513 attila

Upload: packya7191

Post on 02-Jun-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 513 Attila

    1/31

    ELSEVIER

    Marine Structures 9 (1996) 545-575

    1996 Elsevier Science Limited

    Printed in Great Britain. All rights reserved

    0951-8339/96/$15.00

    0 9 5 1 - 8 3 3 9 ( 9 5 ) 0 0 0 1 1 - 9

    H y d r o d y n a m i c D e s i g n o f M o o r e d F l o a t in g P l a t f o rm s

    O guz Yilmaz & Atilla Incecik

    Uniw~rsity of G lasgow, Departmen t of Na val Architecture and Ocean Engineering,

    Hydrodynamics Laboratory, A cre Road, G lasgow, U K

    (Receive d 8 M ay 1994; revised 23 Octo ber 1994;

    accepted 1 December 1994)

    A B S T R A C T

    Sing le po in t mo ored f loa t ing product ion p la t forms prov ide an economical ly

    viable opt ion fo r deep water m arginal f ie ld o i l and gas product ion. In the

    design o f such systems, non-l inear t ime do main analysis tools are required

    to pred ic t the w ave and low f requen cy mo t ions and the moor ing force s due

    to non-collinear wave, w ind an d curren t loa d actions. The au thors o f this

    paper have deve loped and va l ida ted wi th exper ime n ta l measurem ents

    n o n

    l i n e a r analysis tools to pred ict the dyna mic m otion response and moo ring

    forc es o f a C A L M sys tem due to non-co llinear env ironmenta l forces . In the

    f i r s t pa r t o f the paper a b r ie f sum ma ry o f the non-l inear ana lysi s procedure

    developed by the authors is g iven, together with som e resul ts obtained fr om

    pred ic tions and exper im en ta l measurements . In the second par t o f the paper

    the resul ts o f para me tr ic s tudies invest igating the ef fects o f variat ions in

    wave, w ind and current mag nitude a nd direct ion, wave and w ind spectral

    shapes, the numbe r o f mo oring l ines , hawser length and s t if fness , b uoy s ize

    and' thruster cap acity on the steady an d slow ly varying oscillations o f the

    C A L M sys tem and on m oor ing and hawser force s wi ll be i llust ra ted.

    Key words. s ing le -p o in t m o o re d s y s tem, time d o m a in s imulat ion, s lowly

    v a ry in g o s ci ll a tio ns , d y n am ic win d an d cu r r en t f o rce s , p a r am e t r i c s tu d y o f

    m o t i o n r e s po n s es an d h aw s e r t en s io n o f C A L M s y stem, m o o r in g fo rce s .

    1 I N T R O D U C T I O N

    A la rg e, n u m b e r o f S in g le P o i n t M o o r i n g ( S P M ) s y st e m s h a v e b e e n i n s ta l le d

    i n v a r io u s p a r t s o f th e w o r l d o v e r t h e p a s t 3 0 y e a rs . A s N o r t h S ea o i l

    545

  • 8/10/2019 513 Attila

    2/31

    546 o . Y i lm a z , A . I n c e c i k

    p r o d u c t i o n m o v e s t o w a r d s a g r e a te r d e p e n d e n c e o n s m a l le r re s er v o ir s , n o t

    o n l y i n c o m p a r a t i v e l y s h a l l o w w a t e r o n t h e c o n t i n e n t a l s h e l f , b u t a l s o i n

    d e e p e r w a t e r o f f it , th e r e w i l l b e a c o r r e s p o n d i n g l y g r e a t e r r o l e f o r f l o a t i n g

    p r o d u c t i o n f ac il it ie s . A n e x a m p l e o f s u c h a f a ci li ty i s a l a r g e t a n k e r m o o r e d

    t o a s i n g l e p o i n t . A s i n g l e p o i n t m o o r e d t a n k e r w e a t h e r v a n e s a c c o r d i n g t o

    t h e p r ev a i li n g w e a t h e r co n d i t i o n s , th u s s t ay i n g o n l o c a t io n w i t h a m i n i m u m

    o f m o o r i n g l o a d s . S i n g l e p o i n t m o o r i n g s y s t e m s h a v e b e e n i n s t a l l e d i n

    v a r i o u s p a rt s o f t h e w o r l d a n d , d e p e n d i n g o n t h e w e a t h e r c o n d i ti o n s , t h e y

    v a r y f r o m c h a i n / t u r r e t s y s t e m s t o r i g i d - a r t i c u l a t e d s y s t e m s a n d h y b r i d - t y p e

    s t r u c tu r e s . E c o n o m i c v i a b il i ty is o n e r e a s o n f o r t h i s te n d e n c y t o w a r d s S P M

    s y s te m s a s t h e y h a v e b e c o m e a l te r n a t i v e s t o f k x e d p l a t f o r m s a n d s u b s e a

    p i pe li n es fo r t r a n s p o r t a t i o n o f o il a n d g a s w h i c h b e c o m e s a n i m p o r t a n t p a r t

    o f t h e o i l - f i e l d d e v e l o p m e n t a s o f f s h o r e p r o d u c t i o n a c t i v i t i e s m o v e i n t o

    d e e p e r w a t e r s . A n o t h e r n o t i c e a b l e d i s t i n c t i o n o f s u c h s y s t e m s i s t h a t t h e y

    c a n e n d u r e s e v e r e s e a a n d w e a t h e r c o n d i t i o n s . A s a r e s u l t t h e y e x p e r i e n c e

    n u m e r o u s c o m b i n a t i o n s o f w a v e , w i n d a n d c u r r e n t . T h e r e fo r e , d y n a m i c

    ana lys i s o f such sys tems i s e s sen t ia l to ensure sa t i s fac to ry ove ra l l pe r fo r -

    m a n c e o f t h e s e s y st e m s .

    I n t h i s p a p e r t h e r e s u l ts o f a s er ie s o f p a r a m e t r i c s t u d i e s a r e p r e s e n t e d t o

    i l lu s t r a te t h e e f f ec t s o f e n v i r o n m e n t a l a n d g e o m e t r i c a l c h a r a c t e ri s t ic s o n t h e

    d y n a m i c r e s p o n s e a n d m o o r i n g f o r c e s o f t h e t a n k e r - b u o y s y s t e m . T h e

    p a r a m e t r i c s t u d i e s w e r e c a r r i e d o u t c o n s i d e r i n g t h e t a n k e r - b u o y s y s t e m

    d e s c r i b e d i n F i g . 1 . D u r i n g t h e p a r a m e t r i c s t u d i e s t h e e l a s t i c i t y o f t h e

    m o o r i n g l i n e s a n d t h e h a w s e r l i n e , t h e b u o y ' s g e o m e t r y , t h e s e a s t a t e , t h e

    w i n d s p e c t r u m , t h e n u m b e r o f m o o r i n g l in e s o f t h e b u o y , t h e h a w s e r l e n g t h

    a n d t h e t h r u s t e r c a p a c i t y w e r e v a r i e d t o s t u d y t h e e f f e c t o f v a r i a t i o n s o n

    d y n a m i c r e sp o n s e a n d m o o r i n g f o r c es o f th e s y s te m . N u m e r i c a l as p ec ts o f

    t h e p r o g r a m , s u c h a s s i m u l a t i o n t im e a n d i n t e g r a t i o n s t e p , a r e d i sc u s se d .

    i o n

    80mL.J~

    Hawser

    Buoy

    Tanker

    ~ 7 50v

    7

    Fig. 1. Co upled tanker-buoy system.

  • 8/10/2019 513 Attila

    3/31

    H y d ro d y n a m ic d e sig n o f m o o r e d l o a t in g p l a tfo r m s

    547

    2 B A C K G R O U N D T O T H E P R E D I C T I O N M E T H O D S U S E D IN

    T H E S T U D Y

    E n v i r o n m e n t a l f o rc e s a c ti n g o n t h e s y s t e m c o n s i s t o f s lo w l y v a r y i n g w a v e

    f o r c e s , d y n a m i c w i n d f o r c e s a n d c u r r e n t a n d i d e a l f l u i d f o r c e s . S l o w l y

    v a r y i n g w a v e f o r c e s a r e c a l c u l a t e d u s i n g t h e m e a n d r i f t f o r c e s i n r e g u l a r

    w a v e s a n d a p p l y i n g a n e x p o n e n t i a l d i s t ri b u t i o n o f t h e w a v e f o rc e re c o r d

    i n i r r e g u l a r w a v e s ( N i e n h u i s l ) . M e a n d r i f t f o r c e s w e r e o b t a i n e d u s i n g a 3 -

    d i m e n s i o n a l p r o g r a m w r i t t e n b y C h a n . 2

    2 . 1 S l c )w l y va ry i n g a n d m ea n w a ve d r i f t f o rce s i n i r reg u la r w a v es

    I n i r r e g u l a r s e a s , d r i f t f o r c e s a r e t i m e d e p e n d e n t . T h e s e l o w f r e q u e n c y

    d r i f t f o r c e s a r e s m a l l i n m a g n i t u d e b u t m a y c a u s e l a r g e , l o w f r e q u e n c y

    o s c i l l a t i o n s o f t h e s i n g l e p o i n t m o o r e d v e s s e l i f t h e v e s s e l ' s n a t u r a l

    f r e q u e n c y is e x c i te d .

    I n i r r e g u l a r w a v e s , t h e w a v e e l e v a t i o n o n a p o i n t i s w r i t t e n a s

    N

    ~ (t ) ---- E ~i COS ((-D t -~- 8i) (1)

    i = l

    T h e d r i ft fo r c e is re l a te d t o t h e s q u a r e o f t h e w a v e a m p l i t u d e a n d t h e

    s q u a r e o f t h e w a v e e n v e l o p e is

    N N 1

    ~2(t) = Z Z 2

    ~ i ~ j c s ( ~ i t -[ -

    8i) co s( Oy t -]- 8)) (2)

    i = 1 j = l

    a n d t h e l o w f r e q u e n c y s e c o n d o r d e r w a v e d r i ft f o r c e is w r i tt e n a s f o l lo w s

    N N

    F (2)

    (t) = Z Z ~i~jeijeos{(o~i- o~j)t +

    ( 8 i - e j ) }

    i = 1 j = l

    N N 1

    + E Z 2 ~iCjQ ijsin{(~oi-oj)t + ( ~ i - -

    gJ )} (3)

    i=1 j=l

    P a n d Q r e p r e s e n t s y m m e t r i c a n d a s y m m e t r i c m a t r i c e s re s p ec ti v el y :

    Pmn = P,~ , Qmn = -Q nm

    (4)

    I f S~ is t h e w a v e s p e c t r u m t h e n , a c c o r d i n g t o P i n k s t e r , 3 t h e s e c o n d o r d e r

    f o r ce s p e c t r u m is

    SF(Oj1) ~- 8f0 S ~ ( ( D ) S ~ ( ( D t - ~ - ( D ) [ F ( 2 ) ( ( . D , ( . D - [ - ( . D ) do) (5)

    L C ,

  • 8/10/2019 513 Attila

    4/31

    5 4 8

    O. Yilmaz, A. Incecik

    w he re F(2)(co , co + co ') = v /P /2 j + Q2 j an d the m e an w av e d r i f t fo rce i s

    w h e r e F (2 /(co, co) i s th e m e an w av e d r i f t f o r ce in r eg u la r w av es .

    A n a p p r o x i m a t e m e t h o d is s u g g e st e d b y N e w m a n 4 a n d P i n k s t e r, 3 i n

    w h i c h t h e l o w f r e q u e n c y f o r c e s a r e d e r i v e d f r o m m e a n d r i f t f o r c e s i n

    r e g u l a r w a v e s . T h i s m e t h o d c a n b e u s e d o n l y w h e n w a v e d i f f r a c t i o n e ff e ct s

    a r e d o m i n a n t b e c a u se i t d o e s n o t t a k e a c c o u n t o f t h e fo r c es r el a t ed t o t h e

    s e c o n d o r d e r h o r i z o n t a l p r e s s u r e g r a d i e n t . A c c o r d i n g t o t h i s m e t h o d ,

    p ( c o r n , c o , ) ~ p ( .c o m c on c orn c o n )

    ( 7 )

    2 ' 2

    Q (c o rn c o , ,) , ~ 0

    A s p e c t ra l f o r m o f t h i s f o r m u l a h a s b e e n d e v i s e d b y P i n k s t e r ,

    o t ] 2

    S r ( c o ) = 8 f o S ~ ( c o ) S ~ ( c o + c o ) I F ( 2 ) ( c o + 2 )

    de) (8)

    (o')

    w h er e F (2) co + -~- i s m ea n wa v e d r i f t f o r ce in r eg u la r wav es .

    A t i m e h i s t o r y o f sl o w l y v a r y i n g w a v e f o r c e s i n ir r e g u l a r w a v e s c o u l d

    b e o b t a i n e d b y u s i n g t h e s u m o f si ne s a p p r o a c h w i t h a r a n d o m p h a s e

    d i s t r i b u ti o n b u t t h is a p p r o a c h l e ad s t o a G a u s s i a n d i s t r i b u t i o n o f th e

    s l o w l y v a r y i n g f o rc e s. P i n k s t e r 5 a r g u e s t h a t a n e x p o n e n t i a l d i s t r i b u t i o n

    o f s l o w l y v a r y i n g f o r c e s i s m o r e r e a l i s t i c a n d h e d e v i s e d a m e t h o d t o

    g e n e r a t e a n e x p o n e n t i a l l y d i s t r i b u t e d f o r c e r e c o r d . 1'6 A c c o r d i n g t o t h i s

    m e t h o d ,

    F(x ) (0 ,, t) = - ~,(2) ~,(2)

    x A ( o , ) ( A + 1 ) + ( o , )

    F ( y 2 ) ( O , , t ) = - F ( ] ( O , ) ( A +

    1 ) + _F(2) (0,1 (9t

    F ~2) ( 0 , , t ) = _p (2 )_oA O , ) A

    s ig n ( rnd (b) - 0 .5) + ~,~2) (0 ,)

    w h e r e A = l n [ r n d ( a )]

    r n d (a ) , r n d( b ) = u n i f o r m l y d i s t r i b u t e d n u m b e r b e t w e e n 0 a n d 1

    A = l n [r n d (a ) ] h a s a n e x p o n e n t i a l d i s t r i b u t i o n w i t h a v e r a g e - 1 a n d

    s t a n d a r d d e v i a t i o n 1. T h e i n c l u si o n o f r n d (b ) i n t h e y a w m o m e n t a s s ur e s

    t h a t F ~ 2 )

    (Or, t )

    h a s a s y m m e t r i c a l d i s t r i b u t i o n , w h i c h i s c o u p l e d t o F ( 2 )

    (Or)

    a n d F ( 2 ) y

    (Or)

    i n a m p l i t u d e b u t n o t i n p h a s e .

  • 8/10/2019 513 Attila

    5/31

    H ydrodynamic design of moored loating platforms 549

    ( 2 ) ~ ( 2 )

    F ~ ( ~ r ) , F y A ( 0 ,) a r e d e t e r m i n ed u s i n g t h e d e r i v e d s p ec t r a l d e n s i t y

    S~) (0) . T he var i a nce o f ~ .(2) (0 ,) i s g iven b y

    a x A

    ( o , ) ) : = E [ ( F 2 ) ( 8 , ) ) 2 ] - e 2 [ f ( 8 , ) ] =

    ~ , . L x A

    ( 0 r ) ) 2 ( 1 0 )

    ~(2)

    A s i m i l a r ex p r e s s i o n can b e d e r i v ed f o r . yA ( 8 ,) . T ak i n g a s am p l i n g

    f r e q u e n c y o f e v er y V t , t h e m a x i m u m f r e q u e n c y in t h e w a v e d r i ft f o r c e is

    rc / V t . A p p l y i n g a r a n d o m w h i t e no i se p ro c e ss a n d a s s u m i n g th a t S (2) is

    F,

    f r e q u e n c y in d e p e n d e n t d u r i n g t h e V t v a r i a n c e c a n b e w r i t t e n a s 7

    tp(2)

    (aFt2)(0,))2 = Se~2)(o,o,)n/Vt = , - x a (8,)) 2

    ( b - , ( 2 )

    (O'Fy(2) 0,))2 =

    SF(y2)(O,O,)r~/vt= , yA

    (0r)) 2

    (0 V~2) 0,))2 =

    SF~2)(o,0,)~/vt

    = 2(F~2) (8,)) 2

    (11)

    2 . 2 D y a a m i c w i nd f o rc e s

    I n s i m u l a t i n g t h e d y n a m i c w i n d f o r ce s , u s e w a s m a d e o f t h e d i f f e re n t w i n d

    s p e c tr a a n d w i n d v e l o c i ty t i m e h i s to r y w a s c r e a t e d a p p l y i n g a s u m o f s in e s

    a p p r o a c h w i t h a r a n d o m p h a s e d i s t r ib u t i o n ( O o r tm e r s se n S ).

    C a l c u l a t i o n o f w i n d f o r ce s i s a d i f f icu l t t a sk . M o s t o f t h e t i m e ex p e r i-

    m e n t a l d a t a a n d / o r e m p i r i c a l f o r m u l a s h a v e t o b e u s e d . W i n d i s u s u a l l y

    t r e a t e d a s a t i m e i n v a r i a n t e n v i r o n m e n t a l e ff ec t. B u t f l u c t u a t io n s o f t h e

    w i n d v e l o c i t y ac t i n g o n t h e s u p e r s t ru c t u r e s m ay h av e a l a r g e e f fec t o n t h e

    r e s p o n s e o f t h e o f f s h o r e s t r u c t u r e s . Wi n d v e l o c i t y i s ex p r e s s ed b y t h e

    f o l lo w i n g fo r m u l a i n w h i c h w i n d s h e a r is c h a r a c t e r is e d b y a p o w e r l a w

    ex p r e s s i o n ,9

    V t ( z ~ ) - - o ~ ( ~ 0 ) fl ( 1 2 )

    - V l h ( 1 0 )

    w h e r e

    Vt(z)

    is w i n d s p e e d a t z a t a n a v e r a g e d t s e c o n d s

    Vlh 00 ) i s w i n d s p e ed a t 1 0 m a t a n a v e r ag e d 1 h o u r

    is t h e g u s t f a c t o r ( = l )

    fl is t h e p o w e r l a w e x p o n e n t ( = 0 . 1 6 s u g g e s te d b y D a v e n p o r t . 10)

    D r a g f o rc e d u e t o w i n d l o a d i n g i s e x p r e s se d b y t h e f o l l o w i n g f o r m u l a ;

    1

    F w(t) : ~ PaCDAp 2 ( t ) (13)

    w he re p~, i s a i r d en s i ty

    (=O.O012t /m3) , CD

    is drag coefficien~t.

    Ap is p r o j ec t i o n a r ea , V ( t ) is t im e d e p e n d e n t w i n d v e l o c it y .

    B y w r i ti n g V (t) = V + v(t) , m e a n a n d d y n a m i c w i n d f o rc e s a r e o b t a i n e d

    as fo l lows ,

  • 8/10/2019 513 Attila

    6/31

    550

    O. Yilmaz, A. Incecik

    1

    FMw(t) = -~

    PafDAp'-V 2

    (14)

    D

    F w (t) = PaCD Ap-Vv(t)

    (15)

    F l u c t u a t i o n s i n w i n d v e l o c i t y co u l d b e m o d e l l ed b y a s p ec t r u m . T h r ee

    of the mos t commonly used spec t r a a re as fo l lows :

    The H ar r i s Spec t rum 11 i s descr ibed by

    SwO)_ 4x)?V~o

    f ( 2 -~ J 2) 5/6 (16)

    w h e r e ) ? =

    1200 f / - f f l o ; f i s

    f r equency ; x i s d rag coef f i c ien t ( =0 .005) .

    T h e D av e n p o r t s p ec tr a l f o r m u l a t i o n 12 is g iv en b y

    S w ( [ ) = 4xfV~ (17)

    f ( 2 + ] 2 ) 4 / 3

    Ochi and Sh in 13 sugges ted a spec t r a l fo rm ula t io n based on w ind speed

    m eas u r em en t s c a r r ied o u t a t s ea . I t h a s t h e f o l lo wi n g f o r m u l a t i o n

    583f ,

    42 0~ '7

    so t , ) = (1 ~ J ~ , '3 5 ) 1 1 5

    8 3 8 f ,

    (1 + j ~ , ' 3 5 ) 1 1 5

    fo r 0 ~< f , ~< 0.003

    for 0.003 ~ 0 .1

    (18)

    whe re f , i s d imen s ion les s f r equency

    f , = f z /-Vz

    (19)

    S0c, )

    i s d imen s ion les s spec t r a l den s i ty

    S ( f , ) = f S ( f ) / v 2 , (20)

    f i s f requ enc y in cps ; z i s heig ht ab ov e sea level in metres ; Vz is m ea n

    win d speed a t h e igh t z in m/see ; SO0 i s spec t r a l dens i ty fu nc t ion in mZ/s; v ,

    i s shear veloci ty in m/s .

    M ean w i n d s p eed , Vz, and f r i c t ion ve loc i ty , v , , a r e def ined in the

    fo l lowing fo rmulas ,

    Vz = Vlo + 2-5 v, In (z / lO ) (21)

    v, = v/-C~10 V10 (2 2)

  • 8/10/2019 513 Attila

    7/31

    H y d r o d y n a m i c d e si gn o f m o o r e d f l o a t i n g p l a t f o r m s 5 5 1

    w h e r e V10 = m e a n w i n d s p e e d a t 1 0 m h e i g h t i n m / s ,

    C10 --- su r fa ce d r a g co ef f ic i en t . 13

    T i m e d e p e n d e n t w i n d v e l oc i ty is o b t a i n e d b y t h e s u m o f s in es a p p r o a c h

    w i t h a r a n d o m p h a s e d i s t r i b u t i o n ,

    OG

    V ( t ) = V + E V/2 Sw(og .) V w cos (o9 . t + e . ) (23)

    n = O

    2 .3 Cu rren t a n d i d ea l f l u id fo rces

    A s w i t h t h e w i n d f o rc e s , e m p i r i c a l f o r m u l a s h a v e t o b e u s e d i n c a l c u l a t i n g

    t h e c u r r e n t f o r c e s. C u r r e n t a n d i d e al f l u i d f o r c e s w e r e e x p r e s s e d u s in g t h e

    m e t h o d s o f W i c h e r s 14 a n d M o l i n . 15 I n t h is a p p r o a c h c u r r e n t f o r c e s a n d

    m o m e n t s a r e r e p r e s e n t e d as a c o m b i n a t i o n o f t he i d e al f lu i d fo r c es a n d

    ' re a l ' f o r c es b a s e d o n s e m i - e m p i r i c a l m a t h e m a t i c a l m o d e l s i n c lu d i n g

    q u a s i -s t e ad y a n d d y n a m i c c u r r e n t c o m p o n e n t s . I d e a l f l ow f o r c e s a r e g i v en

    b y N o r b i n n 16 a s f o l l o w s ,

    Fxia = -a xx f t + ayyVO + ayoO 2

    Fyia = -a y y f - axxuO - ayoO

    (24)

    Foid = --aooO -- (ayy -- axx) uv -- ayo ( f + uO)

    a n d t h e r e l a ti v e ve l o c i ty c o m p o n e n t s a r e g i v e n a s f o ll o w s

    u = ~ - Vc co s (~ - 0)

    v = p - Vc s in (a - 0) (25)

    T h e r e la t iv e a c c e l e ra t i o n c o m p o n e n t s a r e

    = J~ - Vc b si n (ct - O)

    (2 6 )

    = ~ + E t) cos (~ - 0)

    I f e q n s 2 5 a n d 2 6 a r e s u b s t it u t e d i n t o e q n 2 4 , w e o b t a i n

    A~xid

    :

    - axxJC

    - (ayy -

    axx) V~ si n (zt - O) 0 +

    a y y j ; 0 q - a y o 0 2

    l~yid :

    - - a y y y - - ( a y y - axx) Vc c o s (ct - O) ~) - axx ic 0 - ayo 0 ( 2 7 )

    -FOld = - a o o 0 - (ayy - a x x ) u v - aoy x O - aoy Y

    A c c o r d i n g t o W i c h e rs , th e M u n k m o m e n t in e q n 27 c a n b e re p l a c ed b y

    t h e s te a d y c u r r e n t m o m e n t c o m p o n e n t s a n d t h e e q u a t i o n c a n b e r e w r i t t e n

    t o i n c l u d e t h e v i s c o u s f o r c e s a s f o l l o w s ,

  • 8/10/2019 513 Attila

    8/31

    552

    O . Y i l m a z , A . I n c e c i k

    w h e r e

    F xid = --ax x SC + ayy p O + Fxsta 31-F x d y n

    F y i d = - - a y y y - - a y 0 0 - - axx Jc O + F y s t a t + F y d yn

    FOld =

    -aoo 0

    - aoy Y + F ostat + F Odyn

    (28)

    F x s t a =

    0 .5

    pLs rCxc(~cr) Vc2r

    Fys ta t ~ - 0 5 pLs TC y~ (O~cr) V ~r (29 )

    Fo~t,,t

    = 0 .5

    p L 2 TCoc(Ctc,) V2~

    F~t,,t

    is t h e q u a s i- s te a d y c u r r e n t f o rc e a n d m o m e n t c o m p o n e n t s a c c o r d -

    i n g t o t h e r e la t i ve c u r r e n t c o n c e p t ,

    w h e r e

    C, ,c

    i s t h e r e s i s t a n c e c o e f f i c i e n t i n l o n g i t u d i n a l d i r e c t i o n

    Cy~ is t h e r e s i s t a n c e c o e f f i c i e n t i n t r a n s v e r s e d i r e c t i o n

    Coc

    i s t h e r e s i s t a n c e c o e f f i c i e n t i n y a w d i r e c t i o n

    c~ = ( u 2 + v 2 ) 5

    ~ = a r c t a n ( - v / - u )

    a n d m o m e n t c o m p o n e n t s a r e e x pr es se d a sy n a m i c c u r r e n t f o r c e

    f o l l o w s ,

    Fxdyn = --(ayy -- axx) Vc sin (ct - O)/~ + Fxd

    Fyayn = -( ay y - axx) Vc co s (~ - O) 0 + Fyd

    F O d y n = F o d

    (30)

    T h e v i s c o us p a r t o f t h e d y n a m i c l o a d c o n t r i b u t i o n r e p re s e n ts t h e e f f ec t s

    o f t h e y a w m o t i o n i n t h e r e la t iv e v e lo c i ty fi el d a n d b a s e d o n t h e l o c a l c ro s s

    f l o w p r in c i pl e . A c c o r d i n g t o W i c h e r s , t h e v is c o u s p a r t o f t h e d y n a m i c

    c u r r e n t l o a d c a n b e a p p r o x i m a t e d a s fo ll ow s ,

    Fxd = 0 .5 (ayy -- axx) Vc sin (~ - 0)/~

    j

    y d = 0.5 p TCyc, (90 ) [(Vc - Or)tVc - O l l - vclvcl]dl

    P

    Foe

    = 0 .5 p T

    [Cyc (~

    (/)) {(v~ - 0/) 2 - u2} _

    Cyc ( ~ ) V~2~] 1 d l

    P

    (3 1 )

    w h e r e

    Uc ~ - -U

    Vc = - - V

    ~ c~ (/) = a r c t a n [ ( v , -

    Ol)/u~]

  • 8/10/2019 513 Attila

    9/31

    H ydrodynamic design o f m oored loating platforms

    553

    S u r ge , s w a y a n d y a w m o t i o n s o f t h e t a n k e r a n d s u rg e a n d s w a y m o t i o n s

    o f th e b u o y w e r e t a k e n i n t o a c c o u n t i n th e s t u d y . T o f o r m u l a t e t h e m o t i o n

    e q u a t i o n s o f th e t a n k e r - b u o y s y st em i n t im e d o m a i n , C u m m i n s ' m e t h o d ]7

    w a s u t i l i s e d . C u m m i n s ' m e t h o d u s e s i m p u l s e r e s p o n s e f u n c t i o n s t o d e r i v e

    t h e f l u i d r e a c t i o n f o r c e s . I n o r d e r t o s o l v e t h e d i f f e r e n t i a l e q u a t i o n s a n

    a l g o r i t h m w r i t t e n b y G e a r ~s i s u s e d . T h e a l g o r i t h m w h i c h is e it h e r a f o r m

    o f t h e A d a m s m e t h o d s o r a m e t h o d f o r s ti f f e q u a t i o n s h a s s e v e r al f e a t u re s

    s u c h a s t h e a u t o m a t i c s e l e c ti o n o f s t ep s i ze a n d o r d e r f o r t h e m e t h o d u s e d .

    I n o r d e r t o a v o i d s h o c k r e s p o n s e o f t h e s y s t e m d u e t o e x t e r n a l fo r c es a n

    e x p o n e n t i a l r a m p f u n c t i o n w h i c h e n s u re s t h e g r a d u a l i n c r e a se o f t h e

    e x t e r n a l f o r c e f o r a c e r t a i n p e r i o d a t t h e b e g i n n i n g o f t h e s i m u l a t i o n i s

    u s e d .

    W aw ~- f o r ce s a c t in g o n t h e b u o y m o o r e d t o t h e s e a b o t t o m ( i n d e p e n d e n t

    o f t h e t a n k e r ) w e r e ca l c u la t e d u s i n g M o r i s o n ' s e q u a t io n . C a t e n a r y e q u a -

    t i o n s w e r e u t i l i s e d t o c a l c u l a t e t h e r e s t o r i n g f o r c e s d u e t o t h e m o o r i n g

    l in e s. 19 H y d r o d y n a m i c f o r ce s a c t i n g o n t h e m o o r i n g l in e s w e r e a s s u m e d t o

    b e s m a l l a n d t h e r e f o r e t h e s e f o r c e s w e r e n o t i n c o r p o r a t e d i n t h e m o t i o n

    e q u a t i o n s .

    M o t i o n r e s p o n s e s o f t h e t a n k e r - b u o y s y s t e m a r e c o m p a r e d w i t h h e a d

    s e a e x p e r i m e n t a l m e a s u r e m e n t s w h i c h w e r e c a r r i e d o u t a t t h e H y d r o -

    d y n a m i c s L a b o r a t o r y o f t h e U n i v e r s i ty o f G l a sg o w . C o m p a r i s o n s s h o w

    q u i t e g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t s ( se e F i g s 2 a n d 3 ).

    3 P A R A M E T R I C S T U D I E S A N D D I S C U S S I O N O F R E S U L T S

    T w o s et s o f p a r a m e t r i c s t u d i e s w e r e c a r r i e d o u t . T h e f i r st o n e i n v e s t i g a te d

    t h e e f f e c t s o f d i f f e r e n t w a v e , w i n d a n d c u r r e n t f o r c e m a g n i t u d e s a n d

    E

    .u.

    I - -

    Z

    I l l

    W

    W

    a

    F"

    el

    0 . 5

    0 . 4

    0 . 3

    0 . 2

    0 .1

    0 . 0

    0 . 4

    B M E A S U R E M E N T S

    F R E Q U E N C Y D O M A I N S I M U L A T I O N

    T I M E D O M A I N S I M U L A T I O N

    - [ ]

    ' ' ' ' ' . ' 6

    . 6 0 . 8 1 . 0 1 . 2 1 4 1 .

    FREQUENCY ( H z . )

    Fig. 2. Surge motion of the buoy co-linear environmental forces.

  • 8/10/2019 513 Attila

    10/31

    554 O. Yilmaz, A. Incecik

    . -

    O

    E

    I-.

    -r

    ill

    1-

    u,I

    U J

    a

    I-

    . - I

    o,,

    0.6-

    0 . 5 '

    0.4'

    0.3-

    0.2-

    0.1

    0.0

    0.4

    [] MEASUREMENTS

    FREQUENCY DOMAIN SIMULATION

    ~

    DOMAIN SIMULATION

    i i i i i i

    0.6 0.8 1.0 1.2 1.4 1.6

    FREQUENCY (Hz~

    Fig. 3. Surge m otion of the tank er co -linear environm ental forces.

    d i r e c ti o n s o n t h e s t e a d y a n d o s c il la t o ry m o t i o n s a n d m o o r i n g f o r c es o f t h e

    t a n k e r - b u o y s y st em T h e s e c o n d p a r a m e t r i c s t u d y d e t e r m i n e d th e s e n si -

    t iv i ty o f s lo w l y v a ry i n g m o t i o n s a n d h a w s e r f o r ce s to c h a n g e s i n w a v e a n d

    w i n d s p ec tr a , t h e n u m b e r o f m o o r i n g l in es o f th e b u o y , h a w s e r l e n g t h a n d

    t h r u s t e r c a p a c i t y . T h e f i r s t p a r a m e t r i c s t u d y w a s c a r r i e d o u t i n r e g u l a r

    w a v e s w i t h s t e a d y w i n d a n d c u r r e n t p r e s e n t a n d t h e s e c o n d o n e i n i r r e -

    g u l a r w a v e s w i t h d y n a m i c w i n d a n d c u r r e n t p r e s e n t.

    I n t h e f i r st s et o f p a r a m e t r i c s t u d i e s , si x g r o u p s o f s i m u l a t i o n s t u d i e s

    w e r e c a r r i e d o u t u s i n g t h e n o n - l i n e a r t i m e d o m a i n s i m u l a t i o n c o m p u t e r

    p r o g r a m b a s e d o n t h e p re d i c t i o n m e t h o d d e s cr ib e d in t h e p r e v io u s

    s e ct io n s . A t t h e b e g i n n i n g o f e a c h s i m u l a t i o n t h e t a n k e r w a s p l a c e d a l o n g

    t h e x a x is w i t h a z e r o y a w a n g l e a n d t h e h a w s e r w a s u n s t r e t c h e d . R e s u l ts

    o f th e p a r a m e t r i c s t u d y a r e t a b u l a t e d b y u s i n g t h e s t e a d y a n d o s c i ll a to r y

    m o t i o n r e sp o n s e s o f t h e b u o y a n d t h e t an k e r , w h i c h w e r e o b t a in e d

    t h r o u g h a F . F . T . a n a ly s is o f th e t im e d o m a i n s i m u l a ti o n s D u r i n g t h e f i rs t

    t h r e e g r o u p s o f s t u d i e s th e e f fe c ts o f d i r e c t i o n a l i t y o f w a v e , w i n d a n d

    c u r r e n t f o r c e w e r e i n v e s t i g a t e d a n d t h e r e s u l t s o f t h e s e s i m u l a t i o n s a r e

    g i v en in T a b l e s 1 -3 . D u r i n g t h e r e m a i n i n g t h r e e s et s o f s i m u l a t i o n s t h e

    e ff ec ts o f v a r i a ti o n s i n w a v e , w i n d a n d c u r r e n t f o r ce m a g n i t u d e s w e r e

    i n v e s t i g a t e d a n d t h e r e s u l ts o f t h e s e s tu d i e s a r e g i v e n i n T a b l e s 4 - 6 . T h e

    r es u lt s g iv e n in T a b l e 1 i n d i c a te t h a t m a x i m u m s t ea d y a n d o s c i ll a to r y

    s w a y a n d y a w m o t i o n s o f t h e ta n k e r o c c u r w h e n w a v e a n d c u r r e n t f or ce s

    m a k e a 9 0 a n g l e w i t h t h e w i n d f o rc e s. S i m i l ar ly m a x i m u m s w a y m o t i o n s

    o f th e b u o y a n d m a x i m u m h a w s er t e n s i o n o cc u r w h e n w a v e a n d c u r re n t

    f o r c e s m a k e a 9 0 a n g l e w i t h t h e w i n d f o r c e s ( F i g . 4 ). T h e r e s u l ts g i v e n i n

    T a b l e 2 i n d i c a t e t h a t w i n d d i r e c t i o n d o e s n o t a f f e c t t h e m o t i o n s a n d t h e

    h a w s e r t e n s i o n s i g n i f i c a n tl y ( F ig . 5 ). I t c o u l d b e c o n c l u d e d f r o m T a b l e 3

    t h a t m e a n s w a y d i s p l a c e m e n t a n d y a w a n g l e i n cr e as e a s th e c u r r e n t

    d i r e c ti o n c h a n g e s f r o m 0 t o 9 0 . H o w e v e r , t h e m a x i m u m o s c i ll a to r y s w a y

  • 8/10/2019 513 Attila

    11/31

    yd ro d ynam i c desi g n o f moo red l o a ti n g p l a t f o rm s

    5 5 5

    0

    6 6 6 6 6 6 6

    6 6 6 6 6 6 6

    666666

    o

    H

    0

    ~

    H

    0

    E

    H

    0

    6

    II

    ~ o

  • 8/10/2019 513 Attila

    12/31

    556

    O . Y i l m a z A . I n c ec i k

    0

    , , , ~

    ~d

    e~

    .~ ~

    II

    6 6 6 6 6 6 6

    ~ o o o ~ II

    ~ ~ ' ~

    ~ ~

    I I

    0

    6 6 6 6 6 6 6 N

    6

    I I

    ~ o

    e ~

    ~ H

    6 6 6 I I =

    ~

  • 8/10/2019 513 Attila

    13/31

    yd ro d ynam i c desi g n o f moo red l o a ti n g p l a t f o rm s

    5 5 7

    F

    ~

    6 6 6 6 6 6 6

    6 6 6 6 6 6 6

    6 6 6 6 6 6 6

    6 6 ~ ~

    ~ ~

    o

    I I

    =

    0

    I I

    ID

    I=

    f l

    o

    6

    I I

    6 6 ~ 6 6 6 ~

    II =

  • 8/10/2019 513 Attila

    14/31

    558 O. Yilmaz A. I ncecik

    0

    ~d

    6 ~ 6 6

    66o6

    6

    I I

    e ~

    6 6 6 & I 1 ~

    $

  • 8/10/2019 513 Attila

    15/31

    yd ro d ynam i c desi g n o f moo re d l o a ti n g p l a tf o rm s

    5 5 9

    0

    I ~ ~

    . ~ ~

    ~ . . . . _

    II

    0

    ~ o o o ~

    II

    . . . . 0

    6 6 6 6

    ~ 6 II

    0

    6 6 6 6

    6

    II

    ~o

    e ~

    6 6 6

    I 1 ~

    ~ . ~

    " ~

  • 8/10/2019 513 Attila

    16/31

    5 6 0

    O. Yil maz A. ln cecik

    o

    0

    ~ -~

    ~ ~ 0 ~ o ~

    6 o 6 6 I I

    o

    o o o o

    II

    0 0 0 ~

    o o o o

    E

    II

    c,;

    0

    0

    6 ~

    I I I I

    0

    ~ ' ~

  • 8/10/2019 513 Attila

    17/31

    H ydrodynamic design o f moored loating platforms 561

    I Cunent

    Wind

    W a v e

    20000-

    [] MAXTENSION / ~

    /

    15000- MEANTENSION I

    /

    5000

    0

    25 50 75

    W a v e Heading IDeg)

    Fig. 4. Effect of wave direction.

    l

    ioo

    ~4~ ~Current

    i

    ~

    -='Wave

    W ir~d

    ~5000 1 [ ]

    O

    lOOGO

    5ooo

    0 1 ~ , ,

    0 25 50 75

    Wind Heading Deg)

    Fig. 5. Effect of wind direction.

    MAXIMUMTENSION

    MEANTENSION

    I

    1oo

    motion of the buoy occurs when wave force direction makes a 0 and wind

    and current directions make a 45 angle with the hor izontal axis. Maxi-

    mum steady and oscillatory surge motions of the buoy and ship occur

    when wave, wind and current forces act co-linearly. The maximum hawser

    tension stays relatively low, below 10 000 kN (Fig. 6). Tables 4 and 5 show

    that the mean mooring line forces are generally not very sensitive to the

    changes in current and wind loading since the dominant load on the

    system is due to wave induced oscillatory and steady forces (Figs 7 and 8).

    Table 6 shows that there is no linear relationship between the wave height

    and the motion response or the mooring force values of the CALM system

  • 8/10/2019 513 Attila

    18/31

    562 O. Yilmaz, A. Incecik

    r W i n d

    W a v e

    90*

    Current

    1 0 0 0 0

    7500 -

    5000

    2500 2

    0

    : 5 + o 7 ;

    Current Heading i Deg)

    F i g . . E f f e c t f c u r r e n t i r ec t io n .

    I"1 MAXIMUM TENSION

    O MEAN TENSION

    |

    1 0 0

    F i g . 9 ). T h i s i n d i c a t e s t h a t s u c h s y s t e m s m u s t b c a n a l y s e d i n t h c t i m e

    d o m a i n u s i n g n o n l i n c a r a n a l y s i s t oo ls .

    A s c c o n d s et o f p a r a m e t r i c s t u d i e s w a s c a r r i e d o u t t o d c t c r r n i n c t h c

    s cn si ti vi ty f s l o w l y v a r y i n g m o t i o n s a n d h a w s e r f o r c c s t o c h a n g e s i n t h c

    c n v i r o n m c n t , t h c n u m b e r o f m o o r i n g l i ne s o f t h e b u o y , h a w s e r l e n g t h a n d

    t h r u s t e r c a p a c i t y f o r t h e C A L M s y s t c m i l l us t ra t e d n F i g . I. I n t h e s i m u -

    l a t i o n s t h c t a n k e r w a s g i v c n a n i ni ti al - 5 y a w a n g l c w i t h r c s p c c t t o t h c

    c u r r e n t a n g l c , a n d t h c b o w h a w s c r w a s u n s t r c t c h e d a n d p a r a l l c l t o t h e

    c u r r e n t . D u r i n g t h e s e s i m u l a t i o n s f ir st r d e r w a v e f o r c c s w c r c n e g l e c t e d .

    1 0 0 0 0

    9 0 = ~ 7500-

    W i r ~ 4 + 5

    Current ~ 5 ~ -

    ~ 0 o

    w a v e 25oo

    t' l MAXIMUM TENSION

    0 MEAN TENSION

    0

    ; 1

    i~

    Current V e l o c i t y

    m l s e c )

    F i g . 7. E f f e c t o f c u r r e n t v e l o c i t y .

    5 ;

  • 8/10/2019 513 Attila

    19/31

    ydrodynamic design of moored loa t in g p la t fo rm s

    563

    10000-

    9

    W in d I / c S u * r r e n t

    W a v e