jan-2021

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

6.776High Speed Communication Circuits and Systems

Lecture 8Broadband Amplifiers, Continued

Massachusetts Institute of TechnologyMarch 1, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

Page 2: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

The Issue of Velocity Saturation

We often assume that MOS current is a quadratic function of Vgs:

It can be shown, more generally

- Vdsat,l corresponds to the saturation voltage at a given length, which we often refer to as ∆V

- In strong inversion below velocity saturation:

which gives the quardatic equation above.

Page 3: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Velocity Saturation Continued

It can be shown that

- Esat: electric field (lateral) at which velocity saturation occurs

- If then

- If (Vgs-VT)/L approaches Esat in value, then the quadratic equation is no longer valid

- If thenand the I-V characteristic becomes linear

Page 4: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Analytical Device Modeling in Velocity Saturation

If L small (as in modern devices), than velocity saturation will impact us for even moderate values of Vgs-VT

- Current increases linearly with Vgs-VT!Transconductance in velocity saturation:

- No longer a function of Vgs- higer Vgs increases Id, but little increase in gm: wasted power

Page 5: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Example: Current Versus Voltage for 0.18µ Device

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

1.2

1.4

Vgs

(Volts)

I d (m

illiA

mps

)

Id versus V

gsM1

IdVgs

WL = 1.8µ

0.18µ

velocity saturation

weakinversion

strongInversion(quadratic)

Page 6: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Example: Gm Versus Voltage for 0.18µ Device

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vgs

(Volts)

g m (

mill

iAm

ps/V

olts

)

gm

versus Vgs

M1

IdVgs

WL = 1.8µ

0.18µ

Page 7: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Example: Gm Versus Current Density for 0.18µ Device

0 100 200 300 400 500 600 7000

0.2

0.4

0.6

0.8

1

Current Density (microAmps/micron)

Tra

nsco

nduc

tanc

e (m

illiA

mps

/Vol

ts)

Transconductance versus Current DensityM1

IdVgs

WL = 1.8µ

0.18µ

Page 8: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

How Do We Design the Amplifier?

Highly inaccurate to assume square law behaviorWe will now introduce a numerical procedure based on the simulated gm curve of a transistor- A look at transconductance:

- Observe that if we keep the current density (Iden=Id/W) constant, then gm scales directly with W

This is independent of bias regime- We can therefore relate gmof devices with different

widths given that they have the same current density

Page 9: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

A Numerical Design Procedure for Resistor Amp – Step 1

Two key equations- Set gain and swing (single-

ended)

Equate (1) and (2) through RM6

M1 M2

M5

αIbias

Vin+

R

Vin-

RVo+

Vo-

2Ibias

Ibias

Vdd

Can we relate this formula to a gm curve takenfrom a device of width Wo?

Page 10: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

A Numerical Design Procedure for Resistor Amp – Step 2

We now know:

Substitute (2) into (1)

The above expression allows us to design the resistor loaded amp based on the gm curve of a representative transistor of width Wo!

Page 11: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Example: Design for Swing of 1 V, Gain of 1 and 2

Assume L=0.18µ, use previous gm plot (Wo=1.8µ)

0 100 200 300 400 500 600 7000

0.2

0.4

0.6

0.8

1

Current Density - Iden (microAmps/micron)

Tran

scon

duct

ance

(m

illiA

mps

/Vol

ts)

Transconductance versus Current Density

A=2 A=1

gm(wo=1.8µ,Iden)

For gain of 1, current density = 250 µA/µmFor gain of 2, current density = 115 µA/µm Note that current density reduced as gain increases!- ft effectively

decreased

Page 12: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Example (Continued)

Knowledge of the current density allows us to design the amplifier- Recall- Free parameters are W, Ibias, and R (L assumed to be fixed)

Given Iden = 115 µA/µm (Swing = 1V, Gain = 2)- If we choose Ibias = 300 µA

Note that we could instead choose W or R, and then calculate the other parameters

Page 13: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

How Do We Choose Ibias For High Bandwidth?

Pick current density just below velocity saturationAs you increase Ibias, the size of transistors also increases to keep a constant current density- The size of Cin and Cout increases relative to CfixedTo achieve the highest bandwidth, size the devices (i.e., choose the value for Ibias), such that - Cin+Cout dominates over CfixedHowever, Cin+Cout=Cfixed is roughly the point of diminishing return because the bandwidth improvement becomes marginal while power and area continue to grow proportionallyThus, Cin+Cout=Cfixed is the most efficient point

Amp Amp

Cfixed

CinCin

Ctot = Cout+Cin+Cfixed

Cout

Page 14: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Resistor Loaded Amplifier (Unsilicided Poly)

M1

RL

vout

M2

Cfixed

Id

Vbias

vin

Ctot = Cdb1+CRL/2 + Cgs2+KCov2 + Cfixed

Miller multiplication factor(+Cov1)

1

voutvin

f

slope = -20 dB/dec

gm12πCtot

gm1RL

2πRLCtot

1

Vdd

We decided this was the fastest non-enhanced amplifier- Can we go faster? (i.e., can we enhance its bandwidth?)

We will look at the following- Reduction of Miller effect on Cgd- Shunt, series, and zero peaking- Distributed amplification

Page 15: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Miller Effect on Cgd Is Significant

Cgd is quite significant compared to Cgs- In 0.18µ CMOS, Cgd is about 45% the value of Cgs

Input capacitance calculation

- For 0.18µ CMOS, gain of 3, input cap is almost tripled over Cgs!

M1

RL

vout

CL

Id

Vbias

vin

CgdZin

Rs

Cgs

Page 16: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Reduction of Cgd Impact Using a Cascode Device

M1

RL vout

CL

Vbias

vin

CgdZin

Rs

Cgs

Vbias2M2

The cascode device lowers the gain seen by Cgd of M1(the totalgain is the same as non-cascoded amp)

- For 0.18m CMOS and total gain of 3, impact of Cgd is reduced by 50%:

Issue: cascoding lowers achievable voltage swing

Page 17: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Source-Coupled Amplifier (Unilateralization)

Remove impact of Miller effect by sending signal through source node rather than drain node- Cgd not Miller multiplied AND impact of Cgs cut in half!

The bad news- Signal has to go through source node (Csb significant)- Power consumption doubled

M1

Vbias

vin

Cgd

Rs

M2

RL

Cgd

2Ibias

voutZin

Page 18: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Neutralization

M1

RL

vout

CL

Id

Vbias

vin

CgdZin

Rs

Cgs

-1CN

Consider canceling the effect of Cgd- Choose CN = Cgd- Charging of Cgd now provided by CN

Benefit: Impact of Cgd reduced:

:same as cascode

Page 19: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Neutralization, cont’d

Issues:

- What happens if CN is not precisely matched to Cgd?

- Since the neutralization does not completely remove the effect of Cgd, we can make CN slightly larger than Cgd to ‘over neutralize’

- Over neutralization can reduce the effect of Cgs, but if CNis too large, the input capacitance is negative and can compromise stability.

- At high frequencies, this can lead to inductive input impedance

- How do we create the inverting amplifier?

Page 20: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Practical Implementation of Neutralization

M1

RL

Vbias

vin

Cgd

Rs

CN

M2

RL

Cgd

2Ibias

CN

-vin

Rs

Leverage differential signaling to create an inverted signalOnly issue left is matching CN to Cgd- Often use lateral metal caps for CN (or CMOS transistor)- If CN too low, residual influence of Cgd- If CN too high, input impedance has inductive component

Causes peaking in frequency responseOften evaluate acceptable level of peaking using eye diagrams

Page 21: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Shunt-peaked Amplifier

M1

RL

vout

M2

Cfixed

Id

Vbias

vin

Vdd

Ld

Use inductor in load to extend bandwidth- Often implemented as a spiral inductor

We can view impact of inductor in both time and frequency- In frequency: peaking of frequency response- In time: delay of changing current in RL

Issue – can we extend bandwidth without significant peaking?

Page 22: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Shunt-peaked Amplifier - Analysis

M1

RL

vout

M2

Cfixed

Id

Vbias

vin

Vdd

Ld

RL

Ld

Ctotiin=gmvin

vout

Small Signal ModelZout

Expression for gain

Parameterize with

- Corresponds to ratio of RC to LR time constants

Page 23: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

The Impact of Choosing Different Values of m – Part 1

Parameterized gain expression

Comparison of new and old 3 dB frequencies

Want to solve for ω2/ω1

RL

Ld

Ctotiin=gmvin

vout

Small Signal ModelZout

Page 24: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

The Impact of Choosing Different Values of m – Part 2

From previous slide, we have

After much algebra

We see that m directly sets the amount of bandwidth extension!- Once m is chosen, inductor value is

Page 25: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Plot of Bandwidth Extension Versus m

0 1 2 3 4 5 6 7 8 9 101.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Bandwidth Extension (w2/w

1) Versus m

w1/w

2

m

Highest extension: ω2/ω1 = 1.85 at m ≈ 1.41- However, peaking occurs!

Page 26: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Plot of Transfer Function Versus m

Maximum bandwidth: m = 1.41 (extension = 1.85)Maximally flat response: m = 2.41 (extension = 1.72)Best phase response: m = 3.1 (extension = 1.6)No inductor: m = infinityEye diagrams often used to evaluate best m

1/100 1/10 1 10 100-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Nor

mal

ized

Gai

n (d

B)

Normalized Frequency (Hz)

Normalized Gain for Shunt Peaked Amplifier For Different m Values

m=1.41m=2.41

m=3.1m=infinity

Page 27: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Zero-peaked Common Source Amplifier

M1

RL

vout

M2

Cfixed

Id

Vbias

vin

Vdd

Rs Cs

voutvin

f

gmRL

2πCtotRL

1

2πCsRs

1

1+gmRs

zero

overallresponse

Inductors are expensive with respect to die areaCan we instead achieve bandwidth extension with capacitor?- Idea: degenerate gain at low frequencies, remove

degeneration at higher frequencies (i.e., create a zero)Issues:- Must increase RL to keep same gain (lowers pole)- Lowers achievable gate voltage bias (lowers device ft)

Page 28: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Zero-peaked Common Source Amplifier Analysis

Vo

ZLCgs

gmvgs

Vi

ZS

Add Cgd to Ctot (as we did previously)Ignore the feed-forward effect of Cgd (It contributes high frequency zero of little consequence)Analysis shows

Page 29: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Zero-peaked Amplifier Analysis Continued

Assuming ω<<ωT

Transfer function can now be simplified to

Adds a zero at 1/RsCs, but introduces a 2nd pole at

Reduces low freq. gain to

The 1st pole at 1/RLCtot can be cancelled by making RsCs=RLCtot, then the bandwidth is extended to the 2nd pole

Page 30: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Zero-peaked Amplifier Continued

Pole-zero cancellation:

Does it really help the bandwidth? If we designed the simple CS amplifier for the same gain, what would be the bandwidth? We need to first reduce RL to

The bandwidth is then

Same as zero-peaked amplifier!

Page 31: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Zero-peaked Amplifier Input impedance

Input Impedance (ignoring Miller effect for now)

Again, ω<<ωT

Also, near the upper 3dB bandwidth,

Negative resistance!

The negative input resistance component can cause parasitic oscillation. The actual input impedance Zin,tot is the parallel connection between Zin and KCgd.

Page 32: 6.776 High Speed Communication Circuits and Systems Lecture … · 2020. 7. 9. · Amp Amp C fixed C in C in C tot = C out+C in+C fixed C out. H.-S. Lee & M.H. Perrott MIT OCW Resistor

H.-S. Lee & M.H. Perrott MIT OCW

Back to Inductors – Shunt and Series Peaking

M1

RL

vout

M2

Cfixed

Id

Vbias

vin

Vdd

L1

L2

voutvin

f

gmRL

2πCtotRL

1

-40 dB/dec-20 dB/dec

Combine shunt peaking with a series inductor- Bandwidth extension by converting to a second order filter

responseCan be designed for proper peaking

Increases delay of amplifierRefer to Tom Lee’s book pp. 279-280 (2nd ed.) or 187-189 (1st ed.)