4.algorithms for precipitation nowcasting focused on ... › publish › technical › data ›...

53
Technical Reports of the MRI,No.392000 4.Algorithms for precipitation nowcasting foc using radar and raingauge data 4、1 1ntroduction The Japan Meteorological Agency(JMA)began operating of a precip One of the purposes of this study is to improve products this system accuracy of the pro(1ucts depend highly on the characteristics of obse of the nowcasting system,we first outline the JMA nowcasting syst algorithms and techniques developed in this study for detailed precipit The subjects included in Section4are: (1)Newly determine(1representative values of digitized radar echo int nowcasting, (2)A method for improving radar estimates of precipitation by compa raingauges, (3)Radar-estimate calibration by raingauge in view of Z-R relatio correspondence between calibration targets, (4)Evaluation of the product for detailed precipitation analysis,cal 4.20utline of the JMA nowcasting system Japan Meteorological Agency(JMA)precipitation nowcasting system one of the components of the National Weather Watch(NWW)system, disasters caused by heavy rainfa11,such as landslides,flash floods system provides hourly precipitation charts on a5km grid,name precipitation forecast charts up to3hours,radar echo intensity composi using data from conventional weather radars and a network of autom (Forecast Division,1991;Makihara et a1.,1995).These products are diss meteorological offices,TV stations,and meteorological consulting hourly observation. Features of the JMA nowcasting system are: (1)A network of radars with a Moving Target Indicator(MTI)filter for (2)A dense raingauge network with an average spacing of nearly o calibrating precipitation estimates by ra(1arl (3)Process domain of about1,000km by3,000kml (4)Utilization of Numerical Weather Prediction(NWP)values for fore (5)Prediction in view of orographic effects often found in heavy rainfall (6)A format of products identical to that of the digital topography or th the Geographical Survey Institute of Japan. The domain for the nowcasting system is shown in Fig.4。2.1.A projection w 450against parallels and meridians,the so-called Biased-Lambert conica 一63一

Upload: others

Post on 23-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

4.Algorithms for precipitation nowcasting focused on detailed anaIysis

   using radar and raingauge data

4、1 1ntroduction

 The Japan Meteorological Agency(JMA)began operating of a precipitationnowcastingsystem inApri11988.

One of the purposes of this study is to improve products this system provides.Since the algorithms an(1

accuracy of the pro(1ucts depend highly on the characteristics of observation instmments and the configuration

of the nowcasting system,we first outline the JMA nowcasting system。We then describe in detail the

algorithms and techniques developed in this study for detailed precipitation analysis.

 The subjects included in Section4are:

 (1)Newly determine(1representative values of digitized radar echo intensity levels suitable for precipitation

     nowcasting,

 (2)A method for improving radar estimates of precipitation by comparing data from multiple radars and

     raingauges,

 (3)Radar-estimate calibration by raingauge in view of Z-R relationship modification and appropriate

     correspondence between calibration targets,

 (4)Evaluation of the product for detailed precipitation analysis,called Radar-AMeDAS precipitation.

4.20utline of the JMA nowcasting system

 Japan Meteorological Agency(JMA)precipitation nowcasting system went into operation in Apri11988,as

one of the components of the National Weather Watch(NWW)system,which was programmed to mitigate

disasters caused by heavy rainfa11,such as landslides,flash floods,and debris flows.The JMA nowcasting

system provides hourly precipitation charts on a5km grid,namely Radar-AMeDAS precipitation,hourly

precipitation forecast charts up to3hours,radar echo intensity composite,and radar echo top-height composite,

using data from conventional weather radars and a network of automated weather stations,called AMeDAS

(Forecast Division,1991;Makihara et a1.,1995).These products are disseminated in digital form to Iocal

meteorological offices,TV stations,and meteorological consulting corporations about20minutes after each

hourly observation.

  Features of the JMA nowcasting system are:

(1)A network of radars with a Moving Target Indicator(MTI)filter for rejecting ground clutterl

(2)A dense raingauge network with an average spacing of nearly one station per280km2employed for

   calibrating precipitation estimates by ra(1arl

(3)Process domain of about1,000km by3,000kml

(4)Utilization of Numerical Weather Prediction(NWP)values for forecasts up to3hours aheadl

(5)Prediction in view of orographic effects often found in heavy rainfall eventsl

(6)A format of products identical to that of the digital topography or the digital river information issued by

   the Geographical Survey Institute of Japan.

  The domain for the nowcasting system is shown in Fig.4。2.1.A projection with a standard line slanting about

450against parallels and meridians,the so-called Biased-Lambert conical projection,is employed for the least

一63一

Page 2: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

500 0 500㎞

0

60

o

o

・学   へ太

  。㌧幡.

 oノ

       北

本 ●庫

■!.一

・臨露騨。劇・め

   へ・

     海 ,

  δ櫨野・・4’悉,

   O

  ◎り

      、h

。・.ー蔀

“5。 12 1z5’

ホ ・・ケ=;

      ■

  、.

  玉.

4

ヨ35● f4σD

145● 15。

Fig.4.2.1DomainoftheJMAnowcastingsystemanddistortionrateondistance.Thethickrectangledenotesthedomain.   Numbers along the thin arc lines are the distortion rates calcuIated by

   (distance on map)/{(actual distance)/(representative fraction of map)}

distortion of direction and distance.By use of this projection,the maximum rate of distortion in the domain

is about1%(Makihara et a1.,1995).

 An example of a Radar-AMeDAS precipitation chart is shown in Fig.4.2.2,and a flowchart for on-1ine data

processing of the nowcasting system is shown in Fig.4.2。3.

4.3Data

 The following data are used in the JMA precipitation nowcasting system:

(1) Radar data

     Echo intensity

     Echo-top height

     Hourly precipitation estimate

(2) Raingauge data:

     Hourly precipitation

(3)NWP data

     Wind forecast at700hPa

     Wind and temperature forecast at900hPa

  Radar data are provided by the JMA radar network,and raingauge data by a network of automated surface

weather stations called Automated Meteorological Data Acquisition System(AMeDAS).With the exception

of some radar data,all data are usually obtained hourly.

  NWP data are used only in the forecasting process,so the detailed description is not included in this study.

一64一

Page 3: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

RADAR_AMeDAS PREC『皿A!皿ON 1990.11.30.21〔1〕

JMA 1-h precipitation amo㎜tLegends 口 :  …: 尊 ロ ロ u 回 ■

mr髄 0~ 1、 写~ 10鞠 20働 30、 40軸 60~ 80~

   =2 3 :3==33  3:333 33 3零3397?  o■■o

.・3==零 

.凸 =

。●==3 :

323:=3=:           3:=

‘33==:::92  3    翼

孤=ヱ1:==3:==3:

‘Z133=:=3零:==

乙==:一6=ZZ3::Z3 :

‘;:3?一一6=零:=星=2:=:  :

ゐ==33==ヱ===323333 =:

== 3=;==零===3=: :33

  =3:零===?一3:=匡=32

= :;3零====:=Z:33=3

  : 零33333=3=3:333

     =客::=呂==3:3Z

      Z ===:?一=一凸===竃 :

3

●●●■3   3

30●■O●■8

●●  OOO■

OO

OO3

 》㌧

\ ■q3■1■■■O■●3●■■●■●O■

 ■●332.03=332

9  22●02333

332 33223零33

 囎3 30..一3 0・  器03一

〇〇3●・● 3一9零.39

●03●●203000●3.3●・39●

3..3..O●・3303393一

30一30.O●2..●・330.2

23・の◎203●.=3.・

.■.・O.●■03333

83●●O■●● ■■33

30

00●  3.

・O

 ●

3

…撚㎜

    ・3=3・3。・==330零=3マ

    ■=………零…30233・

    =:2=33=30●●Z==,

    難嚢…・。砥・.簗

ン燕翻離

●3. ・●   2・。33零333竃=33●

。.・・3 3 33 。.3323;3=・…

。3.32●-    ●・●●●●33=..・;●。

。.O.    3..3■23.一3.●323.

一..■・..・・.。;●3・一3=Z332。

………萎難醸

■■●■彫  卿・●●OO●●30・3=●

りり...。● 一  。●O■●●03●.。

。30.....    .●●●。器.●●・0

..3...■●.0。・      .・ 。

39330・■■・●●.9●●。  ●.

3.3■●=;画.●.●。・。。・。。。

謡””””””””…”””玩.鴛・“…●.一●

・.9=●3。●..33230・3332333●。.

。….…喝…●……。…ま一…….…・

;;Z333332。=.3=..3。3.3

;Z:33:●。333・・..03=3:33・

3●○:.。=:.・●・3.。・33=Z=33

一=●○ヱ:==333。.33。●== ==・

●■===○==3=:●=●3●==.●・3=.

;=甲…●03333:3●=℃…….一=・

;==○=O●●●3雷●●3零23●・g.●

 ㎜㎜懸灘羅

三33.90●OO333333.23●3。

;.;・9●3●●233=3333。=・●・

3            3383一・3.O=O

O3●==3●○●◎1=3333.=。3●

●○●●■■○●■03=33●。3=33。

●=○●●○■●○○●●83..●=。3.=

●●○=:○◎●:の盟=3・…3…・・=

;●3=●3●=:Z=●3駕=●==●一;

乙=●◆=○=::●33零:.。3323.

03=3ε●23==3●33=。..3。客?

・●3Z=3==3=3零3:388●=92.

=3ヱ29零2翼3零:零33333.;;

3333零323::==23●●383.3

3 333===ヱ39●33:.●3●=;

 3・3.::33333:33零.=●.==

  .・3=一=.・一23832333・===

  33==93・=●33393●。●.3:響

   .●3=。●二:。=.3333332=マ

  3●■33言●.・●・。3●.●●233==Z?

 3 3333。=。・.33●。8●・胃===?

  3。==。.3=333●。。33.3・=3マ

   .3=;==●83●=・。●馨3333?

  322●●3器33332●.333零2■

     32●一.■33333322.。●

    。●●。.93●●●●●・■・32零O・..●9,

    33●・333320=■0.2..O一●

     3●・23..33333333●

    ●・3=33323畠・333.・.・●

     333。。署30●3233。..=

      ●93●・28●二。3.●●.33●

     0・  ●・  零23  ■の3=。

        OO 32332■・33●

           一=●3..●;=。.

           O●3●・8333.

           2.●38●●339

。333338333零3●●0   33333畠 33冨3338 33333333333=○=z:33333333333霧器33 3333333333:=:33:3冒呂3333333;3333 32零333333竃==3=33333323=竃=33=332 33=33333;累33:=3;3零38323=3333333零33328零3=32零3333333833:33=32382

 :=3233呂3=3=33;38零33333333323339  :33333=339338339333333333z23零 ::933333;333323333=3333383零3333  =3338:=3323’3333・・  33323339=2   3零233呂3333333 .33 3 3 333933

   333=33零3 。333薯3 。33323333332   3333233 32言.333。● ・3言333333  333329零2 2ぎ333 呂●・9 333333323  =3零:3333 =3  ・ .。.一922旨333333

譲騨撚

3330●●●38333■●●■

33330●●.O●3003●.●9

.03:零O.33・03零3●・

。・3=2:=零2=233

3Z=●■33   =32=

 233=     3=竃

  =苫=: =3 9

 =Z零=: 3= =

         3   マ。3●.

   .3933。。o. ・塁33833

33=333零33●・

           :3=22=呂=33 3 2 3          ■==3ヱ3==2333零3 23          3=:==3==333零33・33

3…i灘iiii菱iiiiii:liii

   2323=33 場● ●z:=33=33   零    3=翼z33= 3●塞=33=233= 9 零8       33=  ==●■33ε=32: 3   23:3 33 ●3●33==3呂蓼=● 333338 3 3333  6z9=●●3零=z3●3 零33333   ,●・■■9          ?o■■

   3333     ●333=  ●  33333 2B2333=3 30●●●33=3・  ■33 333233言333:=  ●●●●塞;:● ●○1霊 3零33零…”3…3…2=圭3……潟甚器雅…3…………

33  .●333:3竃:=:=■○●  ○:3言33  ●・  33 =:;3z:=●○○●●●33 . ●..33393933==■:○●3331…難i…ll…1萎iiiii51…

 39 33  23   ; 3塞;33…=契………………写……………曼3 3り

糠●一

  3護

翼        一■3

      83■O

      ●●OO3

        0■■■

し 誠

ぽ    きき

V””.甲””

  3””

”” 簡●

”  ..

””””

””””””Ψ

だ》O●

323

ヱ38

   零

3

OO3

  3

00

3

 9甲 3 3 3  33333 3  32 3333零393=零333  零333零2233言3333333333零2零38零3333333333398=33333333零233333333328=

3 3

。22       33

.;3.:=0●33

。=三=3零.…

・.。.3=.一3=3

33333339

3333竃=33

=333零●33.

零零3●..●333

33●●●●■●3零3

3333●O書33

3零39霊333

333●。8333

30・3●. ●03

30■ O●

 3●03

3 2 33零33333塞   8=零

  8零93  3383

3833z39

====・●3333零3一轟==マ=轟Z=33333330。3393333332=  3の

;3=33,●30・33:3=零=33零=2零.■・=●3曹;==・o二。3.o=3.・3●・39

。●。・333=3・=。=;;==:塞=;。・●=.=33●=;。3。==。3●一●●.. 233●

9●●●●3=器●■3・;。3●.3===233.3=・:33●。。.。■333●●●3。3●■3。3●・

3●・3823●=●3.・●.3.凸===3333330●98.●33●.3●.2=●●23雷●●●..

;3.…93………3;3苫ぎ3!……3一……3…3233…9…….…:

.3=り=2333=零:333・。=383●33・3●=・●・●・3●・零・一3.;●■●2.●.・3・

.・=3。・33●.33:3:=:333333●.。33=3;;.・===3●・●33。=.●3

=3一〇=3=3023=33・・3233333零3.33====。=33333.33=

麟㎜㎜㎜     ㎜灘

””糞”彗”輩.訟帽.。恥●.盤袈盤難擁認盤碧.餐縫琴い

3  33り O●3一〇                     33  3●O =0  33

。.33一 ●3●3零=■ ●○    ■●●3●:333・;=3=3 ●・■3Z墨・・。

㎜…羅騨難鰍㎜羅難 

-淫…………議難鐵搬脚…・6冒蔭難裟.難簗

   曹:…。ま3…=…333●● ●り:3脇:●●●●○●3:333。=

●   .  923        33・633=呂3003:■●2  =●.●;

 3      8零 33●;一零・3・●=  ・3=・●。=2●○●●=累3 3零33.

●           3 ■==.= 3333332。・3=93呂●.●  =●=

3            3●339333●=.零零.=.。….…●;。3 ●=

          3 。…  3 ●…  3零。…2。自3;竃=…… …

          ●      2●。■●39・。○  ●2零●●●●●●9●323●.● ・・

          .    .;3●・.3Z●● ○謬●○○.ご02零382。二・

2              3 ●;●●=・●○ ●●●02.・3●=33●●32

333           33333●・=●●○ ●B■●3:。。=333.3●.

欝…………… … 騒、...礪轟…騰

.===;;3=;;=。。=.●==・=■=.=3.。2・■32  8 3

33=33.3===。。;==;3==.3●3●。=.●●33   ●●28

333零一=3●3.3=;33===二3=3;;3・2 332  =.=;;・

332.…。●●.●・言・。:。=・32●=・●●:3●・.=;.。・333 33 ●●333●。 畠

3………・=・…==3・。…量●3り●塞:●圭…・。●。… ●=…  ●………畠

…曇……○…。マ…3曜δ=●;;。…==;●~2三……3。……;=●…

3……==畢…=:30::零●o●●●:,…●…=:…….…。……。…

………………・:……・●3●3……:3;竃=:………,  g…

…=;…●;…...… . 33●一。●333 。.:.●83・…●3.3。9   畠

;・…●……=…二■:・……………… =。●…3……………

3…………。…:…3・●3…=。・。….…●…●33 …・・.2……

・…。……………3●=:…3………;。…■。……。    3…9

灘羅……  翻辮㎜㎜㎜………㎜}……

…=3…二…:・;.・3:●.====..   233333 333…

333;.33。33.二。..;。  2・・。=●..3●==;9  。=;;=。

;.曇=…………:●●:=. =  ・。:3 …・…≡……●・…

;● :32  …●:●。。9.3 …3    3 …=≡…。….3

  .一=一。… ………。三  ..・二      3g。…。…….3

= …ま○ ●9=. 二=二3●…3         3….…=.。93

。;     ::3 3…;3二          .・3 …;≡

 ・●● =マ一=葦3:   。              3 ■=……

● ・● 一・  3・・一.2。                33・・

9 の=  9・  :.  9              33 33

8..・一3。= =                        333

襲窪””哩こ    3σ

萎葬。.  0 8 -

..=.一:・.。・.・       一6

33●・ 3 ・ ●=。3。 = ●                 零 g

…・… ………・       θ・

33 。=●3 零3 一=39零.。零    ;;           33

23。・・3 .33g O3 .=。   -333          33

…  ……≡●… 3 …。 。三・…       3

・.3.。=三■3・383 ..=●.・零   .。3 28

33 .・……3零38零 9。3。●  ・ 3 3          3

3呂    3333= 3●。  3              ●●●.

  ・… ●3;…=3   3●=  = 9■         。.3

3.●。3…。.;●33・=。.■                  32

  灘欝無

33=33333339332333零 3 :==33333333333 33 33 3=零3033933333霊3332 23=333333333=323零38383●3:=39零零33 3333=3333 333=8馨3333323 3  零3。38ヱ32333333 3’3 33 :●●=言言333 3  33  3 ::332       零3  3 零 3333     3  33

嚇■●◎

・O■一

〇■●●

O●0●

3能●●●.

■O■●

■り

32 33

  ……  … …  …”…… …㎜…… …㎜ “

11.…沿,21 Murot.10saka1Nago.3】融ui1Nigat。1 圃i1 Tokyo1 Sen虚1

Fig.4.2.2Example of Radar-AMeDAS precipitation chart for Kanto district at21JST on30November1990.The size

   of each pixel is3minutes of the latitude and3.75minutes of the longitude,which is equivalent to about5.5km by5。

   5km in this area.

一65一

Page 4: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

AMeDAS1,300s詫es

Radar19s忙es

NWP

Hourly precipitation

   amount 6 - O - 『 o

ll

Sta“sUcal valuos

oo aφust爬nt盈dd

1lJ

Hourly procipita匂on

   amount Qua賄ty

con鋤olCalibr痴on

             I             I             ロ             I             I             I             I             I。一一一一一一。“噂周一一一一一噂,

Pr㏄ipitation rato

Compos面ng     Co叩os龍ing

Echo tophoight

Co叩os忙ing Composi匂ng

Echo tophoight

   “eld

Echo intens醇

  60団

Pr㏄ipita質on

rat◎慌old

Radar-AMeDASprocip比ation

                        1        9                        1        l                     I        臼                        巳        1                        陰r一””曹†噂”……”””’¶1

....._.。上瓢====:=:==一一†一一一一十一一

1                      陰                                          II                I                                          II

一 一 一 一 一 6 0 一 一 一 一

1陰魯豊101? 一一--一一韓一『馳         Io          II          巳

Estimation ofdoμh of

  mixing by6r

Patt㎝ma勉ohhgonprocip酬on601d

orocast wind at700hPa

oI

 Decay rate whon

passingoverrnountains

Extrapobtion

veclpr恥ld

oにcasヒ》威nd at900hPa

一 - 一

1UnearOX㎞PO困㎝and mod爾cationFo隠casttompora加陀at

    900hPa 曽

Estimation ofmass

ofsaturati㎝vapour

  ln㎞ati㎝㎝

dovobρmont a画d d㏄ay

 duo toomgraphy

亟圃_一一卿_一一日帰..一____一」Hour呼procip忙ation

  fbrocast

3-hour p噂cipitation

 fbr㏄ast碗eld1

Fig.4.2.3A flowchart for on-1ine data processing ofthe JMA nowcasting system.

  1ine,and single thin line denote outputs,inputs,and processes,respectively.

Rectangles with thick line,double thin

 ゆB

Fuk諾鶯…i…ii繍ぎli ・轟窪濃「o

環譲▲…誕il▲i…i…舅…

Kushiro

藝ii…繋iiii’ 口

尊□■

~~~

∩∠34

2km3km4km5km

5km~ 8  -  1  一

Fig.4.3.1JMA weather radar network.Calculation in this study is made over the unhatched area,which is the entire

  detection range of the radars.The observation heights of the radar beam are also indicated.The lowest value is

  chosen as the observation height at a pixel where more than one radar observes precipitation.

一66一

Page 5: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

Table4.3。1.Specifications of the radars in JMA(March1999)

Ground-based radar  長》r  generalSpectEcation

u  oses VbssehadarStandard weather Mt.FujiRadarRadar JMA・MR JMA・MR-78

Number ofstations 18 1 1Frequency 5300MHz 2880MH:z 5300MHz(wavelength) (5.7cm) (10.4cm) (5.7cm)

Peakpower 250kW 1500kW 250kWPulse precipitation丘eq. 260Rz 160Hz 260:Hz

Antenna diameter 3.O m 5.O m 2.4mAntenna scan speed 4rpm 2rpm 4rpmEf飴ctiverange 400km 800km 400kmNumber ofREDIS・radars 18 1 1

4.3.1Radar data

  The JMA operates19gromd-based weather radars as of March1999,and their entire detection range covers

almost all of the Japanese Islands(Fig4。3ユ)。Of these,18are the standard JMA type,and the other,Mt Fuji

Radar,is specialized(Table4.3.1).

 An automatic data processing system,the Radar Echo Digitizing an(1Disseminating System(REDIS〉,was

installed at all of these radars(Sakota,1990).Radars with REDIS provide three types of information on

precipitation,1isted at the beginning of Section4.3,for the nowcasting system with a spatial resolution of5km

by5km.These data are transmitted to the Computer System for Meteorological Services(COSMETS)at

JMA Headquarters through dedicated lines.

  Radars with REDIS are usually operated in two observation modes:continuous and3-hourly selected when

there is little precipitation within the coverage.In continuous mode,all types of data are observed every hour.

In the3-hourly mode,only echo intensity and echo top-height are measured at3-hour intervals.Either mode

is selected manually by the operator according to the forecaster’s judgment.

  The JMA standard radar has the following features:

(1)5-cm conventional radar with no Doppler processing unit

(2)Beam width of about1.4。

(3)MTI filter installed for gromd clutter rejection(Tatehira and Shimizu,1987;Aoyagi,1983)

(4〉Height of up to2km for echo intensity observation with510w elevation angles

(5)Echo top-height estimated from observations with14elevations

(6)Hourly precipitation estimates accumulate(1at7.5-or10-minute intervals

  The field of precipitation provided by the radar comprises a square domain on a5-km grid with sides of500

km(600km for Mt.Fuji Radar).Echo intensity data from the lower five elevation angles are processedto give

an echo intensity field by using an allocation chart that indicates which elevation should be selected for the value

of every grid of the field.The allocation chart is made beforehand for each radar so that the altitude may be

the lowest,under the condition that the radar sampling volume should not have interference by mountains,and

it should not be contaminated by sea clutter.

  Range correction on wave propagation and compensationfor the attenuation of wave intensityby air are made

一67一

Page 6: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

beforehand.Attenuation due to precipitation in the path of the radar,and due to a film of precipitation over

the radome,is not corrected.

 Echo intensity Z in the mit of dBZ is converted to a precipitation rate in the unit of mm/h by the typical

relationship:Z二200ノ~L6(Marshall and Palmer,1948).

  An estimate of l-hour precipitation by radar,a radar-precipitation amount hereafter,is produced by averag-

ing echo intensities in mm/h,radar-precipitation rates hereafter,observed six or eight times during l hour.

  Radar-precipitation rate,echo top-height,and radar-precipitation amount are sliced into16,9,and641evels,

respectively,The original grid size of these data is2.5km,but it is changed into5km before the data are

transmitted to the JMA forecast center,by choosing the maximum value among four pixels of a2.5km-square.

4.3.2AMeDAS

AMeDAS includes about1β20automatic surface weather stations.About8400f these,called four-parameter

stations,observe four meteorological parameters:1-hour precipitation,wind direction and speed,temperature,

and smshine duration per hour.The remaining480have only raingauges.The density of the raingauge

network is approximately one station per17km by17km.Data from these stations are collecte(1every hour

automatically and sent via public telephone lines to the AMeDAS computer center in Tokyo,where they are

edited and sent to COSMETS to be introduced into the nowcasting system.

4.4Newly determined representative values of digitized radar echo intensity levels suitable for precipitation

   nowcastin9

4.4.1 1ntroduction

  Continuous radar echo intensity acquired by JMA standard radars is converted into digital values which are

categorized in restricted numbers of levels.The representative value for each level should not be a unique one,

but should be determined according to the purpose for which the radar data are used.For example,in severe

rainfall watching,the maximum intherange ofa level issuitableforthepurpose.Incontrast,Radar-AMeDAS

precipitation and very-short-range forecasts up to3hours are used quantitatively in the hydro-meteorological

field.What values wouldbe appropriate,for example,whenwe derive rainfall total ortotal water contentfor

a drainage basinP Suppose the criteria be l mm/h,10mm/h,50mm/h.In genera1,events near l mm/h occur

more frequently than near10mm/h or50mm/h.Hence,rainfall total would be overestimated,if the represen-

tative value was fixed to the average of l mm/h and10mm/h,that is5.5mm/h,and summed in a large area

or for a long Period.

  In this stu(1y,a set of representative values are determined in order that the statistical values of Radar-

AMeDAS precipitation and very-short-range forecast may be quantitatively equal to those derived from

continuous data.

4.4.2Data

  Hourly radar precipitation amounts and radar precipitation rates with a5-km grid are used in this study.

Criteria for digitizing these continuous data are listed in Table4.4.1.Tanegashima Radar and fifteenradars to

the north of Tanegashima Radar from January1990to October1990are used in this stu(1y.Data of January

1991are used for Kushiro and Sendai Radar instead of those of January1990because their digitization was not

completed until Apri11990.

一68一

Page 7: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

4.4.3Method

  Let the minimum and the maximum of a specific leve1,L,beαandδ,and the frequency of a specified value

劣betweenσand6for a certain period be∫(x).Then,the total number of radar-precipitation amounts of L

in the period,F、δ,is described as follows:

             孔イ∫(X)ぬ         (4.4.・)

We detemine representative values of五and〃、δ,so that the total precipitation amomt estimated with〃、δ

and∫(x)will be the same as that derived from the sum of the continuous radar-precipitation amomts,as

follows:

             M.δゴ∫(X)吋が(X)ぬ       (4.4.2)

 The data are accumulated for one month in this study.

4.4。3.1Determination using gamma distribution

 In order to determine the representative values,we have to know details of∫(x).’In this study,we apply a

gamma distribution,which is often used to represent rainfall distribution.

 A gamma distribution is described as follows:

             ∫(刃)目灘たexp(一航)

 where h,吻,andηare positive parameters.

 In logarithmic form,the equation is described as:

              ln(ノ(x))詔1n(規)+え1n(x)一胤             (4。4.3)

  Frequencies of hourly radar precipitation amounts for different levels are shown in Fig.4.4.1.Approxima-

tions to these frequency distributions are made with the gamma distribution function and are also shown in Fig.

4.4.1.

 As Fig.4.4.1indicates,frequencies for ra(1ar-precipitation amounts are we11(1escribed by the gamma distribu-

tion.Those of the radar precipitation rate are described with only small errors(figures not shown).Further-

more,as three continual levels are concemed,the distributions can be well described as a linear function,and

海1n(%)can be treated as constant.Under these assumptions,∫(x)is approximated as follows:

              ノ(x)謂’πexp(一nx)

  The representative value of a specific level between the valuesσandα十x,〃’砿,is then(1etermined as:

             ㌃∬+x∫(∫)4f+醒exp(一nf)/nll+x      (4・4・4)

                    ∬+xゲ(‘)4ご[’exp(一nご)】1-1

             〃’ 呂      =        +一

                ㍑+x∫(∫)…exp(一n∫)ll+xn      (4・4・5)

  Likewise,the frequency of the data between6and6十ッ,Fめ,is describe(1as=

              罵ヅ+醒exp(一nご)/n】1+y          (4・4・6)

一69一

Page 8: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

む器魯①占

1n

15

14

13

12

109876543

1且-

         隷

         韓

        \、、、、

        田Φ讐 魚

        、、、㌔ ~

       >、㍉ 、

       、、、楓 、

      魂\

     粟・

    墨

   麺、

  駕、“

験・、.

¶つ、、

、9つ

1  LevelO

Radar

●一●Sapporo

▽一一▽Kushiro

5_]Hakodate

Φ一憩Sendai

ひ一《〉Akita

田トー田Tokyo

2 3 4 5 6 7 8 9

(a)

>OqΦ5σ①旨匡

1n

15

14

13

2109876543

111

    尋翅

    瀬藤

    ㌃ 、、

    甑竪

   、 、、

   \、卜、

   、  、、

   窃思

\榎

蕊罵薄

踊す

Radar

●一● Fujisan

▽一一▽Nigata

o_■Fukui

の一・e Nagoya

く〉ゆOsaka

田一田Matsue

o・一〇(Fukui)

2 3 4 5 6 7 8 9 1 Leve10

(b)

6琶呂①由

1n

 15

 14

 13

2109876543

111

▽.

曹㌔尾

    1$

   巷

  停㊥

書雷

Radar

O一●Hiroshima▽…・▽ 八一uroto

巳一臨Fukuoka

$一モ9Tanegashima

◇・一つ(Iliroshim a)

2 3 4 5 6 7 8 9 eaL10(c)

Fig.4.4.1Frequency distribution of hourly radar-precipitation amounts.Frequencies of each level are indicated for

  different radars。Data were observed in January,Apri1,July,and October1990.Data observed with observation

  height of2km and lower were used in the statistics.The vertical axis shows total numbers on a logarithmic scale,

  and the horizontal axis shows levels on a linear precipitation intensity scale.

  Fukui Radar and Hiroshima Radar in parenthesis are gamma distributions to approximate the actual distribution.

  Parameters窺,ゐ,and%were detemined with the least squares method so that difference between the actual

  distribution and the approximation may be the smallest。Specific values for彫,h,and%for Fukui Radar and

  Hiroshima Radar are14.2,13.9,一4.7,一2.1,0,and O.1,respectively.

一70一

Page 9: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

From Eqs.(4.4.4)and(4.4.6),the following equation for錫is derived:

               罵ツ[一exp(一脳)〆n】1+㌔殊[一exp(一航)/nll+y       (4・4・7)

We detemine the parameter%by Newtonフs approximation,then,π砿,a function ofηin Eq.(4.4.5).

4.4.3,2Determination of the value for the lowest IeveI

 In Eq.(4.4.2),the minimum and the maximum of a specific level must be known.:However,the minimum of

the lowest level cannot be fixed because the value depends on the minimum detectable power of radar signals.

For that reason,we use raingauge data from AMeDAS.Actually,the right hand side of Eq.(4.4.2)is replaced

with the rainfall total measured from AMeDAS raingauges.

 In this method,however,radar precipitation does not always correspond to the raingauge measurement on the

same grid for the following reasons:

 (1)Raingauges represent values on a spot,while radar estimates spatial average values,so they sometimes

     differ in a severe local storm event,

 (2)Raindrops aloft observed with radar sometimes drift before reaching the ground,which causes the

     difference of the corresponding grids between radar estimates and raingauge measurements.

  To avoid this problem,the data are used only if the eight grids surrounding the center gridhave the same level

as the center gri(1.

  This method is considered to be effective only when precipitation is from stratus clouds,so the method is used

only for the lowest level.The difference between this method and that in4.4.3.1for the second lowest level is

less than O.2mm for each radar station.

  Another problem is that radar estimates are not equal to raingauge measurements.For this problem,we

assume that radar estimates of the lowest an(i the second lowest level can be calibrated with the corresponding

raingauge measurements with a parameter g as follows:

躍1Fl=Rl/9 (4.4.8)

               M2F2-R218             (4・4・9)

 Where

   〃1:representative value for leve11(lowest leve1)

   F1:total mmber of level l

   R1:total precipitation measured by AMeDAS raingauge

   9:parameter.

 The parameter g is detemined by substituting〃1、that is derived from Eqs.(4.4.5)and(4.4.7)into Eq.(4.4.

9).

4.4.3.3Modification due to the change of grid size

  Representative values for digitized levels of both radar precipitation rate and radar precipitation amount can

be determined individua11y from the algorithm in the previous sections.It is considered that although fluctua-

tions during one hour camot be described in the rainfall rate,the total sums for the two data for》a long time

or for a large area shouldbe equaL However,precipitationtotal from radar-precipitationrates is always larger

一71一

Page 10: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

than that from radar-precipitation amomts if those representative values are determined individually,as Fig.

4.4.3shows.In a very-short-range forecast,precipitation rate is used as the initial field.For using the

precipitation rate in the forecast,the two sets of representative values should produce statistically the sametotal

precipitation.In this section,the reason for this difference is discussed and a method for modification is

proposed.

  The primary reason for this difference is considered to be the change of the radar grid size、In genera1,the

maximum of averages of radar precipitation rates in one-hour,that is radar-precipitation amount,is smaller

than the maximum of radar-precipitatiqn rate at any given time.For example,1et an isolated echo of10mm/

h with a size of2.5km square move eastward at a speed of5km/h,and the echo be on the gridαfrom time

渉toオ十30minutes.During the following30mimtes,the echo might be on the grid2.5km east of4.Then,we

consider the precipitation values for the period from渉to渉十60minutes in an area includingαand the grid2.5

km east ofα.The precipitation amount is calculated as5mm/h for two2.5-km grids,and the precipitationrate

indicates10mm/h at a2.5-km grid.Although the averages of four2.5-km grids are equa1(2.5mm/h),the

maximum of precipitation rate for a5-km grid is10mm/h and that of precipitation amount is5mm.

  To make the difference clearer,the ratio of the frequency of radar observations with a10-km grid to that with

a5-km grid for different levels is presented for ra(1ar-precipitationrates andradar-precipitation amounts in Fig.

4.4.2.

  In view of the above idea,representative values of precipitation rate are modified from the upper leve1,in

order,so that the precipitation totals from the highest to the specific level may be the same.

4.4.4Results

4.4.4.1Difference between central values and representative values

  Table4.4.1shows the resulting representative values.For reference,central values are also indicated.

Representative values for radar-precipitation amomts,which are determine(i in Sections4.4.3.1and4.4.3.2are

smaller than central values by l to4%,and those for radar-precipitation rates by2to9%.Representative

values for radar-precipitation rates to be used in forecast are smaller by15to25%.

4.4,4。2Difference between precipitation total from radar precipitation rate and that from radar-precipitation

     amount

  Figure4.4.3shows the ratio of precipitation total estimated from radar-precipitation rates to that from radar

-precipitation amounts for each radar station.About20%overestimation is improve(1to3.5%by the process

in Section4.4.3.3.For several radar sites such as Hakodate,Akita,and Murotomisaki,a change of the

representative value of the lowest level in view of different minimum(ietectable powers of radar signals further

improves the overestimation.

4.4.5 Concluslons

  Contimous values of1-hour precipitation amounts and precipitation rates that JMA radar provides are

digitized into64and161evels.For using these digital data quantitatively with JMA nowcasting system,

apPropriate sets of representative values for(iigital levels have been proposed.

  The resulting representative values have the following features.

  (1)Central values for radar-precipitation amount overestimate the actual precipitation by l to4%,while the

     determined values are statistically almost the same as the actual ones.

一72一

Page 11: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

10km/5km2.2

2.0

1.8

1.6

1.4

1.2

L O

9.一“・・▽0●

...▽9●●

..9▽

...▽9’

1  1  1  1  1   ㎞ve1

0 1 2 3 4

●一●Amount▽_マRate

123456789Fig.4。4.2Ratio of frequency of radar observations with10-km grid to that with5-km grid for different levels.Numbers

   of10-km grid are calibrated with the factor of4since the total number of grids decreased to1/4.The horizontal

   axis shows levels for1-hour radar-precipitation amount.

Table4.4.1.Radar observation levels and representative values

One・hour radar一 reCl itationamount Radar. reCl itation rate

Level Range Central New Leve1 Range Central New Newmm出 value Value1 mm伍 value value1 Value2

1 <0.5 0.25 0.30 1 < 1.0 0.75 0.67 0.67

2 0.5一 0.75 0.72

3 1.0・ 1.25 1.22 2 1.0一 1.50 1.42 1.28

4 1.5・ 1.75 1.73

5 2.0。 2.25 2.23 3 2.0・ 3.00 2.82 2.45

6 2.5・ 2.75 2.73

7 3.0一 3.50 3.45

8 4.0一 4.50 4.46 4 40・ 6.00 5.46 4.40

9 5.0・ 5.50 5.4610 6.0・ 6.50 6.4711 7.0・ 7.50 7.4712 8.0・ 8.50 8.47 5 8.0・ 10.00 9.67 8.4013 9.0一 9.50 9.4714 10.0・ 11.00 10.91

15 12.0一 13.00 12.92 6 12.0・ 14.00 13.79 12.40

16 14.0・ 15.00 14.93

17 16.0一 17.00 16.94 7 16.0・ 20.00 19.41 16.80

18 18.0一 19.00 18.94

19 20.0・ 21.00 20.95

20 22。0・ 23.00 22.95

21 24.0。 25.00 24.96 8 24.0・ 28.00 24.80

9 32.0一 36.00 32.80

40 62.0・ 10 40。0。 44.00 40.80

41 64.0。 11 48.0一 52.00 48.80

42 68.0。 12 56.0一 60.00 56.80

13 64.0・ 72.00 65.60

63 152.0・ 14 80.0・ 88.00 81.60

15 96.0一 126.00 99.20

Note:New valuel indicates results by the algorithm in Sections4。4.3.1.and4.4.3。2,

    and New value2denotes those in Section4.4.3.3.

一73一

Page 12: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

。o

眉50冒邸目9=88あ8雪日O亀一題昌

   口

   1’

¥ 

    匿“

 メ週

  らビ

  亀●

義  謡

  メ’

と  誉

  乳、

   じり

  、、首

 もも醗

蚤”、”鵡¥

 、声

1!、

   、

  唇

■一帽Mod迅edindividuany

△一ムMod迅edunifomly●一●No mod迅cation

radaR宴邸月‘器bD霊“↑

邸溜05瀕5函

ε25Σ

而日碧のo義国

o房捻Σ

“漏霧O

象。b。邸之

男図5国

$謡2

壽貫畠

o身露

唐甥く

刷“℃目①の

8“℃o謁“=

22畢出

2。暑お

Fig.4.4.3Ratio of precipitation total calculated with radar-precipitation rates to that with1-hour radar-precipitation

   amounts.The solid line,the dotted line,and the broken line show the ratio that used representative values derived

   in Sections4.4。3.1and4.4.3。2,that used values calculated in Section4.4.3.3,and the ratio that used values in Section

   4.4.3.3with the lowest level individually determined for every radar,respectively.

 (2)Central values for radar-precipitation rate overestimate the actual by15to25%,and new values about

     3.5%.The main reason for excessive central values is considered to be due to the change of the grid size

     and the adoption of the maximum as the representative of four2.5-km pixels。

 Individual values in actual situations vary in the extent that the same level allows,which means newly

detemined representative values are not always appropriate.However,in estimating areal precipitation total

and precipitation for a long time or for a large area,the representative values that this study proposes might

reduce statistical errors of those data.

4.5A Method for lmproving radar estimates of precipitation by comparing data from multiple radars and

  raingauges

4.5.1 1ntroduction

Withthecapability ofcontinuous observation ofprecipitationover awide area,aswell asthefacilityforrea1

-time processing,weather radars are being utilized not only in the meteorological field,but also in the

hydrological field.To meet hydrological needs,however,the quantitative accuracy of radars,especially those

under constant operation,requires some improvement when compare(1with that of raingauges.

 Studies have been made intensively for improvement in the accuracy of precipitation estimates byradar.One

proposal is to increase information by additional har(iware.It is well known that measurement of the size

distribution of the rain drops in a radar sampling volume provides a more accurate estimation of the precipita・

tion amomt in the volume.For example,Seliga and Bringi(1976)utilized polarized waves,while Doviak and

Zmic(1984)showed that the use of two different wavelengths can also determine the distribution.

 Another approach is to obtain other kinds of information different from that of rain drops in the air.Brandes

一74一

Page 13: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

(1975〉calibrated a field of precipitation estimatedbyradar with data from denselydeployedraingauges.Colier

et a1。(1975)investigated the effectiveness of the density of raingauges to the calibration of radar estimates.

Austin(1987)stressed the importance of the change of the Z-R relationship according to the type of storm,On

the other hand,Joss(1990)proposed some correction methods based on the average vertical profiles of radar

echoes to obtain precipitation on the ground from the radar echo observed above the ground.Using average

seasonal correction fields,Takemura et a1.(1984)corrected the radar estimates of hourly precipitation over the

seatoproduceradar-AMeDASprecipitationcharts,whichwereproducedoperationallyusingJapanMeteorolog-

ical Agency(JMA)radars.

  However,in compositing the estimates by the JMA radars,differences in intensity often arise along the

borders of the domains of the respective radars,especially over the sea,even if the estimate(1precipitation maps

are modified by the methods mentioned above.

  Some of the reasons for the differences are:

  1)Differences in height and volume of the radar beams which observe the precipitation having a vertical

     profile in which the strength of precipitation changes with heightl

  2)Differences among the sensitivities of radar receiversl

  3)Modification made for a radar with no relation to another nearby radarl

  4)Difficulty of modification by raingauges over the sea.

  JMA operates19weather radars over an area of370,000km2withspacing about three times denser thanthat

of NEXRAD(Golden et al.,1986).However,mountains often obstruct observations in Japan.As a result,there

are some areas where the distance between an observed point an(1a radar site is more than150km,even with

this dense radar network.The distance over which precipitation can be estimated accurately from the radar

equation without any problems,such as vertical difference of distribution of rain drops or a radar sampling

volume not filled up with rain(1rops,is within about100km.For larger distances,the errors(1escribed in1)

become dominant.

  Regarding2),Takase et aL(1988)pointed out that ratios of radar estimates to the corresponding raingauge

measurements are often different from those by another radar even if specifications for those radars are the

same.Joss and Pittini(1991)also stated a similar conclusion.

  This section proposes a method for calibrating radar estimates by comparing them not only with raingauge

measurements but also with radar estimates from other radars.This method eliminates the discontinuity in

ra(1ar echo compositing and improves the estimates over a wide ra(1ar detection area.This method is effective

for an area where errors base(i on the vertical profile of precipitation are dominant,especially over the sea,and

for a radar echo composite which needs smooth compositing of data from different radars.In this method,a

calibration factor is first described with two parameters,and the parameters are then(ietermined by the least

-squares method using hourly radar and raingauge data、

4.5.2.Data

  Data of the digital radar network of the JMA from January1990to Febmary1993are used in this study.

Throughout the period,16digital radars(three ra(iars in the westem part of Japan were excluded)were

operated,and Okinawa Radar and Naze Radar were equipped with a digital processing unit in April1991and

April1990,respectively(Fig.4.3・1)。

一75一

Page 14: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

 Elevations for the field of precipitation are selected so that the altitude is the lowest,under the condition that

the radar sampling volume should not have interference by momtains,and it should not be contaminate(i by sea

clutter.For the Z-R relationship,the values proposed by Marsha11-Palmer(1948),that is,200forβand1.6

forβ,are employed(Sakota1990).

  To obtain raingauge measurements for calibration,the raingauge network of AMeDAS is used。

  Calculations in this study are conducted in the domain for JMA nowcasting system、

4.5.3.Relationship between radar beam height and the statistical field of precipitation observed by radar

  Joss andWaldvoge1(1989)estimated the percentages of the precipitation that canbe observedby a radar at

various ranges for convective rain,widespread rain and snow,and low-1evel rain on the basis of the average

vertical reflectivity profiles.Although the percentages show different distributions,they decrease as the

(1istance from the radar increases,and the rate of decrease is larger for the precipitation with lower echo top

-height.Takemura6渉α1.(1984)also made a similar investigation using ra(1ar and raingauge data during6

■●●●●○●●● ●●●●● ●   ●●●●●●

■■国m口 臼 口口口ロロ日5覧鴎 口8 6雷冒8 ●●●Ooo●●●●■■●●■●○●● ■●●■○●■●●○ ●●■彫曜586 看置縮58口口臼R R縄口臼回口邑口国国 日口口 口口臼n5雷8冒暇 開冒陥●■●●○○■●.●.●○○●.●o●○●●●●●Oo●●●●● ■◎●●●●8脇昭匿 覧昌冒四脇電口 臼R臼n日臼口山ロロロ 口口臼口 口臼口‘冒8匿8 昌脇56●●o■●●●●●●●●●●○●■■●●●●■●● ●●●■●●●●●● ○●●●●●●◆●監 巳駆 暇6■監監 口口臼口闘口口口

o口o口 臼臼口口 日B冒冨3雪 冒 c蓄●9●●ooo●●●●●●●●●●○●●●●●■●●●●●●o●●●●o● ●oo●o●■■●●●膠B騙露 四85 脇R口R腐“ロロ国口国 冒5雷巳 昌8B ●●●●●●o●●●●●●●●●o●●●●●●●●●●●● ●●●●●●●●D● ●●●●o●●●●●●●●B8監8 四 脇匹日口日ロロ日

口贈開目裂、

匿68 監88● ●●●●9●●●●●●●●●●●●●2;:::1 ?? 1!1:33●●Dゆ ●●●●●●●●●●●9●●o‘8四 8屋麟8口R口目口臼口口口口臼置β ‘  5雷50●● ●●○■●●●■■●●●●●=2! 一  ‘ εεδ 轟  9 。 :言塞 ○●●●○●●■●●●●●■●●●65質 雷贋6露日口口

n 日臼日口口日編置6 85置o●●● ●●●●●●●■●o●33 ‘3=竃 :3置塞竃:::3 33:33=3‘ 一塞3●●●■●●●●●●●●●げ●冒5 置覧55口員整6‘ 8雷監●■●●●●●■●■●●●■: : : ! ○■●■●●■■●■●● 8膠  膨駆朋 ●●●● ●● ●■●oo● ‘品■ 轟 占o●●●●ooo●●●oo

.騨 目 口冒8=監  B 匿監8監  昌8巳陰屋‘  雷6●

 監●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●::

●●2:

    3333塞塞=::3冨::3:=2:23:=  舘雛蹴2:置”3塞:蹴””3麗”:;:333塞=2;ε3:39:3 833333333

3塞塞=:33:3:!塞ε3:3=3塞939333塞:塞塞;

::3:2言33::3塞:::1:塞3:

z2”麗3一マ=:●●●●●●●●●●●冨開:●●●●●●●●■●●●艦臨

             禰

=●●●●●●●●o●諺露駝 ロロロロ臼 口R口R口日n日口口R口巴

駆5四5霞昼  監電●●●●

 86●●85●●●

■●●●●●●o:1●●●●○●●2●●●●■■: :

 轟:3軍塞ε::竃3::塞333388塞3:=3塞3333=;33388333!1::;:!::!=言33=;:=:=

.333833383338338霊=939=霊==9・●・・

388933333;3883388333==3含9==3塁客

:=3=1932:冨塞:333::塞:==3:塞:=:3==:2!122監1::!

:竃●●●●  =●●○

  1●●iii灘1

口口臼口臼口口8B 口臼 口口監r縮

 脇8●●●●●覧膠●●●9●●

●●●●3●●●=

 塞塞z塞=3:

=23:3::==333333332●・:=:33=3零323333●。・●33

 .●,.:=。,一

。333333333■,, ・。=23333=323.. ,

333333=33:!:3:=2=:33833:3:塞Σ塞:塞::33

監濫雷 鵬3●● ●D● ■● ? 一 , o o ● ・ ■  ,  ● .  o  ●  ●  ●  o ●  ●  o  ■  o  o  ●  ●  ●  一 一  .  Q  ●  o  o  ●  ●  〇  一 o  ●  ●  ●  ■  ■  ●  o ●●● 雷  38

口口R臼ロ昭雷 暇 ●●●o●●●■60●●●●●○● 22:

 ‘  383333。:3333333

  ,333339:3,3333333333

3呂3$323333.338333833

=333333333=323333383

=3.。3333

9833333      ‘。333883==3:::

品 =….●蹄零.。

R口臼6雷監 雷 ●○●●●●■■: 塞=32333塞 833333 。33.33833333。 o . ◎  o o  ● ●  9 ● も●.●’の一◎●o    ● 9  D O  9 3333339 3333333:3塞塞=■○● ●●Oo■●

日日口膠脇監 昭略●●●●●●●●: :!:2:32233 =3337.333=:=333=9.9。 ● ・ ・  o  o ■ ● o ● 一。●。9.99=3 鷺333;器..㍑器3:黙=塞●●●● ●o●●●R口B膠置 置匿●●●●●●●●9 :;=竃:=:332;33 933:3= ;:3。.,。じ●9 ■  o , ・ ● ● ● ■ ■ ●  ■  ●  ●  ●  ●  ●  ●  ●  , 一==33=3=3= 223=冨33===333  0●o●隅脇監8 監8●●●●●●●● 塞 =3塞塞■:2乞23 ●3 =$33223。.・。9。●●●。 ● o ■ 9 ■ ■  o ■  o o ●  ● o  ● ■  o ■  g o の ・..33333333 ・332:塞!==3333 ●●●●口雷3雷 置膠●●D●●●●●: :塞 塞2=:333923 =338-9●●・●■,。・. o ● ● o ●  o ● ●  , ■ , ●  o ■  g  o o  ● ● ゆ 。一一333333”・巽=∬:2!”∬ ●●●

冨5雷 蔭置■●●●●●●●1 2:3 ::ε翼33233. 。3呂23338●。。・●..●・99. 一  ■  ,  9  ●  ,  ● ●          ,  o  ●  ●  ●  , 一一。●=3器333●.31冨33=z:1330 ●●

‘雷覧 騙5●o●●○■●; ;塞:3 ::;38333.● 3333客3。。,・。.・●。●● 9 o o o ● ● o ● 0 9 ● . 0 9  ●         o , ●  o  o  o  ●  o 833330 ::塞3 置竃::塞:● ●

隣脇 昭駆●●● ●●■● : =  ●●●.・ o 曹 , . . . o ● o ■ o ● ● . o ●  ■  ■  ■ o o  ■  9     9  ■ ●  o  ●  ■  o ●  ● o  ●  ●  ●    9 .  ●  ・  ・  ,  ■ o  ●  o  . 翼!

■● ●●●● ‘ :333・・;;=323,。99・● ・  ■       ・  ●  o  ●  ■  ● o  o  じ  o  ■  ●  9  9  一 ●  o  o o  ●  ■ ,  9 ●  9 ■ 。・,。・.933:=::■。33凸‘     ●●

膠雷 脇B●●●●●●●1 駆脇●○●●●●●: 3●●■■●●●●

階雷O●●の●●●●監脇●●●●●●●= 21:3:3

 33:3塞33 :=3=塞33竃3ε塞:232

竃塞:3::33333:2333333=3330.3星333333 3833=。

  3== 332=23333

:33・9・.。。.32.・,●・・●零g o一曽..○.  D  ■  ●  o  ■  ■

○  ●  ・ ・  , .

  ■ o  o

・  o  ■

0     9  ●  o  ●  ●  ,  ■  ■

o  g  o  ● O o 9 ■  o o

●9.o。。..33.9.o●●33=3●・,.3星3338

 9 0 0 0 ・  , ●  ■ o

・●零3=23333.333333333・3=33338333333833383

■ o  ● ●  ● ・ ■  ●

29・。。。●  。933=2零3●  。,

呂3388333●9333333 883

.  .        ・  ●

 .  .  o    ●

・  9  ●  .  9

0  0  0  ●    o

.          ■  o  ●

●・●3=3:333.一3.0933328333..9333333333。9333●3零3933= .●・。・33333;3

3ξ圭…葦霊;3堪

三釜……釜難i

脇富●●■●●●○1 :3322塞33 3; 33333。. ■  .  ■  ●  , O  o  o  ● ・●o=33=2;3 ・3:.●..。9. ●2333= =:3 o  ●  o  o  ■  ●  ■ 。じ●。.323332 } 3●●●086脇艦曜●●o●●●● :::331:3333.:3333一・ ●  ●  ●  一 ・  ●  ■  o  ■

,=3333333● o  .  .  9  .  ■ ●●=3 32 39  ,...o .・.332==● 3  ●●●●巴監8監●●●●■●●:じ●●●●●●●7

2z:32:323 ?管1 o  o  ●

2  33332・。●●    o ● ● D g ● . o

 ●  ■    の  . ■ ● ■ o

■  ●    ●  ,  ■  ■  ■ ●  .3333283●。■  o  ●  ●  ●  ■

●  o  o  9  .  .  .  .  o  ■ ●●9●  ●●  =2       ,  9

o     o

・  g  o     o

一  ■  ■  ●  o  .

●o.33●  ●  ■

 =,?

:1 o●●●8質9  ●●の置冒8

■●●■●■● り 33:3 33333一●一。・・一・・.・・33 ;3呂3・  .・.・ ,  ●  .  ・  o  ●  ●  ■  ,  o ●  ■  畠  , ●  o ■  ,    9 333 33・一。。・■9・333る ●  ●の

●○●●●●●3 ε3:::竃3383 3833●●.●. 。  Oo.。.833333.  。●●9。 o ● …      , ■  o ■ ● ●  ● ● ■ ● O の ・3●33零3●..〆 38=33塞3:●○ ●●監監昭●●●●●●o: =:3竃;塞3;3 38833D●.Oo 9り●9。●‘:8 霊霊・  ●.,o o・ ■ 一 ●  9 ■ ■  D ● ● o o ● ・ ● ● o ■    ρ .  霊8零星●.o .3器 霊3:3=累 ■●o■ ●5暇監脇●●●■o●● =:=:=:=333 =333●,◎・・9 ・●.●。2:33 o o  .● ●. .● ● oo.・3=33.o ●  ■ ●  o o ■    ■  の ●   33333・ :33-2=!2塞塞 :●●● ●3昌口●●●●o●3 =::::!33=3一 3=33.●。o. 。99.・33333o     ●  .  .  ●  g  o  o  ・ ・23:33933 3;..・・.  99 ●’・   ■333・ 332= 塞竃z=Σ:●■●  躍m

●●●●●●●39●●9●●●蓄

:3==z:332=:=3=33:: 2

3

3332●・。..2330●・9.9.

。・●一9:2233。.●●3=332・

 ■ ■  .  〇 一 〇  ■  ■  o

.●,・o●0933 383233言3333・一・。.一瞬.

3339。o●  ・の..3323 .9ρ

o  .  .

   .●。●●.33333

■3 =3:23:23!7:3:●

一塞9::;3能誰韻●●●●●●■ 軍z9:::9333 3 =霊30●。・. ・ 。。・●3323- ・■.・●,■3833●.   ・..一 。9333  ・●9 ●  一  〇  一

=3333 3333! :●●● ○■●85  口●●●●●■3 ;:。==置88383冨 083●●.go ● ,。・33333.. ●.・。●0833● ●    ● の ・  o  ● o  ■ o ●o  .・  33●一。●.。3●33:3 333=3 ;●●● ■856屋

■  ●  ● ・ ● ● O o ● o ■ ● ● 0 ●  o O ● の .      の ●      . ●  o ●  ● 脇

333 ε3 3●●●●● ●  o ●。。客333● ■ ●。●・3389 ●  o o ● . 0  9  ● ● ●■・・ 。333の,●●3・●33=3 3●o●●●: !::=:3霊3客 2霊 霊30■■●● ●  o ..・3=29 -  ● ●6Q●=9い ● ●  ・ ●  ●             o 。●● ・ ○監3■ ・・●・・= 零=霊 1:監竃●● ●監監

●●●●●■3 32塞塞:=零3= 2霊 239●。●。 .  ■

.●33339・  ● 。・・932.■  o ●  ● ●  ■・9.。=2 ●.■.32 32 3軍3=●●● ●脇5 翻昌

●●●●Dρ.3 露::z:833: 33 33●o●99o  ●

・333=. ●  ■ ・o。.33・  ,. .  o oo・■  。33 ●一●333 霊= :!塞;■●● ●58=31=33=333 38 9 8 0. . ,・ .  o

o.3333.●  o ,o●・2=・  ●. ●  . o…    。33 ,。3333。 33 =竃:3:●● ●●● 8555闘

∫==23333ε333 =30●o●● ●  ● g o3ε33● ,  ● ●.0833.  ●9 ..・.。33 3一=38=8 33 3=ε:z:●● ●●○ 昌帽匿ロ貸●●●●♂■陰

iiii駐ま…歪23::!2=333==::●●●●. .  o  ● -03=3=。 .  o  ■ .●o=33.●・9 .・。・.=3=o==333 =3 !!:!:●●● ●●8 監置5闘日

三塞:=塞===3=33 ==.・●一〇 一  〇  ● ,93言3=。 ・  .  o ・..3::.・.● o ●D・・.:3 :::=3霊 3: :塞:Doo●● 匿膿 8口口日口●臓●●●: :言= =:33333232 33・..・9 ●  9 。,=332. o  o 一騨●333・  。. ■・。。。233!3!:竃3 2● ●●●●●膨B6 雷雷

’●●●暫7 マ ??}● o ● 薗 O  D o  ・  ・  o  ●  .  ● ●  一 o  .  り  o  ●  ●  ・ ●  一 ● ・ 9 ● ● ● り   o ・ .  o o  , .  o    g o  9 。   ?  ● ●● ● 雷置雷嘗

亀  ‘8333 33 33■・●■一 ・  .

。9333=9.  ● 一.●33.  。■ O  o ●o.●  33器 333轟 ●■醤  ●●●■

  ●●●●: 9塞=233333 83 3=,・。。。 .  ,

o●33333.  一 ・…   33・・  ● ■  ・

。●.●98333盆83塞:; z● ●●5監ロロ臼 口o■■ ■■●●●●■03 !2罵:33333 33 88●●●■・ o  ■

..3333 o  ■ .●・.。33・ ● ・       o           ● ..●●・ 3333 =;3塞:9 ●● ●●05β6R 口 o日■璽8 ■■●●●●●●: 2::::3333 3= =零o・.・● o  . ■9,3333, o ●。.・・33:。 ●  o     o  ●  o  ■  g  o ●●。・ ●=:33 =333: 33■ ●●駆監58四 臼日 口属曜 ■■●●●●●●苫 一!=:3:=33 33 32,・99・.。. ・.●23=3・ ・ ・●・●。。33●. ■  ・ .  ● ● ● o  ● o ・●。 ●・33●22333: :●● ●●●36膠 臼口 国 置■●●●●●●= 塞==3置3333293 22=・.・●9 ・ .・・塁3223・, 。o,o・9293. ■    ● ・    ● o ■  ● ● .. ●,323●,2333 :=● ●●●置8B 口 国  ■■●●●●●●● 塞3:==33=32 3 323●■go。 ■ ・●.,3333● ・・。●。・32= ●  ・          o  ●  ■ ●●零233●。o 92=: 塞●●o ●●8臓雷8 喀日 口  ■口■●●○●●●= 竃3:=33383 3 器33.■o・o . ..●●3333. P。.・o●●93 ε3.一,.  .・・。,3238,・09 ..3。‘:●■●●●●55‘ 口貸R 腰■■o●●●●●■3 3竃竃:::言33 3 3零33.o.o. o●o.938 $; o  O  O o 9  ■ ●  9 32  ・  33=8333謬.●・・●の・38 8置:●● 監 脇監8 5臼 目■口

o●●●■●: ! 3 :。・。9, 9  .  ■  O  o ● 9 ,  ● ・  ・  , o    ■  o  ●  o ・  ●  o ●  ・          .  .  o  一 贋 , O O o 一 一 ・ o ρ .  ●     o  ●  o ● ● ‘贋雷 賃脇一=δ    ;;;3 =33:。 ●  ●  ■  ■ ●  ・  o ・3333 ・ 9   ● ● 0 9 り 9 2,9●3=:39…  ●..:3=3・・  ;3;33 ●

ε::333333 :3。。3・・,。● 9.●,り・333 =・   ●・.  ● 9●3:9.●。・・8・●●・.8=== 3333333:3●B監 口 ■璽■■言轍liぞ  9       ●る ,  ● 。333●.曲●9 。 .一,●●2232   .   ■●9 33。・●。●. ...・g o322 333=2=:33 =:● 8口 国目霞■

3==23:3333 3333:0●9。 。o。・一●・,333333・      ● 333零3。●  ・o,399・●3。。3 =33言:3:33:!  05 口■■訂●●●●●●●!8●●●○■●●:6雷●●o●●●●

7=3=332233 :3塞:3塞3=3・?=13:=震==

2.3383.o。,3  3833383●;= 39:3233

●.  .,o.・030 , ・    ● ・ ● o ● o

:●●o o  ・  ・ ●  ●

838=33   。3333333.3・ ::3=.一3累:

3323=。   。o・●:333 ,。 呂   ●    ●  ●  一

。30●9。3330

12!!!1=1

  33:===塞塞:333●3833:338竃::3雪

3三 ●●86鐸臼2 !o●●●麗口

  oo口■■■口■口昌

電監●●o■●●●! 33!:!:3=== ====3霊= =●■●● ●  ■  ●  o ...33・:::3::=魯=●3:2 =.・。。●,・。● :霊3零=塞3:置●●●●●●●●書監●●■●●

 ::=!竃::2● 7管?一

=9= 8323=3雲o。■.●。o・・

3,●09.●  曹  ■  o  o  o  ●

,  ・  ・

 ●  ●

。●●。.8:塞:3.  g  o  ■  ●  o

==:3 332・。   ・  ,  ●     ●  ●

 .『』●o●o●.ρ3332333333■  ●  g    g  o ●  o  ■  ■

:室●●■塞:?璽●●● ● 1㎞≦ 一 く2㎞●●●●●● ●凸‘Σ ‘: 轟&33.333333 30●e■ 90 一 9・●・=  ●   ● ●  45  3  339 ε8   333333 ■●● ●轟

5 65●●●●●雷 55■●■■●

●■: 苫::塞3z●○● 3:93:

=ε::=

:塞:塞383338 333

33:.・●。9。38=。;3燈.。・

・..33●●:;●● 。8z●●ε●●

●3 撃  .ε33●塞  333833

3;33333=3茎:=33333:3ε:3

   ●■●寓  6●oO

2 ≦‘    一

一顧 <3

脇脇 巴監●■●● o■●● :::3:3竃3:==3●=3 =3:33=。■9。 。●一 ●■●●●● ●3 3;333== ;;8;32:竃 ‘ 塞●OB8艦 3 ≦口陶 く4

監’監 信8●●●● ●●●o● 塞:ε: ::2塞=33・9= 323==33●。. 。3竃●  ●●BB●= :333333 =:3333 :3●●雪8監 騨 一監=監 =8巴●●脇鵬監 監脇監=●

●●●●●●●●●●●

●●::

 002:軍::222=,・:!■Σ33=3霊9 =33雷9323.3

.9333332=323:●監監:3●昌監監●臓B

●: ::32923   響■ 9 , ● ,

:33:    ‘3。  一 3 :!

:Σ ●●8覧雷

2累 ●●●6R 4 ≦■ く5口膨ロ膨R監隆富 655監 8縮彫

●●●●●●■5●●●●o

●:

 33=:::!:2=2=一3竃=:333!

3  =塁3=333388 33338呂3

3●匹露駆雷8口883●雷臼霞脇膠6口5

●::::=332:∫3:z!30:●:一33:33一塞=:;

 3:3塞●●

=  ●●●5口  ●●■口膨 5 ≦盤 く6

口臼口障口 56 脇5●●●○■ ▽ 2= !2! .  ・     ●  ■  ■  ●  ● ■脇  5冒 膠■●●  : Σ1: ●  ●D● ● 5置

口口RR口雷R日臼口口Rロ ロロR口Rロロ ㎜口口ロロ   q口口R口 四山魑胆口日口6

四‘

   ●●●●■冨6=●●●●■●

iiill講i

  6駐『680●

7 、詩2轟6一 ::=3:3339 ●:33:塞3塞●●  ::::ε=

灘iiiii

:…潅3

::32竃

i灘i

3;己●,70● 『

灘i…iiiiiiii       ●●o‘     轟  己口日監口陶R臼雷●●●●::::==

               :               3               ●

 = 3: 轟 ●●●●

 言:=2 ●●●●●!;:●=ゆ●●●●葦::::説3:

 ●●●●■●      ●脇6四

§i蔓籠器 5   856 6監監電巳臆 6B四騙脇8昌

6 ≦;    騨

7 ≦8 ≦

口凹口

<7く8く9

凶出目目顕 毒5距器鑓 ●●●●●● ロロ   ロ置       ●匿B=●9●●●●

●●●●■●昭書雷鰐●●●艦●8監脇B膠

言 85駆3口n 冒R膠雷臼口 R口日屋R瞬

9 ≦;    一

■=巳 8=虜じ3 6●●●●O●0● ●●88 監 8巳89●●●o ● 監疇8匿 38

Fig。4.5ユHeights of the radar beam for a JMA operational radar(Fukui Radar),for observing precipitation.Three

   elevations,0.0。,1.0。,and2.0。,are used for the observation.Range circles are drawn at50-km intervals.Borders

   between the different elevations over the sea are along the arcs at about60km and130km from the radar site.The

   areas under2km of observation height are found with a ring shape around80km and150km from the radar site,

   and in the neighborhood of the radar site.

一76一

Page 15: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

■ o g o o o ■ ●  ●

一 o  ,            ・  ら  o  ●

 .  ,  ,  9  ●  .  ●  ● ●●

●●9一。。。=3一,,●。。.・一. =20333・:,・ o    ■  ●

.3099.。 .。9。・,霊33 ;■ ・・ 一  .  o  , ・  o  o  ・  ・

●  o 3=匙=■333333383 32:3333. ● ● ● ●  ● ●

〇 一 り P  ・ ● ■  9 ,  一 9  一 一  ■ 邑 一 〇 ・ . o ・ 9 0 ● 9 , ■ ■  ・       ●  “  ●

     3    :●・3;3  3..3

   3383338 33333333魯 ●3333333ε==3::::332

  り

22象

一:333:3:3=3と塞==9=;3:!o●=23:=塞置●o●23;!:塞1!1塞:z2●:●3::●::!1●!ε●○●

38==8====333       33=33塞竃::=:3●●=3:::333 0●●塞;:象竃: ●●●●3:薯=: ○●●●●3婁3● 1■●●○●ヤ●●

3:=3===●==33;8:33===3823:3=322:ε333=3:塞2!=匿:::竃言::●:●○■■■3:●!●D■●●●●○■

==.. ・

=3:,,輪・

23339699,:=3=3。・9.,33333』。.3,233333333・:ε:::=3:::

6  ●  ■

   o ●

・  ・

=.・23!:●●::ε ●●●oo■●● ・        る● o●!●●::累:1驚33=::・●●・●, 9332 象:=300●3!3 ●●●●● ● ●●●●●●●●●● ●o●●●● ・D o●●3工竃●=32 3.・●◎30。

■  ■  , ●70●9●●?●,●●   ●o●●■●●雷じ脇8●●oじ● ●●●●●0●●●● ●●, ??マ● . o ・ ● ● ● . ●

333呂‘●● ■●  轟●●●●‘ ●●●●■ ● ●●の ● ●     轟 凸轟3一,33;一339●;:33苫塞●● ●●3苫●●■o ‘ ●5雷●■●●●駐雷 8じ‘脇5覧o■5 脇紹露5匹脇5眉臆 5●● マ333;:333●3.9●監::=言=3●o 竃婁3::: ■■ 四35■■5B臓じ 085脇5四5●脇 昌雷昌富彫階8麗冒 ■■●3竃 。塞3=333象霊=・.=竃1累・◆●●●=:::32讐 ●38尾 脇昭脇8富65鶴信 B脇監8B監監8B 8膠監6‘鵬5●B ◎■●=●●=・9=233ま33,・

. =22■●●●●2 233 D雷雷B3B 3呂898震監88 88B霊53鵬03 3置83呂●●,3 Ooo●2●の●o ・z22書33。, 3

3333=3●:=3:;3驚2:=:3婁:o

零  ●巳監雷88脇● ●888監匿駆喀

8B障8監8B魔置監8監監監8B彫監

B8雷監監雷●膠B‘69巴監8●●監

88監匿脇●●B=8‘■●8脇冨監艦

 ●●●●●●●●●●麗●●●●●B●●

30●   ?2=

=3=333330・o

,o

  33

 333■  ■  ,  .

:置婁3z=33●●33:;::●●亀4! : :●●・■.c5

‘●‘5艦5●諺5昭●■●56雷雷昌駆脇 ●■膠5膠膨65躍

8蓄霞3脇88εじ55‘88じ冒 5鴨

     ●脇56冒5脇c●●55脇脇膠喧■●■

1能灘罷 65脇●●Oo●●冒脇‘5覧脇亨go=5雷置鶴05

●●ε

o=:3。・。D・●9,・ . 喚 一

。3,●,。

   ●  ■  ●

;3・●●; ;   ●り■● ●● o●o● ●oO●■ ‘,, o荊●● ;;輪.一,,。 o

  333923 。338833 3382393・393333:

==:3=3塞●3●喀Σ塞:●●

32z:3!:3!= ●●○●膠雷

  ●o● ●●●●:3の●の:●●●冒

●●98巳監監5●■●置8=雛脇雷●●誰3の謬%言

呂!:3難睾

  ●●●●●●●●●■●●:!=:●●8のの032置ε

 ●●●=:=3=2

        ●●●●●塞:2Σ3        =::::z==塞3        3333ε;ε~■35●●●=!zξ3.3!!::!◎●●         32:●o●z■●

:;●●巳露陵農艦

蓋……盤5…辮:○篇:竃習●=●

 雪馴3冨● 鶴B  ● 8‘●■●●彩塞零■辱鴫イ:●:

 ●o: ●●2

一:z3  Σ:

  3

:塞3;=3●2=3=一332333言象333ξε:33333濫:=:333a38333

。3

 0

o  ●

一  9

9-  o●

: =::3;!=: =2 ●○●■5脇5 ●一●●:!=3==.31!!●●○■●1:葦………菱圭葦3

φ●●!1竃:3,・ =:::1:3==33:

・3=:=:::== 33=:εεε::

!: ○●●or6膠Σ 寓ε3;o●監冨

唇3鴻雛:=

雷3●●●ooo1::=塞:2塞!:z:3:=:1==.?一9る●●○

凸33●●9●●●●.。.轄…灘…  :&

 跨o      一

三:3ε=一

=と==9333言:竃=・9。 :23零3, .  9

o  , ■ o ??   , マ? 7 ●o●●o●●■ ?   =? ? ??o●●●●●●● ●●●●? 魁?● 響?o 9  ・  o  ●  ●  ● ,    o  .  . 9  .  ●  o

3:

,;3  ゐ  ‘.’3~:;3:ε:3

6‘ ●o●●●●●●○■o‘8=■

 ゆ●●●○己6●●●!3:苫

3●●る‘●●●●

 ‘●●窃●苫●o●

‘●●●‘  ◎●●○●●:○●○●●

●●  ‘る己

:3:3=:盆:・轟   ,…嶺;… 3β;3

3:3333 .  陶o/…ミ…

●  o  ,

=。,o  . =;::3塞::9 ■●●■口‘置置●● ●●■■ε塞333 ●●■ ○■●■o● =::●:●03; 3●●:=3霊竃陥: :盆:駄。● 3= ●8:3 暫・3 ■

。  ;

3 39  3.

塁一3 33 33

・323:塞:=!。3:33::3●●33=33●●甲332:::●.。==3塞::

333=33;3三■

33塞

3●●●監68●●:!●●●●喀●○:●●●●●●●●ε●●●●●●●=●■●o●●●●●■●●○Oo●

●累●

 ●●●軍3:3=■驚●3;:塞3:=oミ033;3::=竃■o●::2=3塞一ら●■3::===ゆ■●●ε::; 嶋

●● :3●○●俸●o !:=:●●●●

 3:2言=3z:Σ‘:==3:3●●z=3:=:z=監と!=:;=2=ε:竃置

Σ::!:○◎○Σ=Σz=Σ=:!1=; ::=:!:=3z:::Σ:=, !33z ,.‘‘‘6●り,●3:=塞寓=3

3!三舘=蒙●o●萄ii=}…:辮零1…il;i難3’…

3. 33森“=

?=一‘‘:3雲!3: ●●婁3=3!1=:●

3:=●●

3.Σ竃ミ33=3瓦三1==二4

臨重= ●3●●●  ■■●●

;=ε 象

33==:233::::2Σz=3象::二=・

3●●

・  . ●  .  ・  ●  o  o  o = ●■D●●●●●●● ●●o●● :2 ユ=:    一・ o  ・  .              ●  9 ● o ●    ▼ 3め :   ●■ ●○●● o  ●  ●

o  ,

。3=;;=; ‘ ●●9●■  ● ●o ●  o●  占 言轟‘ ; & ‘;; 3・■ 占;;   ε   =3 3:;   凸 ● ●● ‘‘●●● o● &=;309 =3=93= := =!●●;●3 ●● ::●==塞: 3= :;:9=3!= = 333:::::3 ●●●:●●。 ?7 9  0  ●

o,・

933=223・.3=3=3,。。●933

3●

置●

3●

●●,●::z●■●D●33Σ6●●:Σ:

:塞

3●

:●

3z塞塞!:;●23=3;=●σ:3:=言・:竃

2=

=!翼:=:==23:=::Σ霊:!z:31:

 3=:  3:3婁2署:2=  =33:::;竃3=ε3”塞駆: 鑓

…議茎●●‘●}{……i3●iii :擁圭麗

纏:プ麗蹟ご聞ε

:工:

33::!

 39;3

 33o  o

,  o

・  o

O  o

,  一

.9.●.0333  .9●3=3:  ・。,;=3:

●33 !:::=

3:3::33:!累●1:●=霊●●●膠=

●●3●■!

 ●:

●=:23:=!:=::::言3=:::z

 3:==3:;暑

23:;3:3, 雪 7?,7▼一  一  一  9 一  一  ・

:一::3Σ言

,竃3!!:

:と竃

9=333   ■ξ………圭㊦i… 3z塞●oo●

13:3;331窪●■.●

:!1;=:マ;=3===3

::=

3:3=

:9

3 ,・●::●32霊3, ● ● ・ o , . 0 9

2;3 ? ・  ‘

3●●o●8膠●●●D5監鶴

監●

●●3ε33=::らマ7雫,?

:ε

,ヤ31:====マ   !?7?

一εε 3:蕊塞蔓霊3・?? !。    !●

o冒4亀5●●9  ??り●

三評8マ 7■ 3333=o  ●  一  ・  9

o  の ・;書3;=; ‘ ●●● ●● 輪●●3;;‘ 6● ●●i 6轟三 己 二Σ三轟 9一,■‘●●●る己:● 疇三3’.333 3a’馬 .  9

.  9

●  ●

 .

3。

・9=333: ,3333=。・33=3=・・3:333●.・232=2=z

.  0

6i:1

3=

23

●○縮5昌5●3●5●●5富=●●■○●●三〇●●●●●:●●8D●o●

●●

●D

●膠

 3

 じ

●●:z室3言●■●■o塞:●●●=●呂=:。■ ●●z●2●: 5●::1●:

●●:●

 :

●::=:33:?3●塞==Σ33:●23:=三:3!03::3::2::z3塞::1z:::

:::3駆:●■●●:=麗P3塞:●■3 :Σ馨:!●ミ■o !:Σ・婁●■鶴88●一?=2、●●c冨B

i灘iiii 3=::=塁=●●●塞盆

■●監●o■Q8●○●●鶴昭●

3:

:==:2

=.03客=222 Σ :o●脇●●じ● 監 β6●32●●● ●●●●3馨:=;= ;3 一一▼●● 駆●●監監屋信B 臆8● ●::=

339=332333333332 z3

3●●5●●じ●33●●0555‘猛

覆 55覧●●●●β4555じ●855駐

D●●●■●●:●ε,脇o●●監●●■●

 ■:3:,=ρ●●5●○●ンーぢ●○●●

●監●昌5階鴛監G‘●‘濫5置B駆6躍

魔8●●:塞5E ■◎●

・  g  g  o  ,  ●  o  , 一!:●●雷喧盧o昌 5B‘●●つ○●鶴 ○●■G●●o塞 ●●○● ぢ●◆ ● ■●●脇5冒陰‘35 5 ●○●●2

33

   =3・;;・ .。,甲■●3=3      ・●一。.9333333 .3●。3:3333  3:3=2;:3=

■  ●

 ,  一

3‘ ●タ3ε4●喧B監雷8  ::●‘8監留雷 ●:○●●oじ●5の●●●:●■■●5: ●=:●‘■‘■

   の●●●o●c=‘冷●=:3●

疑ii難1  、昌●璽●脇贋じ5昭

● 隻●o●●o●、●●曳4、●●●!

…鴇黙客…   ■,’●●o●‘■i   :●:塞3:=u 3

o ●‘●」卜3●●●●●●

三ぼi:i銀3:3●■阜.㍑=寵:Σ3●’:乞ひ∫鳴3:・孟舞”;竃■:3  ,7を7??・雫

●●○!●●騙監監監監昭膠

i…器難i…

●●吟 ●●●z:

  ■●

●●=22=:=3=33:;32333:3:=!Σ象・レr璽。::=3=緊1

:=:翼●=3=

    o

●●,‘

  23!3= 2

3、 ……艦…灌昌唇誰誰朧 ■:!::: 臼  ・ 一  9

9 .iii嚢霧  ?7 77●●

3:匙ζ●b●呂●1一 ?●‘●●8

富監監露β監o監巳じ3監 監8c6c

e3舞3;ε:ε3’● ●:::苫=:竃3 0,??,o●

i圭琵…暮髪

Oo・、 ●    ??

。三蚕33333鍔:写●●●○.qφ●●!●♪rげ●●●●●●

……套…象

●:2 3? 窄 o

0.

5㎜≦ 馴 く1.0㎜〆   。3‘;3

 ・: :=3;:●

鱒・,3-33:2■  ●3  ・==

  ,3  =3:  2●98  2●監監●  3竃■;3

 一6

  0 ●  A‘:●o■

 96脇 昼濫●

  :!

  = ●  .  .

●・● ‘ ●●●●

●苫三3z●3:塞1監●

i饗難, ,。‘●●・ ・

●○監5

 5監5

 338・

 ‘昌55r5監5葛 脇65冨58覧5昭 B‘‘58膨68●●o●08膠●■○●●!:!0●●●●■,ε33:9:3;薯  3:333:=3。3 33=333象  o     ■  ●  ・  ,  o

.のD‘占;

留… ●

o:

璽3

=3●

-一●    ‘三…1蕊髭:3:躍”:竃”衛 33::■●:

 :::ε●●32=:::窓■:

 9 ● ● ■ ?マ曾

羅難.

;;;:;3諏li

o●6◆●2=’モ・…●●}::雛: ・:詑=:器,!79‘o o,, 9 ● 6 0

●.   39

3===3・。3:=3  ..  9  ,  り     o

o  ,  ●

,  o

・  ●

333=

0 9.

1.0

1.5

2.0

2.5

0≦繭

≦;

一≦;『≦;一

口幽一一一■囮

<1.5<2.0く2.5く3.75

o  .

97」:3==::=2

 ●.32:33 。  ●33

器㍑執ζ●

     32   9  ,  甲  ●

     ●  ・o  ●  ■  o     o

o  ●  ■  ■  o  ,

・  ●           ■

   o  防  ,

   ==3; 。●.:33。   一葛 一2

=:9.・ ==go 。,.: ●  ●

3.

5.075≦   ≦;

   一

口凹

<5.0<7.5

■  o  o  g  o

   ■  oii望 7.5 ≦『 皿 <10。0

180 1 N/・10. 0 ≦■

Fig.4.5.2(a)Average hourly amounts for considerable precipitation observed by Fukui Radar.

   Average amounts during September l990.Observations were usually made at1-hour intervals,and the intervals were

   changed to3hours when there was little possibility ofprecipitation.The numbers inthe legends indicatethe average

   hourly amounts ofprecipitation estimates that were the strongest2%of all the observationrecords duringthe period.

   Range circles are drawn at50-km intervals.Over the sea,1arge rates are found along a170-km radius from the site.

   Another peak is found around90-km radius.Both areas are below2-km observation height.

months in the warm season.They pointed out that the average field of calibration factors on land showed a

high correlation to the field of the minimum height through which radar beams pass without obstruction.They

applied this relationship to an algorithm,and produced radar-AMeDAS precipitation maps,in which the

calibration factor fie1(1for the radar was given as constant with time,except for areas where raingauges could

be used for the calibration by a correction method.This relationship will be clarified by another investigation

in this stu(iy.

  Figure4.5.1indicates the field of height of the beam by which Fukui Radar,one of the JMA radars,observes

precipitation.Fukui Radar was using three elevations for intensity observation with an almost constant

altitude when the data in this study were observed.The heights over any area more than130km from the radar

are of the lowest elevation because sea clutter has no influence beyond the tangent point of the beam path of

一77一

Page 16: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

Bm

5

0【00【07050

0

-¶エ26乙0◎【0ワ80

くくくく<<くく1

  一 ・ ●

 ■ . ● , ●

● O O ● 330

=≡●目口四口■

 ● ●

 り  ■

●  O ●

 9

● 齢

● O

 ■

● 9 ● 一83;3.

一 。 ● 一233●り・

●・●,==●塞・3・

9 ■ ●●3300●■●■3

.99・●3・●●.1:

=30 .O=33雪9

● ,

  0

3  ● , ■ O

=. ■ ● , ,

nm ≦≦≦≦≦≦≦≦≦

【00【00570【00

5

  O  。 ● 9

 ● ●  , 0 ●

・ ●  ● O ● 3● O

 ●

0 ■●

O 一 ● ●33。

■ ● O =3・

O,O●■OOO

  一霊

 ,=塞

,03凸:

‘8    騨一

‘8■ ,   9 .

3●●90■ O   ■ ●

0ームー223『0”40

1

. O ● ●●●●●,33■

O

●     の83■■9●

O●30 ■ 0   9 ● O

.  ●3●●3939

=3  33寓塞3

●O●,OOO O   g O

OO

■ ・ ●3。■3=3塞

 ●●333=:ε!

・….・...●竃一轟塞●

,●●333:2:3●

O  o  o:

。轟○■

塞     塞=●●●・

難鼎…”一…

39言=● ● O   ●

 言33    ●●38

=,   ・ 一轟O昌塞=

3i   3一占3:31

‘   7=凸一轟●●一

0 9

, ●

3●O●

 ● ●

  O O  O

一る30●,  ●

轟!Σ.■    .

O●Oり■

・●●8=。・竃

●3呂.933=●●

33333塞塞●

08●■2==2●

。38●●Z!=●

●●.80・2:●●●●

.33=3:2

● . 0.030●:

:○

  ●

  ●

  ●

 ●■

 ●○

●「●●::!・●3

●,℃:ε塞:。=;

”“巽巽

●●冨3;39:

●■:3=3一占:

◎●苫33●●=2

●塞曾,;333,=● ●●

  :  ●O●

  ρ●●8釦D匡

 :●ひ蟹6●●■●

■●●●●ご溝竃●

 ●●■●塞Σ3‘O

●●●33畠轟:一占O■

○●■●●:2●○監

●●●●1g;●嵐●

■●● =

琵罐鍵翫

●●●●●O●●●

     ●●

●葛監●●●●o●▼

器鷲巽匙“

 ●謄●‘8‘躍駆じ

灘黙

講皿繋

● ■

● .

●●●

呂3.

.9■09 ●●

 O

● , O

 ● ● O

 ●■

●O

。.9033:

. ● O ●■3=一畠

●●

‘●■

●●2=333

0・&:3.033

=●

雪一●

●●●●:1●● 冒

●●O一畠9&霊響0

88‘監86R口匿

     盟

●●●●  亀:

,OO■

轟・.

 願 O

,O ・● ■

■, O

 ●

● O

, ρ

, ●

● ●

● O

O ■

 ●,

一9838一.:

, ●323●●9

9,333:

O ● ●...・:

●●..●033!

9 ,●●ε3塞署

.。.=.3塞3

● 0 9=333

●●

ゲ●

■●

●●

●●

&●●

己33

一.‘▼,

●=一己3382

●3●0亀33塞

●323339

 333●!O●

 22・。3・●3

 3曾OO●ε3=

 3=3=3!

 3Z33●●2

δ1

‘:0

‘量70

=一品●

O●●33== 脇5

■■O軸&3雪,雫, ■■

■●○・轟:=9●○○

‘●3。&曾。ε●●●D

 =●竃塞竃:  乙●

●窒;轟O轟窒;轟●  ●●

 Σ讐033塞3り ●●

 霊}=』乙:齢轟一占   ●

監巳置‘膨脇

灘難難脇

●D●じ6●●●監膠

●●●6脇雷80●8

●●6濫●●■●8●

08膠655脇監●●

 屋冨5●● ●●

 濫彫6●‘  ‘●

 5β6β監雷  ●

 B髭B富38  ●●

 冒冒5膠監 ρ●雪

 監B監88  ●■:

 866◎●  ●■

●●粋8. ‘:3。

,■●●■●

 ●O●9

 ● 釜

””””斐

欝謬

      ,

      ●

   , ○

 ■

● ,

●σO●・333

一轟■

‘:塞:8.●2

3

=3=333=  ○

監B6監昌障3監B

●○■●濫  :=33,,

O

一 9333==

○●

■,轟: ●3・●=一轟‘,

る79:0δ一▲一ム?.一轟.凸

O

O■■●    ●●:●‘7

‘=

●O

。。・33●.::■●O

.●・。=,::●

●●:O.●一.03.●

9●一&38。■..39

‘3=3=一る3塞竃●

:3;!,一3・二ら●●

㌔●=電雷昌監監●

  ●●●●●監●

の●O B●=:;1

●   ●●●●:=:

 ?

●●

●9 ●

O

● ● O ●・●.O=;

●●O&330●・■33

‘9●●●,&言3$1

:3     ●●

●霊甲●●■窒甲窒;‘●

●●窒甲

●●

.OO 一=332一

●●竃33・●8=3●

‘苫:2●一占2.・言。

・33塞322!:▼

:一轟2聖=轟2=璽=畠●

O●3

. . ● ●3=■・3置

9 ● ●・.33●。。二占

O●●3塞乙3..=●

6:●;:3=D●●。・

3=2=●33。9,

9 3=3:一る33:

一。.霊33=:33㌘

3苫32:乞::?

‘=3?一32Σ33●

‘εZ=O●33●○

o●■屠

=33=. 39

  ,

, 9 0 ● 332$■●

‘!●霊:=。る3・・。

3=  =?,●ε!3:

=▼一:塞塞92=,

‘?9:●●●●●●●

;333。,●●。

0 9 ● 9330・33・

::::=。・32.

3●.  Z=塞1一』

●●●3塞Z=::,

‘33●●●塞竃D:

33●

■,O,●0齢

■   ■

・ ● , ■ ■■●000●9●90

 ●    ●■●

●●,● ■

‘  :・乙塞塞量,:ε●

7  ●●

》O茎3一薗

=383  三マ9雪;ら!

,833畠‘  ‘2Q●

●●●窓:3;:▼一

●塞●●●3,;‘Σ讐

雛琵妻鷲N‘窒層  393●●=●●O

甜釜.=■3==3●.・

9   ,

. ●=● ●

O ● O .3=.■3・

 ● ■ ●

.  ● ● D ●

■O■O■●O●一

  ● O■■

Σ  ●●G●一&:

る=Z  ●◆■●●?

‘3:2  ◎●O●

9。・833=    凸

ム33..●.=。・?=

‘3●●2・●●03監8

凸● (

●●Z3213:聖

・:塞:塞23=3?

     7。;?

踊琵露Σ葺髭‘装琵聾””梵

,・3=ζ・●

 ・■O●●■●OO6 ■

‘一‘3。●言■●o

● ●

■ ●

●  ● ● ● ,

● ,  ● ● ■

 ■ ■ ■ ■ 9

  0  0 ■

, ● O

● ● ■

● 0 9

0 3

&=:塞●

・累:,&一晶

・Z33Z竃

●=●■塞雲塞3 ●

●●

 一&●

  3

凸:=3=3.●8呂。

;;:●9.●338.

ε塞軍9:3塞.・.

‘●○■●:一凸3竃:

■■,■,9●●OO,9,00●●■

■●■,●●り■●O,●09●9,■

,000■●,一●,■O■●O■,O

O,33ゆ●3=330

…琵琵””輩z

O●■3;=一&9ε=

・●33=3:3;,己

93●O・・=:33●

μ蕪難…

●●:3:

●■30■●

己;33●030●o

O●0■9●■9■.一● ■

■●■O●■●■.●●●

●83=● ● O

 ■ 9

● ■ ●

■ ● ●

一 ●

●   ●

●■・●9

..・233一轟7.==

‘●●●O●●○●●

O己・轟●●33=330

・333:一占:●●

●●●

.OO●=09●

■=3=● ● ●

O   ●

● 0 0

. .3=33Z=2?

●●●●●■●●OOO=:。轟・。・●2?

三ε。6!。ゐ=●●●

●●

凸一轟=3●o■..

.0■,●●● ■ O O

σ=333;=3塞

;    ■●●  ◎●

,●●●●嘘,『9豊甲窒甲

●●●●;,9∂■

●望甲望甲=;3;一

冒●〇一,   響 響 響

O9

. . 9 .3.●●.O・2

一占:塞   ●OO●

●●●●●:●●●

●OD一&●●●●

●0●=一轟33.。3■

,●●30 0  ●

● ◎

9 0

 ●

O ● ● ■ ●

 ● ● ● , ■

●●●・●030

 ●9●●●・畢

一&=一‘●0     ●

品亨O:宝;占●●●■●

●●●●:0己●●●

     ●●? 7

●=33●   ●1

   3●1●■

●●33一8塞=30

●O●●OO   O ■

■ =3   , ■ ■

り  O O 9 9 0

● ●  O ● Q O

 ● 9    り ,

O●=0

■●●■O

O ■ ■

.窄q璽一の轟:●●●■●

●===3=●●■■

3・●3●.▼騨=●●■○

:Σ零●3緊9●●?

一轟:=曾,Z?一:・轟?

凸:33=一ム雫,=3▼

轟三3?=己:=●●■

ξ……ひ3塞○●■

:==一‘==3:,凸-

雛嚢●

O ,  ■ 9 0

  , 9 ●

■ ● ●  ●

● ■ O

●●3零。●33濫3;塞

33:=9?一=Z▼

‘一る:一ムε一&:曾=ム2

●990■ O ●

,    ,

● ■ ●

9

・ ● ● ,.,●.:塞乙9

:2==3;=3,

;?03;..・=&3=O

,一〇

,■= ● ●

● O

O

■ ● ● ・3●,9●3竃

・:93;.●霊3●■。

3●,●●O■.■■O●●9●090

,O●●

験 ●     O

0 9

0 ■

9 ● 一 ■.=一■.

O●●Oり

●=●畠O●O●〇一●

.●●■3 。 。 ● ==3一

O ●

O O 9

O

9 0    0 ● ● ■ O ●

・・.■.3. 03=.■・

33● O O O O 一 ■

・ ● O

O ● ■ O O      O

■ ■

■ ● ● 9 ● ●.■

一 D ● O ,

O O

● 0 9

O O ● O 馳 9 ● O

● ● ■ O

● ● 0 9

9 ●

O

● O ● 9 ■ O

O O

● O , 9 ● O O

● O O O O ● 9 9 9

■ ●

O ■ 9

■ O

, ● ■ 9 ● 9 ,

. ・ 9 0 , ● 9 ● ●

, ●

■ O

● ● O . 9 . O

  ● 9

● , O ■ , , 9 9 ●

O

081

招燭

Fig.4。5。2(b)Average hourly amounts for considerable precipitation observed by Fukui Radar.

   The same as(a),except during January1990.There are areas of large amounts along140-km and90-km radius

   from the radar site.There is another maximum around the center.

Fukui Ra(iar at the earthフs surface.Around110km from the radar,the second highest radar beam is adopted

to avoid sea clutter.

 Figure4。5.2a is the field of the averages of hourly precipitation estimates for Fukui Radar which were

collected from the strongest2%of the observations during August1990.In other words,it is the field of the

averages of severe precipitation estimates during the month.Zero was assigned for locations where the

frequency of precipitation echoes did not reach2%of the observations.If all of the radar estimates were

accurate,the pattem would show the average precipitation amomts.However,the most obvious characteristic

is that the intensities are weak in the areas with high observation altitudes.Though it camot be denied that

precipitation happens to be weak in all the areas with high observation altitude,it is natural to regard,as Joss

and Waldvoge1(1989)stated,that the lesser amount is caused by weaker estimates due to smaller occupancy

of the radar sampling volume by rain drops,or to observing different contents of radar echoes along the vertical

direction・Discontinuity around the border of different observation angles seen along a circle with a radius of130

一78一

Page 17: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

一km from the ra(iar in Fig.4.5.2is considered to occur for this reason.

 In the above investigation,only a part of the observations were used.On the grid with the1、igher observation

altitude,not only the intensity but also the frequency of detection decreases. It is not reasonable to include

those grids with very small detection rates in the data for the analysis because they may be observed only for

a particular restricted condition,such as precipitation from tall clouds.

 The above relationship changes with season,as shown in Fig.4.5.2b.Because the average echo top is lower

in w三nter,a small increase in observation height often corresponds to small occupancy of the radar sampling

volume,and causes a large decrease in the precipitation estimate by radar。This result is consistent with those

of Joss and Waldovage1(1989)and Takemura et a1.(1984),

  Now that we have investigated the nature of errors for the estimates,we consider how to modify the radar

estimates observe(1above the ground.The following assumptions are madel

 (1)The vertical profile of an observed radar echo can be described by a functionl

 (2)The ratio of a raingauge measurement to the corresponding radar estimate on the ground changes for

     various reasons,such as the variability of the Z-R relationship,or the difficulty of ideal maintenance of

     the sensitivity of operational radar hardware.

We represent the ratio of a raingauge measurement to the corresponding radar estimate observed,一F,as

F=!媛 (4.5.1)

where。4,which is the ratio of the actual precipitation to the corresponding radar estimate on the ground,is a

parameter for assumption(2),and∫,which is the ratio ofthe radar estimate on the groundto the radar estimate

observed,is a function for assumption(1).

We can derive∫in Eq.(4.5.1)from the distribution of the intensity of the radar beam and a function

representing the vertical profile of an observed radar echo.The intensity of a radar beam at a specified angle

is known to be described by an exponential function as follows:

              1-2一(θノθ晦)2,

where

  θ:the angle from the center of a radar beam,

  θh:the angle where the strength decreases to half of that at the center.

  The intensity I of the radar beam illustrated in Fig.4.5.3is then described as:

              1(z,ン,R,β,θね)一exp[一1n2{(z一β)2+y2}/{Rtanθ^}21, (4.5.2)

where

  z:height of observation,

 y:distance from the center in the direction normal to both the vertical and beam directions,

  1~:(1istance from the radar,

  β:altitude of the center of the radar beam,which is calculated from the altitude of the radar site,the angle

・felevati・n,andR,bythepr・paga㌻i・nequati・n・

  In the above equation,the path of the radar beam is assume(1to be almost horizonta1.

一79一

Page 18: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

Further we assume that the vertical profile of precipitation be denoted by:

V(z,T,α)昌{(T-z)/T}118(4.5.3)

where

T=echo top height,

召:parameter for determining the shape of the profile.

The intensity of the profile is l at the ground,and O at the echo top-height.Figure4.5。4shows vertica1

ム〃

zRadarpu蓋8e

β・一一_臨

R一一一→

Fig.4.5.3Geometry of the radar beam used in Eq.(4.5.2).

0.96

   3

   軌

三〇〇一。=

0.6

0.4

0.2

一■&30.5

ロ圏a31.0

-a=2.0

一40    -30    -20    -10     0   dB

                  Intenslty

Fig.4.5.4Vertical profiles used for calculating the calibration factor.The vertical profile of precipitation with T km of

   echo top-height is described by{(T-z)/T}1/a,where z is radar beam-height.In the figure,radar beam-height is

   described as the rate at the echo top-height.Hence,the vertical axis shows2/T.Lines in the figure are for

   different values of召,that is,0.5,1.0,and2。0。Intensity is in dB.

一80一

Page 19: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

profiles described by the above equation for three different values of召.When召is l,the intensity decreases

linearly in proportion to altitudel this is the assumption Andrieu and Creutin(1991)adopted for the vertical

profile with no bright-band effect.By changing a from O.5to2,most of the profiles investigated by Joss and

Waldvoge1(1989)can be apProximated.

With these equations,∫is represented as:

        ノ(R,瓦θ,,T,α)、」趣_

                       窟・(z,y,7,β)V(z,T,α)み4z

                            窟・xpl-ln餐識y2}み4z (4a4)

                      ㍑exp[一1nl繍許y2}】{(T-z)/T}・!・帥

where

 7:size of the radar main beam defined by R tan(θh).

 Here,integrals are calculated for the area where the main beam passes.

 In Eq.(4,5.4),the echo top-height T and the parameterσfor the vertical profile are needed,and they are

included as a fraction an(1as an integral format.Because a simple form of∫is desirable for the process

described later,an approximated one is proposed,Considering that∫is almost l near the radar site,and begins

to grow rapidly at a certain distance,∫is approximated by the following function:

∫(X,β)=(1+X82) (4.5.5)

 Itshouldbenotedthatβisafunctionoflocationonly,andisindependentoftime,whiletheparameterXis

treated as a variable of time only.

 In this approximation,θh is not used because it is constant for all radars.Distance1~has some effect on∫,

although the effect is not as large as that of B.We don’t include the effect of R inthe approximationso that

we may get sufficient results with as small a number of parameters as possible when we camot know all of the

detailed vertical profiles of radar echoes.

 TheparameterXrepresentstheeffectofradarsamplingheightandanechoprofiledescribedwithTandα

in Eq.(4.5.4)on the calibration factor.By introducing X,radar estimates are well calibrated when the ratio

of the echo intensity observed by radar to that on the ground decreases as the radar beam becomes higher.

 The fmction∫depends on B only through its square.The form ofβ2was selected as a result ofthe following

investigation,which was made to evaluate the performance of B to the power of different orders.For this

evaluation,the correction factor described by Eq.(4,5。4)was approximated using the least-squares method.In

Fig.4.5.5,calibration factors for various distances from the radar site are approximated by three lines described

as∫=(1十X8々),whereゐis1,2,0r3fortherespectivelines。TheparameterXforeachlinewasdetemined

with the least-squares method to minimize total difference between the values from Eq.(4。5.4)and those from

(1+Xβ々).

 For the various situations shown in Fig.4.5.5,where the parameterσin Eq.(4.5.3)is O.5and2,and echo toP

1一

Page 20: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

X O.1

 40

-隣

30

20

10

10P

         r

         !

          ,

          !

           一

           !

            『

            /

             置

             !

              F

              /

               ■

               ■

(a〉

一 1

-2   3

一曾一甲一・4

20 30 40   HE工GHT

ー隔

X O.!

 40

30

20

30

Po

  -’ 、/甲

//’

(b)

一1

-2   3

-9一・一一4

20 30 40  HEI6HT

ー隔

X O,1

 40

30

20

10

弁o

 //■

!!/

.P’!一

 ! !

!/

  /臼

(c)

-つ乙3蕗『

【  四 ,

  ロ   

  … 一

  ロ    ロ

  ㎜ 一

  ■      

20 30 40   HEIGHT

X O、1

 40

ー隔

30

20

10

(d〉

一1

-2   3

一・一・一・4

Po20 30 40   HEIGHT

Fig.4.5.5Approximation to the calibration factor variable according to radar beam-height.The calibration factor

   calculated by Eq.(4.5.4)for the vertical profile in Fig.4.5.4,is approximated with lines described by1十㎜κy.The

   line describing calibration factors for different beam heights is denoted by mmber1,and the approximations are by

   2,3,and4,where the value of y is1.0,2.0,and3.0,respectivelyl窺for each approximated line is determined by the

   least-squares method so that the Iine may be closest to the Iine1.In this study O.7。is used forθh.The beam is shot

   from1-km height with O。elevation angle.The altitude of the beam becomes higher as the effect of the earthys

   effective radius becomes apparent.Figure4.5.5a,4.5.5b,4.5.5c,and4.5.5.d are for4km,4km,6km,and6km ofecho

   top-height and for O.5,2.0,0.5,and2。O of a,respectively.Comparisons for the approximation are made at10-km

   intervals from the radar site for the points where the height of the radar beam is lower than4km.

一heights are4km an(16km,the approximation with the square of B shows the least difference as a whole.

  The other parameter∠4is also a variable of time only.JMA radars are mdergoing careful maintenance,as

are many others.There are,however,several difficult problems,even with the best maintenance.For

example,there are large differences in the installation dates of the radars,reaching over more than10years in

some cases,which leads to different types of parts used for the same function of those radars.As a result,it

is almost impossible for the hardware,especially any working operationally,to be in strictly ideal condition for

all the ra(1ars at all times.Consequently,there are errors in the measurement of the intensity reflected by

raindrops.A compensation for those errors can be included in∠4.It should be noted that those errors are

represented as a function of time only,and independent of location,although they are different among the

respective radarS.

  Variability of the Z-R relationship also affects且.The variability is considered as a function of locati6n,so

且,which is constant for the entire detection area of the ra(1ar,cannot represent a detailed distribution of the

一82一

Page 21: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

calibration factor field.However,∠4can be changed for the variability in different storm types which are

almost identical in their detection area and change gradually with time.Thus,this variability is better

described by being included in∠4as the average value at the current time.

 Consequently,F in Eq。(4。5。1)is described as a function of∠4,X,andβby combining Eq.(4.5.5)as follows:

           F(オ,X,β)一オ(1+Xθ2)            (4.5.6)

4.5.4,Algorithm

4、5.4、1.Necessary conditions for the calibrating parameters

 The following conditions are proposedfor parameters∠4s and Xs definedbyEq.(4.5.6),whichdifferent radars

should satisfy.

1)Since radars have several errors in observation,precipitation estimates from different radars for a point

   where radar observations overlap are,in genera1,different.Their modified values,however,should be

   equa1:

オ、(1+X、砿)E、た冨4(1+X澱)E厩 (4.5.7)

where

 β説:radar beam height of Radar召at the々一th point,

 E励:estimate of1-hour precipitation amount by Radarα,at theゐ一th point.

 Because the number of such points is usually not sma11,the following sum of the differences betweenboth si(1es

of Eq.(4.5.7)in the whole overlapping area,described as五(X,且),should be a minimum=

           」1一羽屡{ln(4(1+礁)E・た)一ln(オわ(1+Xみβ姦)Eわた)}2  (4.5.8)

一写溺{4一(イ1+β・みた)}2(4.5.9)

where

オσ31n(孟、),

β、わ是胃ln【{(1+Xみ壕)Eゐた}/{(1+X、β姦)E.た}

 The major reason for adopting the logarithm in Eq.(4.5.8)is to avoid unreasonable solutions.If Eq.(4.5.8)

were described without the logarithm,zero might be another solution for alh4s,and in most cases with some

residue for五,zero might be the only solution,which means all ofthe modifiedradar estimates become zero.The

logarithm might tend to place a high weight on a small precipitation rate in determining the correction factor.

However,a small estimate of a radar is not always small when it is observedby another radar,and this tendency

can be modified,if necessary,by placing a high weight on samplings with a large precipitation rate,to a certain

extent.

2)By transforming Eq.(4.5.7),the following relationship is obtained:

           {(1+X、βα)E、,}/{(1+X議)Eわ,}鴫1オ,       (4.5.10)

The right-hand side of Eq.(4.5.10)is composed of parameters independent of location,and the number of the

一83一

Page 22: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

points that should satisfy Eq.(4.5.10)is not smal1.In other wor(is,the value of the left-hand side,representing

the ratio of a modified estimate from Radar a to that from Radar b,is constant for all the overlapping area after

modification by X.It directly represents the condition that should be satisfied by estimates modified for the

vertical differences.Under this condition,the standard deviation of the samples of the left-hand side for the

overlapping points should be the minimum.The following should also be taken into account before the

formulation of this condition:

 (1)A small average of the left-hand side can also make this standard deviation sma11.For this reason,the

    magnitude of the average should be normalized.

 (2)Since the situation is the same for Radar a and Radar b,it is desirable for the constraint for each of them

     to be equa1.

 Consequently,we adopt the followingゐ(X、,Xδ)as the value which should be minimum:

                        麦写(α謝2一{孚(α・走/わゐ陀)/K}2

            」2(X、,Xふ)留                                {孚(ααた/わゐ是)/κ}2

                         1                        π孚(わわた/α・た)2一{孚(わわた/α・た)/κ}2

                      十                               {孚(わわ是/ααた)/κ}2    (4●5’11〉

                           写(ααた/わわ髭)2 写(δみた/α盈)2

                       3κ      一1+κ      一1                          {孚(ασた/わわ走)}2 {写(わわた/α・走)}2

where

α、是冨(1+X、砿)E、た一E、疋+h.たX、,

娠胃(1+Xみ峨)Eδた一Eみた+hわをXわ,

h、走一峨E、た,

 K:total number of points,鳶.

 InderivingEq,(4.5.11)from Eq.(4.5.10),the logarithm wasnot employed.This isbased onthe nature of X.

TheparameterXmodifiesmainlytheestimatesthatareobservedwithahighbeam-elevationalthough且

modifies all of the estimates with the same weight.In order to place a large weight on data with large

deviations,which is attributed mainly to sampleswith a highbeam-elevation,wehavenot adoptedthe logarithm,

because it causes a lower evaluation of the data with large deviations.

 It should be noted that the objective v31ues for Xs inゐare generally different from those inみ,althoughboth

/i andゐare based upon Eq.(4.5.7)

 The constraint onゐdirectly determines Xs,so Xscanmodifythevertical differences ofradar estimates.On

the other hand,五fixes Xs as one ofthe components that modify estimates from different radars into those with

the least differences from each other。For example,let us consider three overlapping points.The value ofゐ

is not,in genera1,zero simply because the mmber of parameters is two,while/1can be zero with four

一84一

Page 23: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

parameters.When Xs determined byゐare used,孟cannot be fixed to zero becauseβ、δたin Eq.(4.5.9)cannot

be treated as constant owing to the deviation still remaining for modifiedsamples.Therefore,the values of Xs

forゐare different from those ofみ In order to be accurate for the entire radar-detecting area,which includes

points where radar observations(10not overlap,Xs detemined by丑are considered better than those by五.

3)On a gridwhere an AMeDAS station is located,the calibrationfactor shouldequal theratio ofthe AMeDAS

   measurement to the ra(1ar estimate:

オ、(1+X、β孟)一R、,/E、, (4.5.12)

where

 R。,:raingauge reading at theズーth point in the detection range of Radarα,

 ∠4、:∠4forRadarα,

 X、:X for Radarσ,

 β、,:radar beam height of Radarσat theづ一th point,

 E、∫:estimate of1-hour precipitation amount by Radarαat the歪一th point.

 Becausethere are manyAMeDAS stations to be comparedwithinthelandarea ofoneradar’s detectionrange,

the following summation,ゐ(且,X),obtained by transformation of Eq.(4.5.12)should be a minimum:

」3一ΣΣ[1n{4(1+X・環)}一1n(R.’/E.f)】2

     α   1

  一ΣΣ(4一δ.,)2

     σ   8

(4.5.13)

(4.5.14)

where

 ロオσ冒1n(オ、),

δσ,一1n[R4,1{(1+招盈)Eα,}】.

 Since Eq.(4.5.13)directly compares estimates with the actual measurements,Xs and∠4s can be derived only

by this equation.The areas for this comparison,however,are limited to land only,and there are much fewer

points for comparison than for Eq.(4.5.8)or Eq.(4.5.11).

4,5,4.2.OutIine of the procedure

 For the procedure in this study,Xs are determined firstly by Eq.(4.5.11)only,according to the consideration

in Section4.5.4.1.Then,As are derived using Eqs.(4.5.9)and(4.5.14)(Fig.4.5.6).

 Uncertainty still remains,however,in determining the parameters,e〉en after Eqs.(4.5.9),(4.5.11),and(4.5.

14)are defined.One uncertainty is in determining what weights are givento Eqs.(4.5.9)and(4.5.14)inderiving

As.The other is that points of sampling are not specifie(1.If we take all the overlapping points of the samples

for Eq.(4.5.11),when most Bs are low,data with a highbeam-altitude may contribute little to determining X.

ThisXmaycauselargeerrorsinareaswithahighsamplingaltitude.Detailedstrategiesforweightingandfor

selecting samples are described in the following sections and appendices。

  To better understand the procedure,Fig.4.5.7presents the idea and a schematic explanation of the calibration

forXand∠4.

一85一

Page 24: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

4.5.4.3、Determination of X by successive approximation

4.5.4.3.1.Relationship between two Xs

 The detemination of Xs starts by deriving the relationship between only two radars.

 Let the specified radars beαand猷and Xもbe fixed to Xも*as known.The first estimate of the successive

approximation,Xも*,is obtained by averaging the data for the last240hours,with higher weighting for the last

6hours.The most appropriate瓦for Xも*is derived from the actual comparison ofゐ’s for various values of

瓦havingdifferencesofatleastO.005fromeachother.Wenowdescribethemostappropriate&andゐas瓦*

(瓦*)andゐa(瓦*)二ゐ、(&*(Xも*),Xも*)ンrespectively.

 Taking into account that&*derived in this process depends on the value of凡*,we calculate three different

X益*’s andゐ、’s for瓦*一△,X』*,and凡*十△,respectively,where△is a small positive number.

4、5.4。3.2.Estimation of a”Xs using the relationship between two radars

 Let Xも*be the minimum ofゐays among the three appropriate candidates in Section4.5.4.3.1.Then,瓦*is an

appropriate estimate for Xもamong them.However,we may have a different candidate,if the corresponding

radar is changed from4to another.Therefore,relationships with other radars should also be taken into

account.In order to include these relations for many radars in the expression in which calculation of these

parameters is easy,we change the relationship between&and Xもinto a linear one.In this expression,it is

assumedthat X』c&nbe represented as a linear function of瓦when Xもis near瓦*.Under this assumption,the

following equation for X』and瓦is derived with two groups of凡*and瓦*producing smallerゐa:

                           ゆ      ゆ                ゆ      ゆ                  ・・X、(Xドム)一X、(Xみ)  ・            X、冨X、(Xみ)+  .  . {XドXわ}                            {Xみ一△}一Xみ          (4.5.15)

               =CαわXわ+Dαわ,

Derivingκ

            ノ            ’           ’           ’           ,          ’          ノ         !   !         ’   !        ノ  ■1

          ’   、、          ’     、、、          ~         、、               ’         ,            、、              ’         ,              『●、          ’         ,               、、、      ,        ’                  、、   4        4                       、、 ’                         ♪、                         4  、、

Deriving〆篭

ove-apPing area wi廿10愉er

     radars

Radar estimates

First guessofκ Firstguess ofハbyby sta鎖stical staUSゼC一 calOulati㎝

’ calculation 、、’

’ノ

De丙vingκbyノ succes6ive

approximationCaloulati曙 seoondguess

, of,4bycompa-ngradarestimatOS andAMeDAS

一閥9■■一一9-q■一一一〇一一一9■■噛一一■一一

meaSU猶ements 、、

、 、

  、   、    、     、     、

ノ’

、 、

  、   、   、    、     、

 ’

’, ’

4、 、

  、   、

4’ ,

4♪、  、、

M廿1 other     ’     ノー側一一7。一一曽卿    1

Calculati曙

rolationshipsatthe,4withtho

ノ’ ove-apping areaσfradar

,4 es栖matosand atla織dar◎a

ates ノノ

Iand area

  周

  曽

  一

  一

,乙

  71

  一 ノ’

  一  ノ,

  一   4ノ

  一     ノ’

  \、

 、、

、、

  ノ  !

 ノ

vAノ、’ 、

 AMeDASmeasuremen鳩

Fig.4.5.6SchematicflowforthealgorithmforderivingXandイ4.ValuesofXarederivedatfirstonlywithradar  estimates and archives of X.Detemination of the values of∠4then starts with obtaining a second guess of/1,that

   is,the ratio of raingauge measurements to radar estimates calibrated with Xs.Finally,with this ratio and the

  relationship among radar estimates over their overlapping area,!1s,are obtained.

一86一

Page 25: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

where bothゐa(瓦*一△)andゐ、(Xら*)are assumed to be smaller thanゐ、(Xも*十△).

With Eq.(4.5ユ5),the samevalue as detemined in Section4.5.4.3.1is derivedfor&when Xもis(瓦*一△)and

Xも*.

Equation(4.5.15)canbe obtained for many radars,but瓦*(Xも*)and estimates of凡derivedfrom comparison

L (a)

HRADAR A RADAR B

L

(b)SEkVATi㎝ EY RADAR A)

A’ lA 樋ODIF1EDBY葡

>←一の2国↑

ACTUAL

z mTEHSITY

一一一

B野IB匿OD旧ED EY濁ぐ臨2一〈鱈 10BSERV川0韓 BV RADAR Bl

RADAR A RADAR B

A IA’一〇DIFIEDBY短

ζ一の詣↑…、コく髪一歪

パ{A”ODiF!助βY鱒

B’{B’層ODIFIEDBY沿

B’IBMODIF!EDBY瀞

(c)

ACTUAL1閥TENSITY

RADAR A RADAR B

Fig,4。5.7 Calibration methodology.Figure4.5.7a shows an areal distribution of precipitation.A large amount is

   observed around Radar“A.” F至gures4.5.7b and4.5.7c are cross-sections along the thick line in Fig.4.5.7a.Figure

   4.5.7billustrateshowXmodifiestheoriginalradarestimates.Inthefigure,thethinlines,thethicklines,andthe   lines with moderate thickness denote the actual intensities,original radar estimates,and estimates modified by.Xs,

   respectively.Vertical single lines with arrows show differences between original estimates by Radar A,and those

   byRadarB.TheparameterXmodifiestheestimatessuchthatthosedifferencescanbeequalwithoutdependence   of location,as vertical double lines with arrows show.On the other hand,the parameter∠4calibrates the estimates

   modifiedbyXsuchthatthemodifiedlinesmaybealongtheactualintensities,asinFig.4.5.7c.

一87一

Page 26: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

with many other radars are not equa1.Therefore,some difference arises between both sides of Eq。(4.5ユ5)if

an estimate of X』,except for凡*(瓦*),is substituted for瓦.In view of this situation,we detemine Xsロsuch

that the sum of the differences between the values of both sides of Eq.(4.5.15)for various estimates of Xs is

minimum.

 Actually,we obtain the following equation to describe the relationship between Radarσand Radar6in

Section4.5.4.3.1:

       L2、6冒ε、み(X、一C、わXみ一P、ゐ)2+∫、わ(X、一M、み)2+η、み(Xわ一N、み)2,  (4・5・16)

whereε.b,ζゑb,η、b are weighting coefficients,and〃』b and醜b are X』*and X』*,respectively.

 Equation(4.5.16)indicates:

(1)An apPropriate pair of X』and X』is〃』b and.〈盈b,

(2)Even if they differ from〃直b and Nab,they should satisfy the relationship of the first term described by Cab

   and Pab to keepゐsma1L

 The last estimates of Xs are derived as those making minimum the total sum of L2ab’s:

       五2一》Σ{εめ(Xα一CめXb-Dαb)2+‘・6(X召一M“5)2+.ηαb(Xわ一Nめ)2} (4・5ユ7)

 Because Eq.(4.5.17)is a quadratic format regarding Xs,the following linear equation is obtained by

differentiating L2with reSpect to Xm:

       轟{(ε励+∫功み)x遡一ε論xわ+(一ε励D所ド∫轟)}

                                                                       (4.5.18)

       +識{一ε一6Cわ爪Xわ+(ε一C島+ηαゐ)X烈+(ε一6Cゐ徊Dわ例一ηαδ川Nb醒)}一〇

 Consequently,Xs are detemined by solving the above simultaneous linear equations.The actual weighting

strategy is described in Appendix(1).

4.5.4.3.3.lteration

 The values of Xs detemined in the scheme from Section4.5.4.3.l to Section4.5.4.3.2depend on the first guess

of Xs.To obtain more reliable values,the procedures are repeated three times,replacing the first guesses Xも*

by the estimates determined by Eq.(4.5.18).

4,5.4.4.Derivation of A

 In order to obtain∠4s satisfying both relationships of Eqs.(4.5.9〉and(4.5.14),we propose the following form

for the target of the least-squares method:

       14胃羽、濤)α・{4一(4+β )}2+羽γ・(オニーδ・’)2   (4・5・・9)

 Then the following linear equation is derived on∠4.m:

       爲、羅)α川{4葡(4+β )}一屍、器9・{4一(4+βみ胡た)}

  、                                  (4.5.20)       +Σγ卿(4.一δ加’)一〇

         2

 1t should be noted that Eq.(4。5。7),which is the basis for Eq.(4.5.9),indicates only the ratio of the values of

一88一

Page 27: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

respective∠4s.For this reason,if the last term in Eq.(4.5.19)were omitted,the determinant for different∠4’ms

in Eq。(4.520)would become zero,which means that∠4s cannot be determi聡ed only by Eq.(4.5.9).

 It should also be noted that if the logarithm were not adopted in Eq.(4.5.19),unsuitable values might be

derived for∠4s。If Eqs,(4.5.8)and(4。5.14)were described without the logarithm and combined together like Eq.

(4.5.19),the term in Eq.(4.5.8)would cause all/1s to become smaller because residues for∠4s in Eq.(4.5.8)are

small only if∠4s are sma11.The result would be that Zls would,in most cases,be smaller than those estimated

from Eq.(4.5.14),unless the relationships in Eqs.(4.5.8〉and(4.5.14)could be completely satisfied with no error.

 Consequently,the parameter∠傷is determined by solving the simultaneous linear equations(4.5.20)on∠4s.

 The way to detemine an appropriate weighting for the above coefficients is described in Appendix(2).

4、5、4.5.Process in case of no data for comparison

 Determining the parameters for a radar requires some radar echoes over AMeDAS raingauges,and,at the

same time,observed precipitation overlappe(1in some areas by at least two radars.

 Actually,however,in some cases these requirements are not satisfied.For example,when a rainfall area

moves eastward from the far northwest to the Kyushu District,only the Fukuoka Radar can detect the area over

the sea(Fig.4.3.1helps show the location of the specified radar).In this case,neither Eq.(4.5.7)nor Eq.(4.

5.12)proposed for the algorithm is available.After a while,the radar echoes move into the detection area of

一 ・ /                51

    :陰:i      一 .   ◎   G 9 ●      .一……三;…三………… 陰ま三…三…三……:……

  …晶●:三::ii:  .::::胃.:_     .。。:i:ゆ……i::ii”        一

.  g oり● o , o じ                                            g  oo● ■ O o

0.10■≦・く 1.0㎜

1.0 ≦一く 5.0

5.0 ≦+<10.010.0 ≦口く20.020.0 ≦□

’=…:……三三マiiiii・

            ..:::==::晶:=。●:1:1:         7:=二=乙:=…7三7=::   一1:i=・・:、            .....:鵠鵠乙一.。 .。.。。.           .:::二。 一__._9一__.....。..99         ●一…”!::二::=:一:::丁;器::認部二三:::::::一.....       D:::::::iiii÷三:三...。....。....雛..騨9.........  ......。_。..

    ::::蕪i三繕羅÷三萎麗藝器萎iiiiiii嚢li…藍灘iiiii義嚢三圭i嚢iiii

       .…ii...・..’.三……三……i=:=:2:の◆;2◆一::・…一・蹴。・2・…一…一一一……}           ._..騨のの_鱒__Q二===;器二3=;=認器器:7τ;:“器=:二:;:      。.::二=:=晶=二。一=::77:::.・..   .,.._.一=:……………三ま…………………==…・三÷ま…輩器:葬……ll≡ll…騒薫ll萎薫議……ま:……誓……………7…・:’

    ・・:::二…………;…;………鞘三二三輩:1…………三…:・:::翻::τ::器:翻一==二::三三……1:…三……=…:………:二

      9■g o 9一一〇●o-o一一■一一一●■臼〇                一■      ..・9………・…7=……………藁……………=…三圭萎謡こi…議茎護蚕主i…ii萎嚢…ii萎萎葦妻萎歪薮ii毒三圭皇,,。.

       ..::器”一:_:: ・ .■::・ = 。器.ぷ二’竃:=認器:=.==:器::認=器畿二:::畿:::::::=:二:二器.        .....の..一.………一..一.......一一.一.き9_.一匂一一.._......曹.一.一一.一聞..._印一一..._...一…....

         …一…即’。。”; ”一。。一”.…≡………_…’ヨ.……………………三1…………三…………ま…i覆………………………………iiii9

一   ・1…礁萎籔…蓑………萎…叢嚢萎三…!三藩蕪iiiiiii           一”一一一一一一”聯”’一。一。・;舞ま:;韓.____二::._:二  …=:…i…i三iii..       …一。一・一・。一・一一・3襯雛。           ”…幡””.”...q・。■.○鱒..舘:;:==2:::器:=7:           9●一●一●■一●■■●o■oo.o・・一一■6一■oO           .:::.一..り_一一_。一一甲_噌.一◆:一2一:一_2_一、::…     ◇・:三≡マ……灘………………………≡…議購灌…≡………………;………鞭’。

            龍.一2’”;””・.”::..:.”.””。’”’”…●ミliiii…     =1・i二藍・…・…i髪三1…ili簑簑i…蓋墨蓋iiiii・●。

甲:二:::::              :器:::;::;:;:=:::::τ7::=:i…………………τiヨ※i9 :二二::=::;=:=こ。_.9          ..二=獣ll:::::認=篇=:胃:1:=:○::.   ..            ,.....◆=....の.... .:9ii11謂iii=嘩

             :7=:=:;:==7::=  。=………三……i三iiiii..             …・…

            〉●■ 匂

     ●’:”:::=::::::

    __三三1弓……………=’_..

     ii誓1………:’:iiii

     :ii三…0:買iiiii

              o.              o   o ●.9, 0 0 0  ………がiiii…

’:=…iiiii      :”i………iii 一”●。●             。:=讐=:’=. ::……ii:.:…’…          一…,書・ :=…iiiiiiii……   ,1

1’:………三三三iiii

Fig.4.5.8.(a)An example of the field calibrated with the parameters z4and X.

   The composite of hourly precipitation estimates by radar at21UTC on27November1990。

一89一

Page 28: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

κ  ㎜

  0 0 0 轟U

   ロ                

  1 5 0 0

    エ リ 

1.く<<く

                ロ

婁i 

・ 一十□■              闘

1ー ≦≦≦≦≦ V

                認

ソ  働                                ・一。一

  a                             ==

  - 《》0 0 

0                    

。=駕一

                りりじロじじ

   .   ■  ・   ●   o                             騨・一一・O.1

  01500        一…=…

     ユ 

                                

ロロロじコロじコじ

              じおたおロお

ー.  ●       6・騨㎜蓮嚢㎜

             にニニゆゆゆコニおロ

聾 無 ….一“一  ●…器一…”即…蘂醗{萎

         ;●::翼”””引.累”””盤噂.◆能盤器器○○

            。馴.=一=一.=一=・。=.

         ”.”””“””.一.崩一..一=.=-.=.=9●爾.

          ハ  ハニロロじじ じニニじニリニロロのロ

        ロニロぷゑぷニリニニニのニニニじニニニのニ

ー   . .. 9“”“=毒….㎜轍蒲…㎜㎜署。.……㎜…㎜…茎難薫

       ヨおゆニ  りはロハニゆこロじ  ニ     ロニじニじニロ

 ー   ”…………”…蓑、毒㎜叢……讐…皿㎜㎜㎜㎜

5 藝難柵灘…鵠㎜㎜藝 ㎜㎜ ㎜ 

     垂㎜藝難叢慧聾

      ぷニニニこニニ ニ  ロ    ロ ニっ    ニニこ

     }….薫蓋叢鐘蓋皿薫醐榊 藝

      .==・・...“一◆。。9一 = ・。..==.・馴。9 一=。。

     ニ ニニ  ロロニンニしロ ゆロ ニ ニニニで 

ニじこ

        ニニハハニニニじロロリ ニ ロロニニ 

ニ  

ニコ ロ

      .…舶㎜…三”…朧.”霧㎜藁講畿嚢…講一 韓閃…・.

    藝齢萎妻㎜㎜嚢皿㎜㎜㎜馨㎜㎜計㎜羅…

    ニ  ロぷニニニ ニ コニ ゆ リニマじ ざニ ニニニロニこ

    ニ ニ マニロニこニロニロロぬや ゆリニ ニの ニ ぷニ  ニニこ

   ”…淵潤..願引..……穫蓑議藝蓉皿糞一裂肇鎮

一嘆∵…㎜㎜㎜㎜㎜㎜ ㎜㎜㎜藝}蕪醒

   一-7鐘……鍵…嚢 、潤

      マニニリうぎふニニロ  ニ じきじニニニ

     ..……蒙::藻萎.一・藝潤.

        ロ ロリ  の    ロ ロロ       コ ロじロロじ リロ

  一齢纏.  饗嚢㎜  ㎜ 一…   ㎜ ㎜

  一」酵 照㎜…   甕㎜…閑… …誕   ・:…=…灘嚢…養三il茎…菱iiliiiii…ii蓑iiiiiiii藝ilii鐘iii嚢iiii≡垂ii:一

   一・o一一一一り一一卿一り◆剛一・o一一一一.一.■一〇。◆一一            一一一■■一一一騨φ◆●一り一鴫るる一一一一一一一一一一・一一9一一一一一一。一一一.一    一一一一一一一◆■一●一一一一一 一    ロロじロロロゆ ゆロロ ロのじの  

。…: 

()蓑萎ii:≡≡.

=::=:一      。    o

O一◆9●■●■■go■一  〇〇                   〇■廟

 ■◆一一●り一■閣●一一一一一〇一goo O■                            o          一■  ■■o◆■●■■oo●一●●一〇9■■       o        ■  ■●○◆■●■φ一一一り一●o■oo■                 ■■儒   ◆●◆◆◆φ○■◆                                 ■

    ゆ ゆゆ じじじロ ロじロロリロ    つゆゆゆの ロ ロリロロロ ロじ

(ll…il萎…1……1……ill…i………1…』,

…?:::::::.::=:卿.・一.=:::ま………議§藻:一:一一一:::=?繁 0◆

  。τ:●::’一一り”。.一。.。一.●...◆..◆・◆舞;舞:::◆.一一一.o一。一:.。

き…議嚢ii萎liiiiiiii難難iiiiliiiii……華1……iiii萎iiiiiiiiiii………1鍔

一一一■

一一  ■

一。一■

一一.OO g

O一一〇騨

■一.●■■              督

■○一...一 ・

=●=== 騨

=■◆■●一==

…葵一萎卵

◆一一・○.●■一一〇。.

===・・7 =

一◆一===:

一=== =

O一一〇〇● O

一-一。..一一

τ=。.・・

蕃鞘7

ロ一〇一,●

==甲 =一

=一==一=  =  。:二

===。=. =    ==

■.■====一    ==7

聾暴茎”撫 :

●印60●一一・■一一..

認紹弱“的一囎.

一一〇。■一一.=

■。一。・=.=

二一=.一=         。二。

一:。・=         

。二9

一。一■●一■

一一・= 9   。   一

〇・=.・    .■.=一

二一ロ=   

。=== = :

. 蓼.蓋難董

  =o   一==◆.。◆○=・=

一=  一  一 .=  ・=・.二・=

一一 =   .  ■ 一 = ■・=甲

㎝  “”●。  9”窪

。一 ■O      ■

一  葡●    ■一

  り

Fig。4。5.8.(b)An example of the field calibrated with the parameters/1and X.

   The same as(a)except for the field calibrated with the parameters∠4and X.The discontinuity denoted by“A”is

   nearly eliminated.The intense area“B”is not clear in(a).The area“C”observed by a radar beam at a higher

   altitude than“D”is calibrated larger by X,and the difference between these areas has become less.

another radar,Matsue Radar.Then,with Eq.(4.5.7),Xs and the ratio of two且s are determined.When the

area passes over AMeDAS raingauges,∠4s are detemined with all their relationships.When some of the

equations cannot be utilized,unknown parameters are supplemented with the statistical values obtained by

averaging the data for the last240hours,with higher weighting for the last6hours.

 It is noteworthy that if only one radar satisfies Eq.(4.5.12),al1∠4s for radars in operation can be analyzed

without statistical data,although all these ra(1ars are needed to satisfy Eq.(4.5.7).In this case,however,the

accuracynaturallydecreases.

4.5。5.Accuracy

 Figure4.5。8a is a gomposite of1-hour precipitation amounts estimated by radar at21UTC on27November

1990。The algorithm of the Forecast Division(1991)was used for compositing,and no calibration is made.In

the chart,there is a clear discontinuity in intensity,denoted by“A.” The left side of thelarea‘‘A”is covered

by three radars,and the right side,by only two radars。The different sensitivity of radar hardware primarily

causes this gap.On the other hand,Fig.4.5.8b shows one calibrated by the algorithm in this study.There is

very little gap in area“A,”mainly because of calibration by the parameter A.The intensive area“B,”which

is not clear in Fig.4。5。8a,is represented distinctly in Fig.4.5.8b after the calibration.The area“C,”which was

一90一

Page 29: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

0口

0000

L4“&翫

<〈<〈<

・-十口□

≦≦≦≦≦

闘ユ ロロゆ

αL生&且

Fig.4。5。9.(a) Effect of the parameter X.

  The composite of hourly precipitation estimates by radar at19UTC on16February1993.

mロロ ロ

L生&乞

<<<〈〈

・椰十口■

≦≦≦≦≦

㎜100nUO

軌L4&乳

Fig.4.5.9.(b)Effect of the parameter X.

  The same as(1),except for the estimates calibrated with∠4and X.

一91一

Page 30: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

0.1醜≦・<1.Oo薗

LO ≦一<4.0生0 ≦+〈8.08.0 ≦口<12.0

12.0 ≦■<

9:::二::.。

 。;=器;:::.::7:=:::。●

.●・=二:=3畿一。●=:

.o:17胃=器=:’:二

3:::=..■..9

轟3==. ” “一。。=:.:器:.=

一.。_   .一9. ” ”:7=器====器:    .=_:”一器二.._一__●,_

::τ=== ・9=

●■==.::::

.:::7一鱒器2=:

一..一    ・    囎  .一一一一.    o■9・■騨.■■go9

oo●o    o-     9・  .  ・o”.go  ■.■9.・”.●・.■.

・●’.一” ” 鱒●。.・:一

.器=鱒.・。。3”●。。●・。’

9=3==777:77器●櫓二=9,尉’”9.●::==二晶..。”印’  ;.o

   =:器    ’一”

●00.■ O ●   0 一・・●

...・:

=3器=: ==3=:=:器

 。。o”。:“ゆ鱒脚・ 講;, 一一=・=・.。騨●。・”。=。

 講3333◆  。.◎.。o.◆出__

櫨=;=器33蹴;認:3:;=巽=3器:諾二器。9一”○一9客3雛舞3認客:===:::=器=7:::●

  器;盤:3。==:=:o監.:畿●..    一       99一一一●一●

     9    -o一■轟茎ii灘ii薙葉≡…≡撚・一

騨o , .

 9   DO  -9  ■  0● 0 ■

●  。 ●=3。。.。..器・。。  ■器

 ,=。錫 =9器■繋:器==器”:

079..纈:=髄

”。    一雛器■胃。器器器3●。=

..go7●鴛==:=3器

.:::=識2=:鍵辮::蹴”。一”。’’”一’:::

==:一___一3:雛333雛:====器=器7;::3:7:。_.一.。_23雛22縦3=====器:=器7=:::

‘3諸==:器=:==器雛認==:=雛=器7::;:

 ●質器認:認3調認騨舘:=;舘器=二::駕●” 。曾閣。”。一麟鍵・一.鱒””””.一。’”●

  .====器:=:

 。●,=:器器:: 。τ:3. 舘==騨  ::= .”器  ●:;胃認器=  。’:?器器:?.:   ;.::マ鴛:=

   。.::器=o:3=器=;3=3::3:==器器==諜:3:3

・_..6。・333_==::==豊==::====瓢=:::=

3;3:=333=;;器翼3==7;;;:

 .;;33:諺=::==::==3=:;::

。=。=舘=凝::‘:...

 o  ● oo膠 ● o o::::!3:’”!二:=:. 9。二=:。.り , ●oo g o 9  巳 ,●g o 9 ●

  ..;:=:

  .:;τ  . ..  。.=::乙

● OO9 0 駿 9 9 9 90■

。9::二:訂:::=

● oo ,■ g o o 9

●33..●__.一_。_。。..

●3斜器器=器=認:二=一◎33:9・●.一一閣””

603ε::蹴=誰‘..=;     .。::ττ::こ::。○ε舘===:::=3:      ..::τ==τ乙

 驚=器雛=:=::...      …”9         。9::= 饗器雛:霊?:二::.

鷲:::1:::一,雛轟::::

 .一=;::::

Fig。4.5.9.(c)Effect of the parameter X.

  Original estimates by Mt。Fuji Radar.The intense area with an arc shape in the center of(c)over the sea coincides

  with the area under2km of observation height shown in(e).

o● .

0.1㎜≦・く1.OmLO ≦一く4。04.0 ≦+<8.08.0 ≦口<12.0

12.0 ≦■<

一■   一

舞。

●   0 9

=7”諾. ●

=:

   曹1 亀   ●  ..。乙.・.ゆ匿.  9  齢●■備  ●9 甲 ●  ニニ===鴛.;”    :::” .二:===器=器o...。。の。.鯛脚鵯”   。

■ ●  o

一●  0 ●

.。器器縞”.・=鯛一 =鵬===3  騨’.;.”3一〇3=器器=器脚器器器3。。“。9’』

・.3..““.. 一                   .

。3騰。;;.

◆○●○■■●■○    ●■■6り■一■      ■■o■go■o  ■■  o

o●      闘o   鱒     ■o  ■  ●

一一一一一〇一・.

雛。3.......◆..。◆◆

     .○認33

=盤器;===認3333.蹴;333◆

舘盤=詑32繋33舞333    雛33:33:=器==一..=::==鴛:==3:3:3:。鱒◆.。。、。.伽。。。。

≡…………≡…………………………’………………;一喚=護…9

3謹聾臨議莚三蒲講・…・…・濃器品:

・一  .■

■.一::.

=:

■●● o ・

輯..____._:3一._濫..____..

■■。.3←◆.◆○。一”_一_一一■一.

鰯o・o.oo●㎝・o一■o■一脚騨一■憎●■鱒・o・

囎・..囎・一・輌o■o-o”■■■一●榊輯・噛囎●・o●〇一.・o-o一一■閣■■一●一“一.●嶺..””“一”.。9”・●●囎.騨。◎一一77=一

鴛::==::=篇=器器=器=器器==7=::

鷲器=======:::=7=器器===鷲::’

::===器:=====!:77=器1.::::

;:=:=::::

.● 0 9 ●

・ 9.O.O D O .

曹:=:=:0 9.9閑● ■ ■

Fig.4.5.9.(d)Effect of the parameter X.

  The same as(c),except by Murotomisaki Radar located about400km west of Mt.Fuji Radar.

  (c)is not recognized in this figure.

The intense area in

一92一

Page 31: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

23456789

<<<<<<<<

・一一■臨口四口

≦≦≦≦≦≦≦≦

12345678

硬…1

(e)

Fig.4.5.9.(e)Effect of the parameter X.

  Observation heights of the radar beam of Mt.Fuji Radar.

observed by radar at an altitude higher than area“D,”has been made stronger by X,and the difference in

intensity between these areas has become less.

 TheperformanceofXisexplainedinFig.4.5.9.Figure4.5.9aisacompositeof1-hourprecipitationamounts

by radar with no calibration at8UTC on16February1993,while Fig.4.5.9b is modified using the algorithm.

There is a clear difference between the figures in the area denoted by“A.” For detailed verification,original

estimates by two radars for the area“A”are shown in Figs.4.5.9c and4.5.9d.In the estimates by the Mt.Fuji

Radar in Fig.4.5。9c,there is an・intense precipitation area with an arc shape.This intense4rea lies along the

area with low observation height shown in Fig.4.5.9e.It should be noted that the elevation angle for JMA

operational radars is set higher within the tangent line,which the path of the radar beam and the earth7s surface

make,than beyond the line,where radar echoes are free from contamination by sea clutter.As for Mt.Fuji,

there is a large difference of1.4。between the angles on both sides of the target line.The fields of estimates by

theotherradarshavenosuchdistinctintensearea.ThealgorithmforXregardedthattheintenseareawas

made by the influence of veftical variation of precipitation intensity,and the intense area was modified as Fig.

4.5.9b shows.It is noteworthythat althoughthe area south of area“A”is not coveredby anyradars except Mt.

Fuji Radar,the estimates there can be modified by this algorithm.

 Figures4.5.10a and4.5.10b illustratevalues ofAs and Xs calculatedfor different radarsfor consecutive4-hour

periods.From18UTC to21UTC on16February1993,a large-scale precipitation area from a synoptic-scale

depression located in the westem part of Japan was moving eastward,accompanied by a weak uniform

precipitation area ahead of it,and a precipitation area with convective moderate cells at its centeL

一93一.

Page 32: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

10505050

0 3   2   2   1   1

0    と』馨奮』配

X             )

             a

             (

    又. 口-

璽員ザ洞....

    ▽編、▽苗

    β,冨

  肱 亀9、Φ

 ▽

d%咽。亀箸o鵠

ε筥<

o玄β

号一

つ着角

民。詳2

邸X寄O

蘭旨一望》湿コ

εo旨Σ

Time

H18UTC▽一マ19UTC

■一■20UTC

の一噂田21UTC

x O.01

 280

GOOハU

4062

2211

く書…記

 ) b

 (

80

\i      .『潤

ad他眉℃唇oう

醇茗<

o堂o臼

旧ヨ国

冒曽角

皇o浮Z

的謁器O

邸巳届o調頃

εo旨三

Ti mc

←●18UTC)叩19UTC旨・口20UTC

&・㊤2且UTC

   x o.GI

     30

     25

   逸20    お

(c) 弩15

    田    お    山10

      5

      0

×履 

、、.『燐賦

-▽4

 口

ad㎞驚を①oo

ε主<

o蛍o↑

号」

一コメコ」

艮。boごZ

望霧C

邸日甥o』串

εoヨΣ

Ti皿e●一●18UTC

▽一マ21UTc

贋一-00UTC

Φ一Φ03UTC

x O.01

 280

    240

   く   葱200

(d)程   愛160

   山

    120

80

画.

圃腕

■門

O.

、毒域築、ゼ

.㊤ 7

.切

ザ冒一画

、・oN鳳魂

一9■

ad陀笥℃8の

5署<

o立。き

一コ函

冒謁昌島

箋。b。2

甫ヱ器O

⇔目砺oよ=

32=Σ

T1皿e●一●18UTC

い721UTC■一-00UTC

9・一田03UTC

Fig.4翌5.10.!1s and Xs calculated for different radars andfor consecutive hours.

  (a)The parameter Xs calculated for4consecutive hours from18UTC on16Febmary1993.The units of X are

   inverse square of height in km.In the figure,radars are aligned nearly from southwest to northeast along the

   horizontal axis.Their actual locations are shown in Fig.4。3ユ。,,

  (b)The parameter。4s for the same condition as(a).

  (c)The same as(a),except for9hours at3-hour intervals.Values for Akita increase with time,while those of Fuドui

   increase for the first three samples,but decreased for the last.Only these two radars face the Japan Sea.The

   values for the other radars decrease.

  (d)The same as(b),except for9hours at3-hour intervals.

 ValuesforXareobviouslylargerinthewestempartofJapanthanintheeast,althoughtheyhavefluctua-

tions.TheaverageofthestandarddeviationofXfortheperiodisO.02.Inmanyothercasestudies,morethan

threeofthemodificationfactorscalculatedaboutXindicatedrelativelylargerfluctuations.Thereasonmay

be that the actual vertical profile camot be well described in a single function for such a large ratio.It seems

difficult to estimate the intensity of a radar echo near the ground when the only information is from the intensity

almost at the echo top.

  On the other hand.,A has less areal variation in most radars。The fluctuation for、4(1uring the period is also

not larger than O.090f the average of the standard deviation(note that the average of the values is one order

larger than that for X).

  In Figs.4.5.10c and4.5.10d,As and Xs are drawn for9hours at3-hour intervals.Xs in the westem part of

Japan at18UTC was larger than in the eastem part,and became smaller at O3UTC.On the contrary,Xs in

the eastem part became larger with time.In spite of the fluctuations shown in Fig.4.5.10a,this tendency is

一94一

Page 33: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

clearly recognized,and it agrees with the expectation for the modification by X,that is,1ittle modification for

stratus rainfall with little vertical difference ahead of a depression,and large modification for wide-spread

rainfall with some vertical difference around its center.The differences of。4s among radars are clearly

recognized.In particular,∠4for Mt.Fuji Radar and for Akita radar are different from those for other radars.

There is also a tendency for As to become larger with time,except for radars in eastem Japan.

  Consequently,z4s and Xs work well for correcting errors caused by the vertical variation of precipitation

intensity and the difference between radar systems.

  To obtain more stable values,averaging for several hours is needed.In Figs.4.5.8and4.5.9,the average of

six estimates calculated at1-hour intervals is employed.

4.5.6.Discussion

4.5.6.1.Assumption for the vertical profile

  Inthisstudy,Xisassumedtobethesamevalueoverthewholedetectingrangeofaradar.Precipitationwith

a high echo-top is,however,observed with a smaller calibration factor than that with a lower echo-top.

Actually,echo to-height contributes only a part of the denominator in Eq.(4.5.4),and this part,described as B

in Eq.(4。5.3),is larger for higher echo top-heightsl this situation leads to smaller f in Eq.(4.5.4).If it is

effective in the detection range of a radar,the assumption for the vertical profile may become more accurate

by introducing an additional parameter,that is,echo top-height.Echo top-height would be useful especially

when precipitation areas would be observed by only one radar over the sea,where the estimation proposed in

this study camot be applied.More investigation is required to clarify the effectiveness and problems that may

arise in adding another parameter.

4.5.6.2,Bright band effect

  The model proposed in this study for modifying the vertical difference of precipitation cannot always describe

the bright band effect with reliable accuracy because the thin,distinct,severe reflectivity of the bright band

camotbe expressedbythe parameterX.TheJMAconventionalradarsusedinthisstudyobserveprecipitation

by CAPPI with three or five elevation angles,and hence a distinct bright band near the radar is rarely observed

in this plan-position field.As Andrieu an(1Creutin(1991)stated,in areas over lOO km from the radar,there

is little influence from the bright band.However,further modification is(1esirable for a more reliable estima-

tion,especially for the area near the radar site.It maybe possible to describe thevertical profile withthebright

bandby adding other parameters andmodifying the function proposed inthis study.For example,abe11-shaped

vertical variation changing according to height at which the highest reflectivity is observed owing to the bright

band can be used as an additional coefficient of A,as Gray(1991)proposed.In this case,the intensity of the

coefficient and the elevation of bright band should be treated as parameters to be detemined.This is a theme

for another development.

4,5,7.Conclusions

  An algorithm that calibrates radar estimates over the whole detection area using raingauges and more than

one conventional radar was proposed.In this algorithm,two parameters were used to correct two major causes

of errors in estimating precipitation by radar,namely,1)errors arising from the instability of radar hardware,

and2)the difference between the distribution of raindrops near the ground and that observed by radar over the

ground,i.e.errors based upon the vertical profile of precipitation。Using these parameters and the height of the

一95一

Page 34: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

radar beam over the target,the ratio of the actual field to the radar estimate on a grid of the fie1(iwas described

with a simple function.The two parameters could be calculated every hour with the least-squares method by

comparing radar estimates not only with AMeDAS raingauge measurement,but also with estimates from

different radars.

  The use of this algorithm improved not only the discontinuity around borders of the radar coverage in the

composite map,but also the discontinuity found at the borders of observation fields from different elevation

angles in CAPPI of a single radar.The results from many cases showed that the algorithm was effective only

when the calibration factor based on the vertical profile of radar echoes is less than about3.

  This modification has few problems for changes in the type of precipitation distribution or changes in season,

because it is determined every hour from current data.This method has another advantage in that it can be

used for data further from the radar than the correction method by observing the distribution of raindrops.

Furthermore,one of the conditions for the algorithm,that there shouldbe some detection areas overlapping each

other among ra(i&rs located at least some hundreds of km apart,is usually satisfied for most radar networks

already(ieployed for operational use.Thus,this algorithm would help to improve radar estimates of precipita-

tiOn OVer a Wide area.

4.6Radar-estimate calibration by raingauge in view of Z-R relationship modification and appropriate corre-

   spondence between calibration targets

 Detailed procedures for deriving Radar-AMeDAS precipitation have been described by Forecast Division

(1991).This section outlines an algorithm that was developed in June1995to improve fields for calibrating

radar precipitation over land areas.

 Although radar estimates are improved with the algorithm in Section4.5,more reliable estimates are obtained

on land,or areas where there is a raingauge within a70-km in radius,by a correction method using AMeDAS

raingauge data.

  In this algorithm,a value of Radar-AMeDAS precipitation at a pixel g,ノ~g,is described with a calibration

factor,Fg,as follows:

             R8一ろEg               (4・6・1)

where Eg denotes the radar-precipitation amouht.

 The calibration factor Fg is described with the calibration factors瓦derived from comparison between a

raingauge measurement and the corresponding radar precipitation,as follows:

             ろ一exp(Σ(ln石)㎎・/Σ照・)                  (4・62)

                       ”

where VV∫is the weight on F∫for interpolation.

 At the second and the third repetition of the successive modification processes,radar precipitation amount Eg,

in Eq.(4.6.1)is replaced by Rg determined with Eq.(4.6.2)in the former process.

4.6.1Weight for interpolation considering precipitation intensity

Weightforinterpolation,骸,includesafactorforthedifferencebetweentheradarprecipitationatthetarget

pixel g and that at the pixel where AMeDAS raingauge J is located,as well as a factor for the distancebetween

一96一

Page 35: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

0.2

0.1

   0

(嫡h)hoo一

_0.1

_0.2

230R■’4

400R■。3

     10   20   30   40(㎜ゾh)Radar precipitation by Z=200R■。6

Fig.4.6ユApproximations with different algorithms to the observed calibration factors which change depending on the

   Iocal variability of precipitation intensity。 The horizontal axis indicates the precipitation rate by a Z-R relationship,

   Z=200ノ~L6,and the vertical axis denotes the calibration factor,that is the rate of the actual precipitation to the radar

   estimate by the standard Z-R relationship in a logarithm scale.Dots in the figure indicate calibration factors

   calculated by actually comparing radar data withraingauge data.Thebroken line isproducedby interpolatingthose

   calibration factors conceming only distance.The solid thin line is produced by interpolation considering distance

   and precipitation intensity。 Solid thick lines are calibration factors derived for different Z」ノ~relationship values,

   that is the ratio of precipitation estimated with different B andβto that with the standard Z-R relationship for the

   same reflectivity factor Z.Variations for so1三d thick lines are from Austin(1987).

them,as the following equation indicates:

                    exp(一42/D2)

             照認      2君                  1+α(E8/Ef-1)

where

(4。6.3)

  4:(iistance between Pixe18’and the pixel where Raingauge歪is located,

 Eg:radar precipitation at Pixe19,

 瓦:radar precipitation at the pixel where Raingaugeづis located,

 .Pゴ:weightbased on the reliability of AMeDAS data and radar data at the pixel where Raingaugeづis located,

 Z),α:parameters.

 By interpolating F,with PVゴ,Fg’s are different according to the precipitation rate of the pixeL Parameters

P andαchange according to the cycles of the successive modification.In the first cycle,∠)andαare large,

in order thatレV,may be determined mainly by the difference of precipitation intensity.In the later cycles,D

andαare set smaller for calibrating the precipitationtherate ofwhich changes dependingmainly onthe location.

 Figure4.6.1compares this effect with other algorithms.The dots indicated in the figure denote the calibra-

tion factors calculated over the respective raingauges.Methods to change B andβcorrespond to solid thick

lines.These solid curves are determined by fixing the two parameters so that the total difference between the

values of the curve and the values indicated by dots maybe the minimum.Interpolation only about the distance

一97一

Page 36: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

(Makihara et a1.,1995)changes its calibration factor with no relation to the precipitation rate,as describedby

the broken line.The curve which the algorithm in this section describes changes according to the weight on the

intensity of radar precipitation over the dots.The difference between this algorithm and changing of B andβ

is clear at high intensity which is not observed with raingauges。The curve detemined by fixingβandβ

sometimes indicates larger factors for extremely strong rainfa11,while the current algorithm’s values seldom

exceed observed ones.The current algorithm can avoid yielding excessive factors for strong reflections from

very large raindrops or even from large particles of hails。

  The weight P,based on the reliability of observation data becomes smaller when:

1)An AMeDAS raingauge or a radar observes very light precipitation,where an error caused by digitization

   may occur

2)The altitude at which a radar observes precipitation echo is high

3)The number of AMeDAS raingauges for determining F8is sma11.

4、6.2Correspondence between raingauge measurement and radar precipitation

  In detemining F,,it shouldbe taken into account that anAMeDAS measurement does not always correspond

to the ra(1ar precipitation of the same pixel of5km square,because1)there is variability in the distribution of

precipitation even in a5-km pixe1,and2)raindrops aloft are often carried away to another pixel before they

reach the ground.Unsuitable correspondence between an AMeDAS measurement and a radar precipitation

leads to a false calibration factor.To avoid this undesirable situation,we use the following process,taking into

account the eight pixels surrounding the target pixe1:

君・譜∫(C,,C,,q,C.,N) (4.6.4)

where

  C,:(AMeDAS measurement,R)/(radar precipitation of the target pixe1,瓦),

  C、:R/(maximum radar precipitation among the pixels,E」),

  G:R/(minimum radar precipitation among the pixels,E,),

  C.:R/(average of ra(1ar precipitation estimates of the pixels),

 ノV:mmber of AMeDAS raingauges conceming the calculation of-Fg over the target pixe1.

  In the process,C、is used as E when I C,I does not exceed the value of Parameterγ,while other values are

taken into accomt when I C、I exceedsγ,considering that a large I C,I may be due to unsuitable correspon-

dence。For example,when C、exceedsγ,F~is determined by the following equationl

君.=min(max(1,(フ,δ),max(δ,min(3,max(1,0.5/V))C,),C,) (4.6.5)

where min and max indicate the minimum and the maximum among the values within parentheses,respectively,

andδis a constant。Almost the same restriction is placed on C,below一γ.

  Figure4。6.2illustrates this function。In the figure,Ff is equal to C、if C。is in the hatched area,while Fゴ

changes to the value at the top of the hatched area if C,exceeds the area.The adoption of the new value is

equivalent to making the raingauge measurement correspond with the radar precipitation of the intensity

between E∫and E」for obtaining a smaller calibration factor.It is also found by the figure that the fmction

imposes severe restriction when the target has a small number of AMeDAS sites concemed.

一98一

Page 37: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

  C1

つCg巴

顯   γ

δ‘

Number of raingauges conGemed

Fig.4.6.2Schematic diagram showing how to correspond an AMeDAS measurement with the radar observations at the

   target and surrounding pixels.The figure illustrates the case when the calibration factor between the AMeDAS

   measurement and the radar observation over the target pixel exceeds a criterion valueγ.Hatched area shows the

   range where F∫can be allowed.

 Consequently,this function makes an AMeDAS raingauge measurement correspond to a radar precipitation

so that1)Radar-AMeDAS may be equal to the AMeDAS measurement if I C,l is underγ,and2)Radar-

AMeDAS may be close to the radar precipitation with small modification by AMeDAS under the restriction of

Eq.(4.6.5)in other cases.

4.7Accuracy of Radar-AMeDAS precipitation

4.7.1 1ntroduction

  Radar-AMepAs precipitation,Radar-AMeDAs hereafter provides important information for wamings and

watches for heavy rainfall issued by JMA,because of its detailed continuous distribution of precipitation.

Several reports were presented conceming the accuracy of Radar-AMeDAS on land(e.g.Nyoumura,1985,

Kitabatake et aL,1991)、However,since the algorithm for Radar「AMeDAS has been improved over the past

several years,we will clarify the effect of the new algorithms in this study.

  The accuracy over the sea cannot be verifie(i with raingauge,and should be estimated indirectly by other

means.As one of those means,we prepare a distribution of appearance frequencies of Radar-AMeDAS pixels

for different intensities,and compare it with that of AMeDAS.

4.7.2Data

  The target ofverification in this study is values of1-hour precipitation amount of Radar-AMeDAS for pixels

of5-km square,which are allocated onto a composite(10main shown in Fig.4.3.1.Operational products of

Radar-AMeDAS after March1993are used for most of the verifications.Products re-analyzed by the

algorithm that has been operational since June1995are also used for the cases before March1993.

  A very dense raingauge network of the Tokyo Metropolitan Govemment with average spacing of4。5km is

used for detailed comparison,and raingauge data from other local govemments and from the Ministry of

Constmction are used for verifying severe rainfall over100mm/h.None of those data was used in Radar一

一99一

Page 38: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

AMeDAS analysis.

  For obtaining Radar-AMeDAS,data from JMA conventional radars and AMeDAS raingauges are used。

 An estimate of1-hour precipitation by radar,radar precipitation hereafter,is derived from the reflectivity

factor Z observed on a2.5km gridby using a Z-R relationship of200forβand1.6forβ(Marshall and Palmer,

1948).

  The gri(1size for radar precipitation is changed from2.5km to5km before the data are transmitted to the

JMA forecast center by choosing the maximum value among four pixels of2。5km square.

4,7.3Representative precipitation for a5-km square pixel

  Radar-AMeDAS should have the following features as a representative value of precipitation for a pixel of

5km square:

 1) It should not fail to detect local severe precipitation.

2)It should be“more accurate”with the help of AMeDAS raingauge data than radar precipitation.

  Beforeverification,we considertherepresentativevalue of Radar-AMeDASbecausesevereprecipitationcells

such as from thmderstorms sometimes have a large areal variation even in an area of5-km square.

  Owing to the variability in the Z-R relationship or the vertical difference of reflectivity from radar precipita-

tion,precipitation needs calibration to achieve sufficient accuracy(Collier et a1。,1975).Since measurements of

precipitation at AMeDAS raingauges are considered to be random sampling from the actual precipitation

distribution,AMeDAS can be assumed to represent the average of precipitation in a5-km square when

statistically processed onboth space and time.Therefore,calibration with AMeDAS is expected to produce,in

general,Radar-AMeDAS representing the average value in a5-km square.Here,it should be noted that

calibration with AMeDAS includes not only improvement in accuracy of radar precipitation but also modifica-

tion of the representative radar precipitation for a5-km square into the average.

  The representative value of radar precipitation for a5-km square,that is the maximurb of four radar

precipitation measurements in a2.5-km square,represents more localized severe precipitation suitable for rea1

-time watching tasked for Radar-AMeDAS.

  Under these circumstances,the following two extreme cases of calibration are possible:

1)Whenscarcelycalibrated,Radar-AMeDASrepresentsalmostthemaximumamongfour2.5-kmpixelvalues

    in a5-km pixe1.

2)When calibration with AMeDAS is heavily imposed,Radar-AMeDAS becomes statistically the average

    precipitation in a5-km pixe1.

  For example,1et a5-km pixel consist of three2.5-km pixels of4mm/h and one pixel of20mm/h,and these

radar precipitation estimates be accurate.If there are many AMeDAS raingauges and5-km pixels with the

same condition,the most probable situation is that these AMeDAS raingauges measure values of4mm and20

mm at a frequency rate of three to one.When we adopt calibration in case2),Radar-AMeDAS becomes the

average of8mm,while the case1)provides20mm for Radar-AMeDAS.It should be noted that8mm from

case2)is the correct value for the areal average precipitation in a5-kmpixel andthat20mmbycase1)isbetter

for real time watching for severe precipitation.

  The current algorithm arranges both cases depending on the conditions.For localized severe precipitation,

case1)is dominant.In this situation,the algorithm makes an AMeDAS measurement correspond to the radar

一100一

Page 39: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

precipitation having as small mo(1ification factor as possible among the surromding pixels,taking into account

the location errors and large variability in a5-km pixel(Section4.6.2).For the other types of precipitation,

the representative value of Radar-AMeDAS is close to one in case2).There,radar precipitation representing

the maximum of four2.5-km pixels is modified with some nearby AMeDAS measurements into almost the

average of the5-km pixeL Variation in precipitation estimates of neafby pixels and the number of AMeDAS

raingauges used for the calibration of the target pixel are,fundamentally,the parameters for determining how

the weights should be distributed to those cases.

 As the result,Radar-AMeDAS represents the following values:

1)For a precipitation with large variation often observed in a severe convective cells,Radar-AMeDAS

   represents the maximum of four2.5-km pixels in each5-km pixe1

2)For a large scale precipitation with small variation in distribution,Radar-AMeDAS represents the value

   close to the average of precipitation in a5-km pixel

  Although less calibration is made in case1)than in case2),calibration on a larger scale is conducted for the

entire detection area,beforehand,forbothcasesusingdata from all oftheAMeDAS stations concemed(Section

4.5)。

4.7.4Detailed accuracy on Iand evaIuated with raingauge data

  To assess the accuracy of Radar-AMeDAS in detai1,we compare Radar-AMeDAS withraingaugedataexcept

AMeDAS.In the comparison,a location error of one pixe1(i.e.5km)must be taken into accomt because

raindrops are sometimes advected by wind before reaching the ground,and there is also a possibility of an error

reaching one pixel when Radar-AMeDAS values analyzedfor respective radars are allocated onto the composite

domain.

  Raingauge data from the Tokyo Metropolitan Govemment is suitable for this comparison.In Fig.4.7.1,these

raingauge measurements are indicated on Radar AMeDAS chart at6JST on90ctober1992,when an

extratropical depression passed over.It is seen that Radar-AMeDAS values show good agreement with these

raingaUge meaSUrementS.

  Figure4.7.2shows a case of a.severe local thunderstorm at22JST on20May1992.A large variation in

precipitation distribution is seen even in a5-km pixe1.For example,in the pixel where Radar-AMeDAS

indicated39mm,a raingauge measured32mm in its top left si(1e and another gauge indicated only6mm in its

bottom right side.Although in the pixel where AMeDAS measured5mm Radar-AMeDAS showed a rather

larger value of30mm,and a raingauge in the next pixel on the right side measured29mm.Thus,with a

location error of one pixel considered,Radar-AMeDAミ』provides good agreement.It is noteworthy that Radar

-AMeDAS agrees with the largest raingauge measurement in a pixel in this case。

  Figure4.7.3is a scatter diagram for comparisons between hourly Radar-AMeDAS values and corresponding

raingauge measurements ofthe Tokyo Metropolitan Govemmentfor4months。Araingauge measurementwas

compared with the value that showed the best agreement among the grid containing the gauge site and the eight

surrounding grids.Good agreement is seen also in this figure.

  In Table4.7.1,severe rainfalls that measured over100mm/hwithraingauges are compared,Most ofthe radar

data for these cases are obtained at a further distance from radars than the data for the verifications of the

Tokyo area.Half of these cases are within an error of15%。The cases with relatively large-scale distur一

一101一

Page 40: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

9

17. 

 “

 ㍗

⑳ 寮

 。2

9

⑳   や

4圏宅夢

8

  憩

 や

 ㌍

112噂

画幻 

3-1   9

 ■-

恥8   9

01   玉

 9

  ●

お際

 P

▽  ・

5曜-

9孔

E5

6.

2孔 5

0雪乙

4■-

8

1

4L

 偽

■-

V

 16●

P

獅  ぜ

V

Fig.4.7.1Comparison ofRadar-AMeDAS values withraingauge measurements ofthe network oftheTokyo Metropolitan

    Govemment at6JST on90ctober1992.Radar-AMeDAS values and raingauge measurements are indicated by a

   numeral over the chart for a case when an extratropical depression passed over.The size of each pixel is the same

    as in Fig.4.2.2,i.e.almost5km by5km.Points with numbers indicate locations of raingauges,and the numbers for

    each point denote the precipitation measured there.Numbers surroundedby a rectangle indicate raingauge readings

   by AMeDAS.The exact location ofthe AMeDAS site isonthevertex ofthebottomleftside.The Radar-AMeDAS    value for each pixel is indicated in its top left side.It is seen that Radar-AMeDAS values agrees well with the

    raingauge meaSurementS.

1 5’E

孔1

.4

   聖o鉾 毛 2 6

 5 6

  7■    .

8団  も4 。、 1

30

35αN

1●

Fig.4.72Same as Fig。4.7ユexcept for the case of a thunderstorm at22JST on May1992.There is a large variation in

    intensity even in a pixeL In the pixel where AMeDAS indicates5mm,Radar-AMeDAS value shows a larger value

    of30mm.However,a raingauge in the next pixel on the right side measures29mm.It should be noted that Radar

    -AMeDAS agrees with the largest raingauge measurement in the pixel in this case.

一102一

Page 41: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

(mm/h)

  140

120

0     0    0     0

0     8     6     q

芒①目Φ旨器Φε亀壽bo唱蜀国

00

内ごー

● ● ● 0

   0

(U∩UO

-ーる5ー一

m(4102-00180

●。

●.●

●・

 ・.●鉾髄

  OO■

0

O

9。●●。●●

●●30●●

・説.縞』

 ●●●銘●.●”

”“驚響箕3

 ●  器●駅

 ぞ脳●。2..”器”

 ●鷺o器” 。o● 9

 ● ●OOO

   O

09●斜3。

.0

 OO●●

3 93り

 。 ㎝

 . ●03 00

0 ●

●”●●

綴3

鵠.

●O

●  OO●

『認

●.

.2

蓼。. 0

   ●o”1

㌦が川…

.野。。

(mm/h)

Radar-AMeDAS precipitation

Fig,4.7.3Scatter diagram for comparisons between hourly Radar-AMeDAS values and raingauge measurements of the

   Tokyo Metropolitan Govemment for4months.Data from May to September in1994,that is5,808cases,are used.

   A raingauge measurement is compared to the value which showed the best agreement among the pixel including the

   gauge site andthe surrounding eightpixels.The figure looks as ifRadar-AMeDAS values areslightlyunderestimat-

   ed comparedto raingaugemeasurements.This apparentunderestimation ismainly due to the way ofcorrespondence

   between a raingauge measurement and a Radar-AMeDAS value.The figure indicates only whether raingauge

   measurements can be detected by Radar-AMeDAS with sufficient accuracy.

bances are estimated within an error of30%.The rest includes three cases with an error of about40%to50

%an(10ne case of70%,all of which arebrought about by localized convection.The last worst case was greatly

affected by attenuation of the radar beam due to a film of water over a radome produced by severe rainfa11.

  This evaluation indicates only whether Radar-AMeDAS mfailingly detected such severe precipitation

amounts because those raingauge data are only part of the entire severe precipitation amounts.To determine

the accuracy of Radar-AMeDAS,we also have to know atthe same time,howfewthe overestimates are among

all of the Radar-AMeDAS values.However,it is almost impossible to verify all of severe Radar-AMeDAS

values having spatial continuity by using scattered raingauges.Another approach is necessary for this kind of

verification.

4.7.5Comparison by appearance rates

  The density of a raingauge network is,in general,not so high as to correspond with every pixel of Radar-

AMeDAS.Here,by comparing frequencies of the appearance for different intensities,all Radar-AMeDAS

values will be evaluated statistically with AMeDAS.

  The distribution of the frequencies of raingauge measurements for(1ifferent intensities is known,in genera1,

to exhibit a gamma distribution(for example Suda,1993)。If the number of AMeDAS raingauges increased to

the spacing of5km,the Qbservation frequencies would increase。In this case,the increase of observation

一103一

Page 42: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

Table4.7.1Raingauge data for extremely severe rainfall and corresponding Radar-AMeDAS values

Data and Location Raingauge Radar。AMeDAS Situation

time JST ref6cture Value mm1h mm1h1993.6.21.15 Tokyo 112 59 Thunaerstorm   H1993.8.1.20 Kagoshima 119 105 Rain band1993.9.3.16 :Kagoshima 116 100 Typhoon     O且1993.11.13.10 Tokushima 115 120 Depression     OH:1993.11.13.10 Tokushima 110 140 Depression     OH:1993.11.13.10 Tokushima 107 105 Depression     OH1993.11.13.10 Tokushima 105 130 Depression    OH1994.9.7.0 Osaka 106 64 LOCal COnVeCtiOn1994.9.7.1 Osaka 108 110 :Local convection

1994.9.22。13 Miyagi 132 66 Thunaer storm1994.9.22.15 Miyagi 134 43 Thunder storm   H1994.9.22.16 Mi a1 121 130 Thunder storm   H

Note:Marks“0”and“H”at the last of each case indicate existence of orographic effect and

high calibration factor required,respectively.

frequency for each intensity is expected to be proportional to the increase of raingauges because the condition

forsamplingthe actualprecipitationwithAMeDAS raingaugesdoesnotchangeexceptforthesamplingnumber.

As a result,“the ratio of the number of measurements for specific intensity to the total number of measurements

including O”is not influence(1by their spatia1(1ensity。 Hence,by using this ratio,the frequency(1istribution of

Radar-AMeDAS composed of5-kmpixels canbeevaluatedonlandwiththesameconditionasthatofAMeDAS.

  On the other hand,there may be some difference between the actual distribution over the sea and that over

land.Almost the same distribution is expected,however,since the period during which those distributions were

collected has a duration of over3months,and the target domain is so large that the sea area can be treated as

being near the land,although some difference may be found in areas affected by orography.In fact,the

appearance frequencies of radar precipitation for the land area and for the sea area which are normalized with

respect to the total number of pixels show only a small difference for each intensity as shown in Fig.4.7.6.

  Withthoseconsiderationsinmind,theappearancerateofRadar-AMeDASiscomparedwiththatofAMeDAS

for the land area and for the sea area,as well as for a warm season and for a cold season,respectively.

  In addition,verifications are made also for the different heights at which radars observe precipitation echoes.

Some studies pointed out that the intensity of radar precipitation decreases as the observation height increases

owing to the variable vertical profile of a rainfall echo(Joss et a1.,19891Joss,1990).Although the algorithm

of Radar-AMeDAS compensates for this effect as described in Section4.5to a certain extent,the compensation

is insufficient in extreme cases such as for an area where a radar observes almost the top of rainfa11.The

relationship between these heights and the appearance rate is also investig4ted in the same mamer。

4.7.5.1Method

  The number of pixels in which Radar-AMeDAS showed specific intensity are accumulated for different

intensities and heights at which a radar observes precipitation echoes.Data from June to September1993are

accumulated as those of a warm season,and data from December1993to February1994as of a cold season.

Since the total numbers of pixels including no precipitation are different if the observationheights or the regions

are different,we calculate“an appearance rate,”∫,by normalizing with respect to the total number of

一104一

Page 43: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

[%。]

3鐙8毎詰Φ盆<

106

105

104

103

102

10

A』

warm season

1km\§・=、        +2km

     \、墜・      ◇3km        拳、.∋1≧:こ1♪.

          隈   ・り◇下・、.、.               △ 4km             △、        ・・㍉、

               \准、 ゆ一   ・・、          ×  AMeDAS                    、、    じ◇・   .鴨                      曾拳.、. ’..                         欄  ’の◇:  ら0、零一.

                           △、    ・◇.  竜、㌔、                                             ト                               ’凸、   ○◇・ 『零、。、                                  \     ・◇.  隔tN                                    ・ム…ぐ    ・1魚∴・・、・.、・、・麹,

凸、、   、△      ¥

』◇

~5~10~15~20~25~30~35~40~45~50~55~60~65~70

PreGipitationintensity [mm/hou r]

Fig.4.7.4Appearance rates of Radar-AMeDAS values for different observation heights.The horizontal axis denotes

   precipitation intensity in mm/h,and the vertical axis indicates the appearance rate.The rate at a specific intensity

   indicates the ratio of the number of pixels where Radar-AMeDAS values ofthe specific intensity are observed to the

   total number of all the pixels.The rates are expressed as common logarithms of PPM,10g(1,000,000!〉,、h。/!〉伽、♂).

   Data from June to September in1993were used.The rate of Radar-AMeDAS values at observation height of2km

   and under is almost identical to that of AMeDAS measurements.

frequencies as follows:

                           め

           ノ(h・7)謂s(h・7)/Σs(h・7)       (4・乳・)

where

  h:height at which a radar observes a precipitation echo

  7:precipitation intensity

 s:frequency at Intensity7and at Observation height h.

4.7.5.2ResuIts

 For detemining the relationship with observation heights,the appearance rates of Radar-AMeDAS for the

warm season are shown in Fig.4.7.4together with that of AMeDAS.The appearance rate of Radar-AMeDAS

at observationheights of2km or less showsfairlygood agreementwiththat ofAMeDAS.The appearancerate

at3km is smaller than that of AMeDAS by about60%for all intensities.

  The appearance rates in the cold season show similar differences as in the warm season(Fig.4.7。5)。The

higherrate ofAMeDAS inweaゆrecipitationmightbecausedbyprecipitationwitha lowcloudtopheightwhich

cannot be(1etected by radar in spite that raingauges can detect one。

  We,then,evaluate the difference in the appearance rate in terms of intensity,to obtain a standard for

estimating areal precipitation amomts.It is assumed that the appearance rate of AMeDAS is equivalent to the

actual rate。It is also assumedthat the intensity of Radar-AMeDAS values canbe described as afunctionwhich

一105一

Page 44: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

[%。] 106

Φ捻』Φ。語』器盆<

105

104

103

102

10

cold season 、 、.

、”、◎』■

 ち  ヤし

金、\          ロ1km△、◆’・、

・\・=t・・、図                           十 2km  、    ¥・

\継        ◇3km    〉胤∴・>ミ、・                       △ 4km

           へ

     \◆・’桑         ×AMeDAS       ペ        ヤ

        ・進\◇・造爆、ぎ.

            ’△、’◇㌧・』’+モト.、.

               \盛、◇・111漢>.、.

                   ・く’  ・’0φ・∵.}ヤ                     ¥△  ・駅.、

                       ¥         、Y十、                        ¥         縦..・                         ¥                 ・ヤ、

~5~10~15~20~25~30~35~40~45~50~55~60~65~70

Precipitationintensity [mm/hou r]

Fig.4.7.5Same as Fig.4.7.4except for the period from December1993to February1994。

increases monotonically with the increase of the intensity of AMeDAS,although the relationship may not be

proportiona1.

We can then detemine the value of Radar-AMeDAS,ノ~’,so that the sum of the appearance rates of Radar

-AMeDAS from infinity to R’may be the same as that of AMeDAS from infinity to R,as follows:

          ざ            め

          濠∫・(ア)一Σ,∫(h・7)

Where

 ∫、:appearance rate of AMeDAS

 The concept and the assumption of this method are similar to what Rosenfeld et al.(1993)proposed for

deriving the relation between radar-precipitation amounts and raingauge measurements for different types of

precipitation events,although the purpose and the apPlied data are different.

  Under the above assumption,the actual intensity of the precipitation which Radar-AMeDAS analyzed asノ~’

is considered to be R.Consequently,1~ソR is the ratio of the intensity ofRadar-AMeDAS to that ofthe actual

precipitation.The result obtained by this method indicates that Radar-AMeDAS at3km underestimates the

intensity by20%at20mm/h,and28%at50mm/h over the sea(Fig.4.7.7).The small values at low intensity

around5mm/h over the sea are mainly due to failing in detection of precipitation,which disagrees with the

assumption on Eq.(4.7.2).

  For detailed evaluation of the appearance rates at lower observation heights,the ratios of the appearance rate

of Radar-AMeDAS to that of AMeDAS inthewarm season are showninFig.4.7.6bothfor the land andforthe

sea respectively.The ratio for radar precipitation,which is not calibrated with AMeDAS,is also included in

the figure.Figure4.7.6shows that the ratio of the radar precipitation is smaller than that of AMeDAS,

especially at high intensity.Since Radar-AMeDAS shows the ratio much closer to l than radar precipitation,

一106一

Page 45: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

[%]160

>↑一ω⊆Oρ⊆一.αO』」⊆一〇一一邸匡

140

120

100

80

60

40

20

0

warm season

ダ十〇

.;..fナ==烈曹ニン2∫3臨.、

’鴨十、

隔十・..嚇

   .2rr廠、

’十辱

口十◇△

l and(R-AMeDAS)

sea (R-AMeDAS)

I and(Radar)

sea (Radar)

一峠一  一◇

  一… … で

  壕… … 盛

く…㎜、、…

鷺}袴

 》…  熔

U㍉  一  一鴨り

}覧  一  一隔』

庶…囎

      凝8

     。\

    ■V り

   ㎜翼

   、 ’…

   、 1■

  魂幅

   い\

   …ム.◇…

   …

    ’

    訟

   …遷◆…

   \・

…\.…

…ゆ…

ツ…路

  ◎ム

~5~10~15~20~25~30~35~40~45~50~55~60~65~70

Precipitationintensity(AMeDAS) [mm/hou r]

Fig.4.7.6Comparison of the appearance rates of Radar-AMeDAS values over the land and over the sea with that of

   AMeDAS.Ratios of the appearance rates of Radar-AMeDAS values to those of AMeDAS in the warm season are

   shown for the land and for the sea,respectively.The ratios for radar precipitation,which is not calibrated with

   AMeDAS,are also included。

[の<OΦミ虚]

[の<OΦミ]

1.2

。慧』8慧』8盆<εo;醒

1.1

1

0.9

0.8

0.7

0.6

0.5

warm

十ρ一

”Φ

season

。』』畢二ニニニニニ墨顎・+..陶..

.φo

’1φ∵ ●・③・9

Q’←噂鴨層『鴨・+隔鴨舳

.:rもの喝、、”0ギ’湖お峯こ;ニニニニ等二二瓢キ』』』

・●⑥3     9び●。    ●。’0⇔・ ・φ・…〈》・ ・φ.

漁.・.

    。’●’。Oo・φ’

口 land

十 sea

◇sea

1km+2km1.km+2km

3km

、十

’<y

~5 ~10 ~15 ~20 ~25~30~35 ~40 ~45~50~55 ~60

precipitationintensity(AMeDAS) [mm/hour1

Fig.4.7.7Evaluation of Radar-AMeDAS about intensity for estimating areal precipitation amounts.The ratio of

   intensity that Radar-AMeDAS indicates to the actual intensity is shown under the assumption that the appearance

   rate by AMeDAS is equal to the actual one.It should be noted that Radar-AMeDAS not only seeks to determine

   accurate areal precipitation but also must always detect localized severe precipitation。The positive bias over the

   land area is caused mainly by this task.Since the figure is indicated by the ratio,the values at higher intensity are

   relatively close to l in spite of the larger differences in their apPearance rates.

一107一

Page 46: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No。392000

it is clear that the performance of Radar-AMeDAS surpasses that of radar precipitation.

 The ratios of Radar-AMeDAS for the land area exceed l for all intensities,and they become larger as the

intensity increases.This feature is consistent with the result from the consideration onthe representative value

for a5-km pixel in Section.4.7.3.In estimating areal rainfall amounts,Radar-AMeDAS overestimates

AMeDAS by11%at10mm/h and by12%at40mm/h although overestimation decreases to8%at5mm/h

(Fig.4.7.7).

  Onthe otherhand,theratio over thesea isverysimilarto that ofAMeDAS atlowintensity,whileitdecreases

at high intensity over15mm/h.When Eq.(4.7.2)is apPlied,Radar-AMeDAS over the sea gives underestima-

tion of the intensity by2%at10mm/h,and12%at40mm/h under the assumption that the apPearance rate

of AMeDAS is equal to that over the sea.Since the appearance rates around40mm/h are1/100to l/1,0000f

that at5mm/h,the effect of the errors in this intensity on the total areal precipitation over an area is expected

to be under1%.

  The following are major reasons accounting for the decrease at high intensity.

1)Local calibration by AMeDAS is not available for Radar-AMeDAS over the sea.The Z-R relationship

   used for the JMA radars is thought to cause mderestimation at high intensity for local convections

    (Fujiwara1965).The mderestimation caused by vertical difference of precipitation intensity is also,in

   genera1,1arger for the area with higher intensity than the areas with lower intensity surrounding it,These

   are considered to lead to the mderestimation of the actual intensity at higher intensities.

2)Orographic effect is less prominent over the sea.This leads to fewer occurrences of severe precipitation

   over the sea than over the lan(i.

   As for the severe rainfall events in Table4.7.2,five of them are considered to be affected by orography,and

   the three remaining had large calibration factors.If those events had occurred over the sea,the five events

   would have lower rainfall intensities,which would lea(1to smaller appearance rates at high intensity.The

   three remaining would be estimated to have smaller intensities with smaller calibration factors because of

   no local calibration.It is difficult to estimate only with those figures,however,the orographic effect might

   not be small enough to be neglected in evaluating Radar-AMeDAS over the sea with AMeDAS.

4.7.6Conclusions

  The very dense raingauge network of the Tokyo Metropolitan Govemment was used for the detailed

evaluation of Radar-AMeDAS.By evaluating Radar-AMeDAS for a pixel of5km square with several

raingauges located in the pixe1,it was found that Radar-AMeDAS represents almost the average of those

raingauge measurements when precipitation is caused by a large scale disturbance,and that it is close to the

maximum raingauge measurement in the pixel when the precipitation is as localized as scattered thunderstorms.

In a comparison over a period of approximately4months,Radar-AMeDAS exhibited an excellent agreement

if a positioning error of one pixel was allowed。

  Radar-AMeDAS values were also compared with AMeDAS raingauge measurements and with radar-precipi-

tation amounts statistically,with respect to the appearance rates,for different precipitation intensities.The

comparisonrevealed that Radar-AMeDAS is much more accuratethanradar precipitation,whichis determined

only with constant Z-R relationship and shows small appearance rates.The rate of Radar-AMeDAS agrees

well with that of AMeDAS if radar observation is made at an altitude below3km.For radar observation at

一108一

Page 47: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

3km height,the appearance rate decreases to about60%that at2km height.Under the assumption that

AMeDAS represents the actual appearance rate,this rate is equivalent to underestimation of areal precipitation

amounts by20%at20mm/h and28%at50mm/h.

 Since Radar-AMeDAS precipitationonlandsometimesrepresentsthemaximum Qfprecipitationinapixelfor

the purpose of unfailingly(1etecting extremely localized severe precipitation,it exhibits higher appearance rates

at higher precipitationratesthanAMeDAS.As a result,inestimating areal rainfall amomts,Radar-AMeDAS

overestimates AMeDAS by11%at10mm/h and12%at40mm/h,although overestimation decreases to8%

at5mm/h.

 Radar-AMeDAS over the sea,where there is no local calibration by AMeDAS and little influence of

orography,exhibits smaller appearance rates over15mm/h than AMeDAS at10mm/h in intensity and12%

at40mm/h.This smaller appearance at high intensity is mainly caused by the followings.

1)A Z-1~relationship sometimes unsuitable for convective severe rainfalls,and a vertical precipitationprofile

   with characteristic leading to large mderestimation at high intensity are major targets which should be

   calibrated on a local scale.These cannot be calibrated on a local scale without AMeDAS.

2)The occurrences of the events of high intensity are fewer due to smaller orographical effect over the sea than

   over the land

   Because of the effects in2)the actual underestimation of Radar-AMeDAS over the sea is thought to be

   smaller than the v甲ues in Fig・4・7・7・In addition・when only a total areal amount for a rather large area is

   considered,thQ influence of underestimation at high intensity might be quite small because appearance rates

   at high intensity(around40mm/h)are much s;naller than those at lower intensity(around5mm/h)。

Appendix(1)

  In this appendix,all the variables are the same as those in Section4.5.4.3.1,and it is,assumed that瓦*makes

ゐa the minimum among three candidates,and瓦*一△the second smallest.

  The following are some situations when weighting coefficientsε,ζ,ηare determined.

1)When the difference betweenゐa(Xも*一△)andゐa(瓦*)is large,.Xもshould be close to瓦*in order to keep

   ゐa small,which leads to large weighting ofζandη.On the other h3nd,when there is little difference

   betweenゐ、(瓦*一△)andゐ、(Xも*),the increase inゐ、is small as long as Xもis almost between瓦*一△and

   Xも*十△,and.X』satisfies Eq.(4.5.15).Therefore,it is more effective to put larger weighting toεthan to

   others,in order thatゐfor Radarわand radars other than a may be sma11.

2)Ifゐa(瓦*)is large,there are two possibilities:(1).Xも*is not proper,or(2)the assumption in Eq。(4.5。15)

   has some errors.In this case,in order to avoid false modification of these parameters,smaller weighting

   is given to the three coefficients.This treatment makes the influence of.L2for these radars on the total

   L2in Eq.(4.5.17)small in the early stage of the iteration.

3)When all the data for Radar6are of the same beam height,ゐ,can be resolved only when corresponding

   heights of Radar a show different values.Actually,Eq.(4。5.11)can be transformed as follows because B蝕

    is independent of pointた:

一109一

Page 48: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No、392000

               孚(α・た/Eわた)2 写(Eみ是/α・疋)2

12(X、,Xみ)=K        -1+κ        一1              {孚(ααた/Eゐを)}2 {孚(Eみた/ασた)}2

 This equation does not include瓦.Hence,C、6becomes zero,and Xも*camot be detemined in this case.

Here,when all the data for Radarわare of nearly the same beam height,the reliability of Xも*must be low,even

   if they may be derived.In this case,the coefficient C、δmay be smal1,and differences amongゐ’s for three

   occasions may also be sma11.

 In the same way,when all of the beam height values of Radar a are almost the same,the reliability of X』*

   is sma11,and the coefficient C、δis large,although the coefficients may be derived.

Withtheseconsiderations,theactualweightingisdetemined.Specificvaluesforthecoefficientsusedinthis

   study are as follows:

  (a)

         ε=隅,

         ∫=夙聡,

         η=05隅耽,

                     の         照311」2、(Xb),

                           ゆ                      ゆ                ロ         %胃{0.25+(/2、(Xドム)一12、(Xわ))/12、(Xわ)},

were1/WI is limited between O.1and1.0.

(b)When C is nearly O(smaller than1/16),ζis1,whileεandηare O.

(c)When C is over16,ηis1/2,whileεandζare O.

Appendix(2):Weighting strategy for determining As

 Coefficientsαandγused in Eq.(4.5.19)are detemine(1as follows.

(a〉γis set larger when△is derived from the readings of raingauges at the target time,thanwhen derivedfrom

   statistical values.

(b)αis fixed to zero when there is no area where the radar observations overlap.

Whenradar echoes are overthesea only,△isnot obtainedatthetargettimelthevaluebasedonthestatistics

for the last240hours is then adopted as its substitute.

WhenΣβ、δ々are actually calculated,weighting is applied to、every point concemed such that the total weight

for every altitude level sliced at500-m intervals is the same,and the number of samples for a radar estimate

less than l mm/h is restricted to half ofthat for the other intensities,so as not to place excessive weight on small

intensities in the analysis for the logarithm.

References

Andrieu,H.and J.D。Creutin,1991:Effect of the vertical profile ofreflectivity on the rain rate assessment atground leve1.

   Preprints25th Conf.Radar Meteor.,832-835.

一110一

Page 49: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

Technical Reports of the MRI,No.392000

Aoyagi,」。ヲ1983:A study on the MTI weather radar system for rejecting ground clutter.Papers in Meteor。Geophysics,23

   No.4,187-243.

Austin,P.M.,1987:Relation between measured radar reflectivity and surface rainfa11.Mon.Wea.Rev.,115,1053-1070.

Brandes,E A。,1975:0ptimizing rainfall estimates with the aid of radar.J.App1.Meteor.,14,1339-1345.

Collier,C.G。,T。W.Harrold and C.A。Nicholass,1975:A comparison of areal rainfall as measured by a raingauge-

   calibrated radar system and raingauge networks of various densities.Prepr三nts,16th Conf.Radar Meteor.,467-472.

Doviak,R J。and D。S。Zmic,1984:Doppler Radar and Weather Observations.Academic Press.,New York,458pp.

Forecast Division,Forecast Department,.1991:Data processing in the system for very-short-range forecast of precipita-

   tion.Weather Service Bulletin,58,189-207(in Japanese)。

Fujiwara,M.,1965:Raindrops-size distribution from individual storms,J.Atmospheric Science,22,585-591.

Golden,エ,Sarreals,D、and Toephfer,F.,1986:NEXRAD and algorithms part l and part2.Preprints,23rd Conf.Radar

   Meteor.Cloud Physics,Snowmass,Colorado,Sept,83-90.

Gray,W。R。,1991:Vertical profile corrections based on EOF.Analysis of operational data.Preprints,25th Conf.Radar

   Meteor.,821-823.

Joss,エand A。Waldvoge1,1989:Precipitation estimates and vertical reflectivityprofile corrections.Preprints,24th Conf.

   Radar Meteor.,682-688.

Joss,エand A.Pittini,1991:The climatology ofvertical profiles ofradar reflectivity.Preprints,25th Conf.Radar Meteor.,

   828-831.

Joss・J・,1990:Wayofusing,andcorrectingforerrorsinconventionalradarreflectivitydata.WeatherRadarNetworking,

   190-199,Kluwer Academic Pub.,Dordrecht,Netherlands.

Kitabatake,N.and M.Obayashi,1991:A study comparing radar-AMeDAS precipitation chart with observed data of

   raingauge network of Tokyo metropolis,J.Meteor.Research,43,285-310.

Makihara,Y.,N.Kitabatake and M.Obayashi,1995:Recent developments in algorithms for the JMA nowcasting system.

   part1,Geophysical Magazine Series2,1,171-204.

Makihara,Y.,1996:A method for improving radar estimates of precipitation by comparing data from radars and

   raingauges,」.Meteor.Soc.Japan,74,459-480.

Marshall,」.S.and W.M。Palmer,1948:The Distribution of raindrops with size.」.Meteor.,5,165-166.

Nyomura,Y.,1985:Verification of JMA’s precipitation observation system using digitized radar and raingauges

   (AMeDAS)by local dense raingauges system of Tokyo Metropolis,」。Meteor.Research,37,H2.

Rosenfeld,D.,D.Atlas,and D.B.Wolff,1993:General probability-matched relations between radar reflectivity and rain

   rate,J.App1.Meteor.,32,50-72.

Sakota,Y。,1990:Radar echo digitizing and disseminating system.Tenki,37,659-670(in Japanese).

Sliga,T.A.,and V.N.Bringi,1976:Potential use of radar differential reflectivity measurements at orthogonal polariza-

   tions for measuring precipitation.」.App1.Meteor.,15,69-76.

Suda,Y.,1993:Comparison of probable precipitation amounts in warm years and cold years,Tenki,40,335-34L

Takase,K.,Y.Takemura,K.Aonashi,N.Kitabatake,Y.Makihara and Y.Nyomura,1988:0perational precipitation

   observation system in Japan Met。Agency.Tropical Rainfa11Measurements(John S.Theon and Nobuyoshi Fugono

   eds.),A.Deepak Pub.,407-413.

Takemura,Y.,K.Takase and Y.Makihara,1984:0perational precipitation observation system using digitizedradar and

   rain gauges.Proc,Nowcasting-II Symposium,Norrk ping,Sweden,e-7Sept.1984,ESA SP-208,411-416.

Tatehira,R and T.Shimizu,1978=Intensity measurement of precipitation echo superposed on ground clutter-a new

   automatic technique for ground clutter rejection一.Preprints,18th Conf,Radar Meteor.,364-369。

111一

Page 50: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

気象研究所技術報告一覧表

第1号 バックグラウンド大気汚染の測定法の開発(地球規模大気汚染特別研究班,1978)

   Development of Monitoring Techniques for Global Background Air Pollution.(MRI Special Research

   Group on Global Atmospheric Pollution,1978)

第2号 主要活火山の地殻変動並びに地熱状態の調査研究(地震火山研究部,1979)

   Investigation of Ground Movement andGeothermal State of MainActiveVolcanoes inJapan、(Seismo1-

   ogy and Volcanology Research Division,1979)

第3号 筑波研究学園都市に新設された気象観測用鉄塔施設(花房龍男・藤谷徳之助・伴野 登・魚津 博,1979)

   On the Meteorological Tower and Its Observational System at Tsukuba Science City.(T.Hanafusa,T.

   Fujitani,N.Banno,and H.Uozu,1979)

第4号 海底地震常時観測システムの開発(地震火山研究部,1980)

   Permanent Ocean-Bottom Seismograph Observation System.(Seismology and Volcanology Research

   Division,1980)

第5号 本州南方海域水温図一400m(又は500m)深と1,000m深一(1934-1943年及び1954-1980年)(海洋研究部,

   1981)

   Horizontal Distribution of Temperature in400m(or500m)and1,000m Depth in Sea South of Honshu,

   Japan and Westem-North Pacific Ocean from1934to1943and from1954to1980.(Oceanographical

   Research Division,1981)

第6号 成層圏オゾンの破壊につながる大気成分及び紫外日射の観測(高層物理研究部,1982)

   Observations of the Atmospheric Constituents Related to the Stratospheric ozon Depletion and the

   Ultraviolet Radiation.(Upper Atmosphere Physics Research Division,1982)

第7号 83型強震計の開発(地震火山研究部,1983)

   Strong-Motion Seismograph Mode183for the Japan Meteorological Agency Network.(Seismology

   an(1Volcanology Research Division,1983)

第8号 大気中における雪片の融解現象に関する研究(物理気象研究部,1984)

   The Study ofMelting of Snowflαkes inthe Atmosphere.(Physicα1Meteorology ResearchDivision,1984)

第9号 御前崎南方沖における海底水圧観測(地震火山研究部・海洋研究部,1984)

   Bottom Pressure Observation South off Omaezaki,Central Honsyu.(Seismology and Volcanology

   Research Division and Oceanographical Research Division,1984)

第10号 日本付近の低気圧の統計(予報研究部,1984)

   Statistics on Cyclones around Japan.(Forecast Research Division,1984)

第11号 局地風と大気汚染質の輸送に関する研究(応用気象研究部,1984)

   Observations and Numerical Experiments on Local Circulation and Medium-Range Transport of Air

   Pollutions.(Applied Meteorology Research Division,1984)

第12号 火山活動監視手法に関する研究(地震火山研究部,1984)

   Investigation on the Techniques for Volcanic Activity Surveillance.(Seismology and Volcanology

   Research Division,1984)

第13号 気象研究所大気大循環モデルー1(MRI・GCM-1)(予報研究部,1984)

Page 51: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

  A Description of the MRI Atmospheric General Circulation Mode1(The MRI・GCM-1).(Forecast

  Research Division,1984)

第14号 台風の構造の変化と移動に関する研究一台風7916の一生一(台風研究部,1985)

  A Study onthe Changes ofthe Three-Dimensional Structure andthe Movement Speed ofthe Typhoon

  through its Life Time.(Typhoon Research Division,1985)

第15号 波浪推算モデルMRIとMRI-IIの相互比較研究一計算結果図集一(海洋気象研究部,1985)

  AnIntercamparisonStudybetweentheWaveModelsMRI andMRI-II-ACompilation of Results一.

  (Oceanographical Research Division,1985)

第16号 地震予知に関する実験的及び理論的研究(地震火山研究部,1985)

  Study on Earthquake Prediction by Geophysical Method。(Seismology and Volcanology Research

  Division,1985)

第17号 北半球地上月平均気温偏差図(予報研究部,1986)

  Maps of MonthlyMeanSurface TemperatureAnomalies overthe Northem Hemispherefor1891-1981.

  (Forecast Research Division,1986)

第18号 中層大気の研究(高層物理研究部・気象衛星研究部・予報研究部・地磁気観測所,1986)

  Studies of the Middle Atmosphere.(Upper Atmosphere Physics Research Division,Meteorological

  Sate胱e Research Division,Forecast Research Division,MRI and the Magnetic Observatory,1986)

第19号 ドップラーレーダによる気象・海象の研究(気象衛星研究部・台風研究部・予報研究部・応用気象研究部・

  海洋研究部,1986)

  Studies on Meteorological and Sea Surface Phenomena by Doppler Radar.(Meteorological Satellite

  Research Division,Typhoon Research Division,Forecast Research Division,Applied Meteorology

  Research Division,and Oceanographical Research Division,1986)

第20号 気象研究所対流圏大気大循環モデル(MRI・GCM-1)による12年間分の積分(予報研究部,1986)

  Mean Statistics ofthe Tropospheric MRI・GCM-I based on12-year Integration.(Forecast Research

  Division,1986)

第21号 宇宙線中間子強度1983-1986(高層物理研究部,1987)

  Multi-Directional Cosmic Ray Meson Intensity1983-1986.(Upper Atmosphere Physics Research

  Division,1987)

第22号 静止気象衛星「ひまわり」画像の噴火噴煙データに基づく噴火活動の解析に関する研究(地震火山研究部,

  1987)

  Study on Analysis of Volcanic Emptions based on Eruption Cloud Image Data obtained by the

  Geostationary Meteorological satellite(GMS).(Seismology and Volcanology Research Division,1987)

第23号 オホーツク海海洋気候図(篠原吉雄・四竈信行,1988)

  Marine Climatological Atlas of the sea of Okhotsk。(Y.Shinohara and N.Shikama,1988)

第24号 海洋大循環モデルを用いた風の応力異常に対する太平洋の応答実験(海洋研究部,1989)

   Response Experiment of Pacific Ocean to Anomalous Wind Stress with Ocean General Circulation

   Mode1.(Oceanographical Research Division,1989)

第25号 太平洋における海洋諸要素の季節平均分布(海洋研究部,1989)

   Seasonal Mean Distribution of Sea Properties in the Pacific.(Oceanographical Research Division,1989)

Page 52: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

第26号 地震前兆現象のデータベース(地震火山研究部,1990)

  Database of Earthquake Precursors.(Seismology and Volcanology Research Division,1990)

第27号 沖縄地方における梅雨期の降水システムの特性(台風研究部,1991)

  Characteristics of Precipitation Systems During the Baiu Season in the Okinawa Area,(Typhoon

  Research Division,1991)

第28号 気象研究所・予報研究部で開発された非静水圧モデル(猪川元興・斉藤和雄,1991)

  Descriptionof a Nonhydrost段ticModelDeveloped attheForecastResearchDepartmentoftheMRL(M。

  Ikawa an(1K.Saito,1991)

第29号 雲の放射過程に関する総合的研究(気候研究部・物理気象研究部・応用気象研究部・気象衛星・観測システ

  ム研究部・台風研究部,1992)

  A Synthetic Study on Cloud-Radiation Processes.(Climate Research Department,Physical Meteoro1-

  ogy Research Department,Applied Meteorology Research Department,Meteorological Satellite and

  Observation System Research Department,,and Typhoon Research Department,1992)

第30号 大気と海洋・地表とのエネルギー交換過程に関する研究(三上正男・遠藤昌宏・新野 宏・山崎孝治,1992)

  Studies of Energy Exchange Processes between the Ocean-Ground Surface and Atmosphere.(M.

  Mikami,M.Endoh,H.Niino,and K.Yamazaki,1992)

第31号 降水日の出現頻度からみた日本の季節推移一30年間の日降水量資料に基づく統計一(秋山孝子,1993)

  Seasonal Transition in Japan,as Revealed by Appearance Frequency of Precipitating-Days.一Statistics

  of Daily Precipitation Data During30Years一(T.Akiyama,1993)

第32号 直下型地震予知に関する観測的研究(地震火山研究部,1994)

  Observational Study on the Prediction of Disastrous Intraplate Earthquakes.(Seismology and Volcano1-

  ogy Research Department,1994)

第33号 各種気象観測機器による比較観測(気象衛星・観測システム研究部,1994)

  Intercomparisons of Meteorologica10bservation Instruments.(Meteorological Satellite and Observa-

  tion System Research Department,1994)

第34号 硫黄酸化物の長距離輸送モデルと東アジア地域への適用(応用気象研究部,1995)

  The Long-Range Transport Model of Sulfur Oxides and Its Application to the East Asian Region.

  (Applied Meteorology Research Department,1995)

第35号 ウインドプロファイラーによる気象の観測法の研究(気象衛星・観測システム研究部,1995)

  Studies on Wind Profiler Techniques for the Measurements of Winds.(Meteorological Satellite and

  Observation System Research Department,1995)

第36号 降水・落下塵中の人工放射i生核種の分析法及びその地球化学的研究(地球化学研究部,1996)

  Geochemical Studies and Analytical Methods of Anthropogenic Radiomclides in Fallout Samples.

  (Geochemical Research Department,1996)

第37号 大気と海洋の地球化学的研究(1995年及び1996年)(地球化学研究部,1998)

  Geochemical Study of the Atmosphere and Ocean in1995and1996.(Geochemical Research Department,

  1998)

第38号 鉛直2次元非線形間題(金久博忠,1999)

  Vertically2-dmensional Nonlinear Problem,(H.Kanehisa,1999)

Page 53: 4.Algorithms for precipitation nowcasting focused on ... › Publish › Technical › DATA › VOL_39 › 39_063.pdf · calibrating precipitation estimates by ra(1arl (3)Process

気象研究所1946(昭和21)年設立

嵩中山所長

夫輝允顯男

禎洋正豊龍

住藤木中房

吉近八田花

博    博

理    理

理博 高島 勉理博’吉田明夫理博 宇治 豪理博 伏見克彦

予報研究部 部長気候研究部 部長台風研究部 部長物理気象研究部  部長

環境・応用気象研究部  部長

気象衛星・観測

 システム研究部  部長

地震火山研究部 部長

海洋研究部 部長地球化学研究部 部長

気象研究所技術報告

近・藤洋輝編集委員長

子正和

尚美秀

畠谷枝

北高松

郎子幾文

豊直珠孝

上野田田

井清安岡

勝志修博

政正

藤堀内藤

  垣

加深上佐

編集委員

事務局

 気象研究所技術報告は,1978年(昭和53)年の初刊以来,気象研究所が必要の都度発行する刊行物であ

り,原則として気象研究所職員及びその共同研究者による気象学,海洋学,地震学その他関連の地球科学に

関する技術報告,資料報告および総合報告(以下報告という)を掲載する。

 気象研究所技術報告の編集は,編集委員会が行う。編集委員会は原稿の掲載の可否を判定する。

 本紙に掲載された報告の著作権は気象研究所に帰属する。本紙に掲載された報告を引用する場合は,出

所を明示すれば気象研究所の許諾を必要としない。本紙に掲載された報告の全部又は一部を複製,転載

翻訳,あるいはその他に利用する場合は気象研究所の許諾を得なければならない。個人が研究,学習,

教育に使用する場合は,出所を明示すれば気象研究所の許諾を必要としない。

気象研究所技術報告 ISSNO386-4049

      第39号   平成12年2月29日  発 行

饗簿馨気象研究所   〒305-0052茨城県つくば市長峰1-1

    TEL.(0298)53-8535

印刷所 株式会社エムディー

  〒300-1544茨城県北相馬郡藤代町大字山王345-1