5 stress distribution elastic settlement

18
09-02-2016 1 STRESS DISTRIBUTION IN SOIL CE352A - FOUNDATION DESIGN CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur Vertical Stress Increase due to Applied Load Equation of static equilibrium Theory of elasticity CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Upload: ranjan-lal

Post on 14-Apr-2016

15 views

Category:

Documents


4 download

DESCRIPTION

foundation design

TRANSCRIPT

Page 1: 5 Stress Distribution Elastic Settlement

09-02-2016

1

STRESS DISTRIBUTION IN SOIL

CE352A - FOUNDATION DESIGN

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical Stress Increase due to Applied Load

Equation of static equilibrium

Theory of elasticity

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 2: 5 Stress Distribution Elastic Settlement

09-02-2016

2

Equation of equilibrium written in terms of effective 

Vertical Stress Increase due to Applied Load

Theory of elasticity

stress 

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Strain – displacement relations

Vertical Stress Increase due to Applied Load

Theory of elasticity

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 3: 5 Stress Distribution Elastic Settlement

09-02-2016

3

Constitutive relations

The axial strains for an ideal, elastic, isotropic material in terms of the stress components are given by Hooke’s law

Vertical Stress Increase due to Applied Load

Theory of elasticity

components are given by Hooke s law

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Constitutive relations

Vertical Stress Increase due to Applied Load

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 4: 5 Stress Distribution Elastic Settlement

09-02-2016

4

Constitutive relations

Vertical Stress Increase due to Applied Load

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Compatibility conditions

In terms of strain

Plane Strain Condition

Vertical Stress Increase due to Applied Load

Theory of elasticity

In terms of strain

In terms of stress

Considering weightless medium

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

g g

Page 5: 5 Stress Distribution Elastic Settlement

09-02-2016

5

Stress Function

For the plane strain condition, in order to 

Plane Strain Condition

Vertical Stress Increase due to Applied Load

Theory of elasticity

determine the stress at a given point due to a given load, the problem reduces to solving the equations of equilibrium together with the compatibility equation and the boundary conditions

• The usual method of solving these problems is to introduce a stress function 

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

preferred to as Airy’s stress function.  

• This equation should satisfy equilibrium equation and compatibility condition.

• The problem reduces to finding a function ϕ in terms of x and z such that it will satisfy fourth order differential equation and the boundary conditions

Stress Distribution ‐ Boussinesq approach

Boussinesq solution Theory of elasticity

• The soil medium is an elastic, homogeneous, isotropic, and semi‐infinite 

Assumptions

medium, which extends infinitely in all directions from a level surface. (Homogeneity indicates identical properties at all points in identical directions, while isotropy indicates identical elastic properties in all directions at a point).

• The medium obeys Hooke’s law.• The self‐weight of the soil is ignored.• The soil is initially unstressed.• The change in volume of the soil upon application of the loads on to it is neglected.

• The top surface of the medium is free of shear stress and is subjected to only

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

• The top surface of the medium is free of shear stress and is subjected to only the point load at a specified location.

• Continuity of stress is considered to exist in the medium.• The stresses are distributed symmetrically with respect to Z‐axis.

Page 6: 5 Stress Distribution Elastic Settlement

09-02-2016

6

Stress Distribution ‐ Boussinesq approach

Stress distribution due to line load

The stress at any point inside a semi‐

Plane Strain Condition

Boussinesq solutionTheory of elasticity

The stress at any point inside a semiinfinite medium due to a line load of 

intensity q per unit length can be given by a stress function

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Stress distribution due to Vertical line load

Boussinesq solutionVertical stress caused by a 

Vertical line load

Stress Distribution ‐ Boussinesq approach

Influence factor

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 7: 5 Stress Distribution Elastic Settlement

09-02-2016

7

Vertical stress caused by a Horizontal line load

Influence factor

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Influence factor

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress caused by a Point load

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 8: 5 Stress Distribution Elastic Settlement

09-02-2016

8

Vertical stress caused by a Point load

Influence factor

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress caused by a Point load

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 9: 5 Stress Distribution Elastic Settlement

09-02-2016

9

Vertical stress caused by a Point load

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Vertical stress distribution on a horizontal plane at depth zVertical stress distribution on a horizontal plane at depth z

P

P

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress caused by a Point loadBoussinesq solution

Stress Distribution ‐ Boussinesq approach

Vertical stress distribution along a vertical line at radial distance r

Variation of vertical stress  due to point load

PP

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 10: 5 Stress Distribution Elastic Settlement

09-02-2016

10

Vertical stress caused by a Point loadBoussinesq solution

Stress Distribution ‐ Boussinesq approach

Isobar / Pressure bulbP

Δσz= 0.1P per unit area (10% isobar)

Pressure at points inside the bulb are greater than that at a point on the surface of the bulb; and pressures at points outside the bulb are smaller than that value.

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress caused by a flexible strip load

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Stress increase due to vertical line load

Stress increase due to vertical strip load

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 11: 5 Stress Distribution Elastic Settlement

09-02-2016

11

Vertical stress caused by a flexible strip load

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Influence factor

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Stress Distribution ‐ Boussinesq approach

Vertical stress caused by a flexible rectangular loaded area

Boussinesq solution

Stress increase due to point load

Vertical stress at depth Z under a corner of a rectangular area

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

The factors m and n are interchangeable

Page 12: 5 Stress Distribution Elastic Settlement

09-02-2016

12

Stress Distribution ‐ Boussinesq approach

Vertical stress caused by a flexible rectangular loaded area

Boussinesq solution

Vertical stress at depth z under a corner of a rectangular area [FADUM chart]

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress at Point A

Stress Distribution ‐ Boussinesq approach

Vertical stress caused by a flexible rectangular loaded area

Boussinesq solution

I II

IV III

A

)( 3333 IVIIIIIIZ IIIIq

By principle of super positionI

A

M N

O

Q

RP

ST

)(

Zone I = MQAT, Zone II = PRATZone III = NQAS, Zone IV = ORAS

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

)( 3333 IVIIIIIIZ IIIIq

Since zone IV is deducted twice, its influence has to be added once

Page 13: 5 Stress Distribution Elastic Settlement

09-02-2016

13

Stress Distribution ‐ Boussinesq approach

Boussinesq solution Contours of equal vertical stress

Under strip area Under square area

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Vertical stress caused by a flexible rectangular loaded area

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Approximate methods

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Equivalent point load method 2V:1H Method

Page 14: 5 Stress Distribution Elastic Settlement

09-02-2016

14

Stress Distribution ‐ Boussinesq approach

Vertical stress below the center of a uniformly loaded circular area

Boussinesq solution

Stress increase due to point load

The total load on the elemental area P (shaded in the figure) is equal to qr dr dα.

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Boussinesq solution

Stress Distribution ‐ Boussinesq approach

Vertical stress below the center of a uniformly loaded circular area

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 15: 5 Stress Distribution Elastic Settlement

09-02-2016

15

Stress Distribution ‐ Boussinesq approach

Influence chart for Vertical stress(Newmark Influence chart)

Boussinesq solution

Newmark constructed an influence chart, based on the Boussinesq solution,enabling the vertical stress to be determined at any point below an area of anyenabling the vertical stress to be determined at any point below an area of any shape carrying a uniform pressure q.

Stress increase due to uniformly loaded circular area

R i h l d

• R/z and Δσz/q are non‐dimensional quantities• Using the values of R/z obtained from equation and for various pressure ratios, Newmark(1942) presented an influence chart. 

• The chart consists of influence areas, the boundaries of which are two radial lines and 

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Rearranging the terms leads totwo circular arcs.

Stress Distribution ‐ Boussinesq approach

Influence chart for Vertical stress(Newmark Influence chart)

Boussinesq solution

There are 200 elementshence, the influence value is 0.005

Influence chart – construction procedure

• Influence chart can be constructed by drawing concentric circles.

• The radii of the circles are equal to the R/z values corresponding to σz/q = 0, 0.1, 0.2, . , 1. 

• Note: For σz/q = 0, R/z = 0, and For σz/q = 1, R/z  = ∞

• Nine concentric circles are drawn. • The unit length for plotting the circles is AB• The circles are divided by several equally spaced

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

• The circles are divided by several equally spaced radial lines.

• The influence value of the chart is given by 1/N, where N is equal to the number of elements in the chart.

Page 16: 5 Stress Distribution Elastic Settlement

09-02-2016

16

Stress Distribution ‐ Boussinesq approach

Influence chart for Vertical stress(Newmark Influence chart)

Boussinesq solution

Procedure for obtaining vertical pressure at any There are 200 elements

hence, the influence value is 0.005point below a loaded area

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

ELASTIC SETTLEMENT

CE352A - FOUNDATION DESIGN

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Page 17: 5 Stress Distribution Elastic Settlement

09-02-2016

17

Contact pressure distributionContact pressure and settlements for a flexible foundations

Elastic/ Clayey soil Granular/ Sandy soil

Contact pressure and settlements for a rigid foundations

Elastic/ Clayey soil Granular/ Sandy soil

Clay

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Settlement ‐ Theory of Elasticity

H

ze dzS0

Elastic settlement of a shallow foundation

dzE ysxs

H

zs

)(1

0

(From Hooke’s law)

where,Se = Elastic settlementq = Net applied pressure on the foundation B = Width of the foundation

For flexible foundation  fs

se I

EqBS

21

For rigid foundation ),()( 93.0 centreflexibleeRigide SS (limited to Z = 4B)

BIE

qS fs

se

21 ;

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

Es = Average modulus of elasticity of soil (measured from Z = 0 to 4B)µs= Poisson’s ratio of the soilIf = Influence factor depends on rigidity and shape of the foundationH = Thickness of the soil layerΔσx, Δσy, Δσz, are the stress increase due to the net applied foundation load in the x, y and z directions resp.

Page 18: 5 Stress Distribution Elastic Settlement

09-02-2016

18

Settlement ‐ Theory of Elasticity

For settlement at corners of loaded area (µs = 0.5)

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

REFERENCES

• Bowles  Foundation Analysis and Design• Das Shallow FoundationsDas  Shallow Foundations• Das  Principles of Foundation Engineering•Murthy  Advanced Foundation Engineering• Poulos, Davis  Pile Foundation Analysis and Design• Scott  Foundation Analysis• Som, Das  Theory and Practice of Foundation Design• Tomlinson  Foundation Design and Construction• Varghese Foundation Engineering

CE352A Dr. Rajesh Sathiyamoorthy, IIT Kanpur

• Winterkorn,Fang Foundation Engineering Handbook