4final cw design analysis

Upload: mese-cipres

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 4Final CW Design Analysis

    1/18

    DeLuca21

    IV.CurtainWallDesignAnalysisIntroductionThebuildingsfaadeisprimarilyaglazedaluminumcurtainwallwiththeexceptionofsomeareas

    aroundtheparkinggarage.Thecurtainwalltiesintothecastinplaceconcretestructurethroughsteelanchorplates.Onthewestelevation,thecurtainwallisslopedoutwardat5.63oallthewayfromlobby

    flooruptotheroofofthebuilding. TheslopeofthecurtainwallcanbeseeninFigure4.1outlinedby

    thearrowinthebox.

    Figure4.1:SouthElevation

    ProblemStatementThisdesignaddstothecomplexityofconstructingthecurtainwall.Thecomplexitycomesfromhaving

    toinstalldifferentshapedpiecesofglassatdifferentangles.Figure4.2showstheslopedwalljoiningthe

    verticalwallwhereuniquecurtainwallpanelswillbenecessary.Thedifferentshapedpiecesofglass

    necessarywilladdtothecostsincethiseliminatestheopportunitytoorderinamassquantity.Thiscurtainwalldesignalsoeliminatessomefloorareaofthebuildingonthelowerlevels.Iftheslopeis

    eliminatedandmoresquarefootageisprovided,theownercouldincreasethecosttoitstenants

    becauseheisprovidingmoreleasablearea.

    Figure4.2:WestElevation

  • 8/12/2019 4Final CW Design Analysis

    2/18

    DeLuca22

    AnalysisGoalThegoalofthisanalysisistounderstandwhattheimplicationsareofeliminatingtheslopeinthecurtain

    wall.Eliminatingtheslopewillbedonebyextendingtheshorterhorizontaldistancetolineupinthe

    sameplaneasthelongerhorizontaldistanceatthetopofthebuilding.ThiscanbeseeninFigure4.3.

    Thiswouldprovidemoresquarefootagetothebuildingsleasingarea.Addingmoresquarefootage

    requiresaddingmoreconcreteslabareatothefloorplan.Thiswillchangethedemandsofthestructure,

    specificallythecolumnslocatednearthecurtainwall.Changingtheslopeofthecurtainwallwillaffect

    howthesunshinesthroughtheglazing.Ifthenewsunanglesonthefaadechangesinawaythat

    increasessolargainthroughthewindowsignificantly,itcouldheightentheenergydemandsofthe

    coolingsystemduringthesummermonths.

    Figure4.3:CurtainWallExtension

    AnalysisMethodsThefirstsectionofthisanalysiswillconsidertheareagainedwithanexpandedfloorplan.Floorplans

    areprovidedtoobtainaclearerpictureoftheadvantageswithextendingthefloorplan.Atableis

    includedthatprovidestheamountofextrasquarefootageaddedtothefloorplans.Finally,withthe

    additionalfloorarea,theextramoneytheownercanobtainfromthisnewleasableareaissuggested.

    Thesecondsectionanalyzesthenewdemandsofthestructuretosupportthecurtainwallverticaltothe

    ground.Itwillbenecessarytoaddanycolumns,beamsorjoiststosupporttheadditionalconcreteslab.

    Afterthenecessarystructuralelementsareimplemented,theconstructioncostsoftheseitemsare

    calculated.

    Thethirdsectioninvolvesanalyzingthesolargainthroughthecurtainwall.Thelocationoftheproposedcurtainwallrevisionisonthewestelevation.Thesunanglesduringthelaterportionofthedaywillhave

    themostimpactonthecurtainwall.Ifthesolargainisconsiderable,itmightchangetheenergy

    demandsofthecoolingsystemduringthesummermonths.

  • 8/12/2019 4Final CW Design Analysis

    3/18

    DeLuca23

    AdditionalAreaAnalysisByeliminatingtheslopeofthecurtainwallandextendingthewall,thefloorplanincreasesthesquare

    footageavailable.Startingwiththeninthfloor,whichisthefirstofficelevel,themostareaisgainedand

    theincrementsofareaobtainedslowlydeclinesasthewallextendstotherooflevel.Theareasgainedin

    thefloorplanscanbeseeninFigure4.4.Aredboxoutlinesthenewareasobtained.Alsoindicatedin

    Figure4.4isaredcircle,whichshowswherethefloorplancannotbeutilizedeffectively.Thetenant

    mightfinditdifficulttolocateanofficearoundthecolumnneartheredcircle.Ifthefloorplanis

    extended,theareacanbeutilizedmoreefficiently.

    Figure4.4OfficeFloorPlans

  • 8/12/2019 4Final CW Design Analysis

    4/18

    DeLuca24

    OfficeFloor Length Width AdditionalArea

    9 12105/8 416 535ft2

    10 115 416 475ft2

    11 106 416 435ft2

    12 88 416 362ft2

    14 737/8 416 304ft2

    15 5113/8 416 247ft2

    16 46 416 190ft2

    17 32 416 133ft2

    18 19 416 75ft2

    Total 2756ft2

    Table4.1:AdditionalAreaProvidedperFloor

    Eliminatingtheslopeinthecurtainwallandextendingthefloorplanprovidesanadditional2756ft2to

    thebuilding.Table4.1showstheadditionalareaprovidedbyeachfloor.Thisallowstheownerto

    chargemoretothetenantsforthemtoleasethespace.Byobservingrentcoststhatotherownersare

    charging,itcanbeestimatedthattherent/ft2/yearforMain&Gervaisisaround$21.00/ft2/year. At

    $21.00/ft2/yeartheownercouldchargeanadditional$57,876.00eachyeartoitstenants.Afterten

    years,thatamountwouldreachoverhalfamilliondollars.Thisisaconsiderableamountofmoneyto

    convincetheownertoconsidertheoptionofeliminatingtheslope.

    (ft2) (rent/ft2/year) (rent/year) (tenyears)

    2756 $ 21.00 $ 57,876.00 $ 578,760.00

    Table4.2:ProposedRentCosts

    StructuralLoadAnalysis(StructuralBreadth)Theproposedmethodofaddingareatothebuildingsfootprintrequiresastructuralanalysisto

    determinewhethertheadditionisacceptable.Mostlikely,additionalsupportisnecessarytomaintain

    structuralintegrity.Thisisdonebyaddinganadditionalcolumnandjoisttoeachflooroftheoffice

    tower.Also,thebeamthatislocatedontheperimeterbetweentheproposedcolumnandexisting

    columnneedstoberesized.Thefollowinganalysisprovidesthestructuraladjustmentnecessaryto

    allowthecurtainwallextension.

    Thefirstsectionofthisanalysisdisplaysthelocationofthenewcolumnsinthebuildingandthe

    calculationstoverifytheapplication.Thesecondsectionindicateswhichbeamneedsreplacementto

    supporttheadditionalloads.Thethirdsectionprovidestheadditionalcoststhataccompanytheextra

    joists,columns,andslabs.

    TheprogrampcaColumnwasutilizedforthecolumnanalysis.RAMConceptwasusedtoanalyzethe

    beamtoreplacetheexistingbeambecauseeliminatethebeamisposttensioned.Handcalculations

    wereperformedwherenecessary.

  • 8/12/2019 4Final CW Design Analysis

    5/18

    DeLuca25

    ColumnAdditionCalculationThecornerofthebuildingwherethereisoriginallynothingwillnowrequireacolumntosupportthe

    additionalloadplacedonthelargerconcreteslabitsupports.Thenewcolumnplacementcanbeseenin

    Figure4.5.Thenecessityofthiscolumnisbasedontheassumptionofsymmetry.Atthetopleftofthe

    floorplan,thereisacolumnlocatedinthecorner.Thespanisthesameasinthelowerlefthandcorner;

    thereforeacolumnisnecessarytomaintainthestructuralintegrityofthebuilding.

    Figure4.5:ColumnPlacement

    Thisplacementofthecolumniscontinuousonalltheofficefloors.Therearenineofficefloors;

    thereforeitisnecessarytoaddninecolumns(oneforeachfloor).Sincethecolumnloadsdecreaseas

    thelevelsgethigher,implementingasmallersecondcolumnispossible.Asecondcolumnwithdifferent

    propertiesisplacedonfloorsfifteenthrougheighteeninthenorthwestcorner.Thissamedesignisappliedtothesouthwestcorner.Thefirstcolumn(columnA)proposedisacircularcolumn.Itsdiameter

    is30andstands13tall.Thereare(16)#9verticalbarswith#[email protected]

    upofconcretewithacompressionstrengthof7000psi.Thesecondcolumn(columnB)proposedisa

    circularcolumnwiththesamedimensionsbuttheconcretepropertiesarechanged.Thecompression

    strengthoftheconcretecansustainareductionto5000psi.

  • 8/12/2019 4Final CW Design Analysis

    6/18

    DeLuca26

    Severalcalculationsarenecessarytoverifythatthecolumncansupportitsloads.Itisnecessaryto

    considerthedeadloadandliveload.Thewindloadisnotconsideredinthesecalculationsasthedead

    loadandliveloadarefactoredtocompensate.Theaxialloadiscalculatedafterthefactoredloadsare

    determined.EnteringthepropertiesofthecolumnsintopcaColumnprovidethemaxloadsthecolumns

    canwithstand.Ifthecalculatedaxialloadsareunderthismax,thenthecolumnisstrongenough.

    StructuralLoads

    LiveLoad(psf) DeadLoad(psf) Column(lb/ft3)

    120 63 150

    Table4.3:StructuralLoads

    Load Factor FactoredLoad Units

    Live 120 1.6 192 psf

    Dead 63 1.2 75.6 psf

    Column 9572 1.2 11486 pounds

    Table4.4:FactoredLoads

    Table4.3providesthestructuralloadsandTable4.4showstheseloadsfactoredtocalculatetheaxial

    loadingonthecolumn.Thefactoredloadsarecalculatedasfollows.

    LiveLoadCalculation:o

    100 20 120 DeadLoadCalculation(floorslab):

    o 150 9572

    ColumnLoadCalculation:o

    150

    13 9572

    Column Floor n At(ft2) TotalLoad(ksf) ColumnLoad(kips) AxialLoad(kips)

    A 9 9 225 0.268 11.5 634

    B 15 4 225 0.268 11.5 275

    Table4.5:AxialLoads

  • 8/12/2019 4Final CW Design Analysis

    7/18

    DeLuca27

    Table4.5displaystheaxialloadsoncolumnAandcolumnB.ColumnAisthestrongercolumnbecause

    itissupportingmoreloadsaboveit.Anyfloorsaboveitwilltakefewerloadsthanthecolumnbelowit;

    thereforeitisredundanttocalculatefloorstenthroughfourteen.ColumnBsupportslessthereforeit

    usesconcretewithlesscompressivestrength.Theaxialloadsarecalculatedasfollows.

    1 ColumnA(floor9):

    o 9 225 0.268 9 1 11.5 634

    ColumnB(floor15):o 4 225 0.268 4 1 11.5

    275

    Figure4.6:pcaColumnDiagram(ColumnB) Figure4.7:pcaColumnDiagram(ColumnA)

    Figure4.6and4.7arediagramsthatdisplaythegraphsobtainedfrompcaColumn.Thesearejustthe

    graphs;thewholesheetsarelocatedinAppendixE.Asseeninthefiguresindicatedbytheredcircle,

    thecalculatedaxialloadsfallwellwithintheallowableload.Thelineisextendedtotherightto

    determinethemaxmomentthecolumnscanwithstand.Thisshowsthatthecolumnisstrongenoughto

    resistthelateralloads(windloads).Thesecolumnsaresufficientenoughtosupportthestructuralloads.

  • 8/12/2019 4Final CW Design Analysis

    8/18

    DeLuca28

    BeamReplacementCalculationExtendingthefloorplanwillincreasethespandistancebetweenthecolumns.Thisresultrequires

    resizingthebeamtosupportthenewloadappliedtotheslab.Thisassumptionisbasedonsymmetry.

    Theothersideofthebuilding,ortheothersideofthereddashedlineinFigure4.8,showsthatalarger

    beamisnecessarytosupporttheloadgiventhelargerarea. Figure4.8alsodisplayswheretheexisting

    beamisandthenewbeamslocationforlevelnine.

    Figure4.8:BeamReplacement

    Theexistingbeamis23inchesinwidthand21inchesdeepandisoutlinedaboveinreddashmarks.

    Thereplacementbeamis36incheswideand21inchesindepth.Thereinforcementforeachofthe

    beamschangesaswell.ThesechangesaredisplayedinTable4.6.Theexistingbeamisidentifiedby

    WB26,thesecondrow.AndtheproposedbeamisidentifiedbyWB3,locatedinthefirstrow.

  • 8/12/2019 4Final CW Design Analysis

    9/18

    DeLuca29

    Table4.6:ReinforcementProperties

    AllthisinformationpresentedinthefiguresandtablesisnecessarytoutilizeRAMConcept.Thestrip

    wizardinRAMConceptissimpleenoughforthisapplication.ThemodeldrawninRAMisshowninFigure4.9.Thebeamintheleftportionofthefigureisthebeamofinterest.Main&Gervaisisapost

    tensionedcastinconcretestructure,meaningthatthestructuralintegrityofonebeamisdependenton

    thesurroundingstructuralelements.Becauseofthis,thebeamsalongthesamecolumnlinewere

    consideredtoo.

    Figure4.9:ModelPlanfromRAMConcept

    Toestablishthismodel,thefollowingpropertieswereinputtedintotheprogram.Theloadsappliedto

    thestructurearethesameaspresentedinTable4.3.Concretepropertiesare5000psifortheslabsand

    beamsand6000psiforthecolumns.RebarandposttensioningpropertiesaretakenfromTable4.6.All

    otherinputsarelocatedinAppendixF.

    Figure4.10:StatusPlanfromRAMConcept

    AsshowninFigure4.10,thebeamisstructurallystrongenoughtosupporttheloadsappliedtoit.Thisis

    justfortowerfloorlevelnine.Thereareeightmorefloorsofofficeabovethisfloorthatrequireresizing

    ofthesamebeams.Itisassumedthattheproposedbeamwillsufficeintherestofthefloors.Thisis

    becausethescenarioissimilarforeachofthefloors.

    JoistAdditionAssumptionItisassumedthatadditionaljoistsarenecessaryfortheproposedfloorplan.ByobservingFigure4.11,it

    isshownbysymmetrythatthejoistinthetopleftportionofthefloorplanisnecessaryinthelowerleft

    handcornerifthefloorplanisextended. Additionalcalculationsarenotnecessaryasitwillbe

    redundantconsideringtheprevioussection,BeamReplacementCalculation.Thissectionconsideredtheloadimplicationsforthefloorareaabovethereplacementbeam,whicharesimilartothatwhichthe

    loadsthejoistsaresupporting.Basedonthesymmetryofthedesignandtheverificationfromthe

    calculationsintheprevioussection,the14wideand21deepjoistintheupperleftareaissufficientto

  • 8/12/2019 4Final CW Design Analysis

    10/18

    DeLuca30

    supporttheadditionalfloorarea.Thisassumptionisappliedtoalltheofficelevels.Thisrequiresan

    additionalninejoiststobridgethegapbetweenthebeams,oneforeachfloor.

    Figure4.11:JoistPlacement

    ConstructionCostsTheadditionalcolumns,joists,andslabswillrequireadditionalmaterial.Themainmaterialsrequired

    areconcreteandreinforcementbarssinceeachoftheadditionalitemsarecastinplaceconcrete. The

    castinplaceconcreteisdesignedforposttensioningexceptforthecolumns.Itisassumedthatthereis

    noadditionalformworkcostsbecauseeachoftheitemsexistsonthedrawings.Inthiscase,the

    formworkisalreadypurchased.Thedifferenceforconstructioncostsinthereplacementbeamsandthe

    existingisminimalandnotconsideredinTable4.7.

    Item Description Count Unit Material Labor Equip. Cost/Unit Total

    Concrete 5000psi(elevatedslabs) 40 CY $ 109.00 $ 109.00 $ 4,360.00

    6000psi(joists) 40 CY $ 124.00 $ 124.00 $ 4,960.00

    8000psi(columns) 36 CY $ 203.00 $ 203.00 $ 7,308.00

    Rebar Joists,#8to#18 1.89 tons $ 980.00 $ 520.00 $1,500.00 $ 2,835.00

  • 8/12/2019 4Final CW Design Analysis

    11/18

    DeLuca31

    Columns,#8to#18 0.76 tons $ 980.00 $ 600.00 $1,580.00 $ 1,200.80

    ElevatedSlabs,#4to#7 0.86 tons $ 1,020.00 $ 480.00 $1,500.00 $ 1,290.00

    Placement Joists,crane&bucket 40 CY $ 52.50 $ 26.50 $ 79.00 $ 3,160.00

    Columns," 36 CY $ 23.50 $ 11.90 $ 35.40 $ 1,274.40

    ElevatedSlabs," 40 CY $ 21.50 $ 10.80 $ 32.30 $ 1,292.00

    Prestressing PT,50'span,300kip 0.84 tons 1820 $ 1,860.00 $ 80.00 $3,760.00 $ 3,147.87

    Total $ 30,828.07

    Table4.7:ConstructionCosts

    AsshowninTable4.7,thetotaladditionalcostofextendingthecurtainwallamountsto$30,828.07.

    SolarHeatGainAnalysis(MechanicalBreadth)Theoriginaldesignforthecurtainwallisslopedonthewestfaade.Thewaythesunshinesinonsloped

    glazingdiffersfromthewayitshinesinonverticalglazing.Theangleofincidenceofthesunchangesfor

    thetiltintheglazing.Therefore,thereflectivityoftheglassisgoingtochangeatadifferentangle.The

    followinganalysisobservesthecurrentdesignofthecurtainwallandcomparesittotheproposed

    method.

    Thefirsttwosectionsprovidecalculationsandtheirrespectiveresultsforthetotalsolarradiationonthe

    glazing.ThethirdsectionprovidesameansofmeasuringwindowheatgainforMain&Gervais.Thelast

    sectioncomparesthecurrentstateofMain&Gervaisandtheproposeddesignforthecurtainwallon

    thewestelevationintermsofenergyexpenses.

    CalculationmethodsandsolardatawereobtainedfromHeating,Ventilating,andAirConditioning,6thEditionbyMcQuiston,Parker,andSpitler.SunangleswereobtainedbySustainablebyDesignatwww.susdesign.com/sunposition.InformationwasobtainedfromtheASHRAEHandbook,2005aswell.SlopedFaadeSolarRadiationCalculationToobtainthesolarradiationforthewestfaade,itisnecessarytocalculatethedirectradiation,diffuse

    radiation,andreflectedradiation.Thesummationofthesevalueswillprovidethetotalradiationona

    slopedsurface,specificallythewestfaadeofMain&Gervais.Thissectionprovidesthemeansof

    obtainingthesevalues.Thefirstsubsectionincludesthecalculationsnecessaryandthenthefollowing

    subsectionappliesthesecalculationstoMain&Gervais.

    CalculationSteps

    Thefollowingstepsincludethecalculationsnecessarytoobtaintheamountoftotalsolarradiationontheslopedcurtainwallfaade.

    Step1

    Calculatenormaldirectirradiation,GND(btu/hrft2)

  • 8/12/2019 4Final CW Design Analysis

    12/18

    DeLuca32

    o A=apparentsolarirradiationatairmassequaltozero(btu/hrft2)o B=atmosphericextinctioncoefficiento =solaraltitudeangleo CN=clearnessnumber

    Step2

    Calculatedirectradiation,GD(btu/hrft2) cos

    o GND=normaldirectionirradiationo =angleofincidence

    cos cos cos sin sin cos =solaraltitudeangle =surfacesolarazimuth =angleoftiltforanarbitrarysurface( inFigure4.12) Figure4.12displaystheseangles

    Figure4.12:SolarAnglesforVerticalandHorizontalSurfaces

    Step3

    Calculatediffuseirradiation,Gd(btu/hrft2)

    o C=dimensionlessfactoro GND=normaldirectionirradiationo Fws=fractionoftheenergythatleavesthesurfaceandstrikestheskydirectly

  • 8/12/2019 4Final CW Design Analysis

    13/18

    DeLuca33

    Step4

    Calculatereflectedirradiation,GR(btu/hrft2) o GtH=rateatwhichthetotalradiation(directplusdiffuse)strikesthehorizontalsurface

    orgroundinfrontofthewall(btu/hrft2)

    o g=reflectanceofgroundorhorizontalsurfaceo Fwg=configurationoranglefactorfromwalltoground,definedasthefractionofthe

    radiationleavingthewallofinterestthatstrikesthehorizontalsurfaceorground

    directly

    =angleoftiltforanarbitrarysurface

    Step5

    CalculateGt,totalsolarradiation,bysummingGD(Step2),Gd(Step3),GR(Step4) cos sin

    ApplicationtoMain&Gervais

    Nowthatthestepstocalculatethetotalsolarradiationonaslopedsurfacehavebeenoutlined,itis

    necessarytoapplythemtoMain&Gervaisinitscurrentstate.Theapplicationbelowissetfor3:00pm

    onMay21,2009,at34latitude,whichiswhereColumbia,SouthCarolina,islocated.Table4.8provides

    theinformationnecessarytocompletethestepslistedintheprevioussection.Thissectionwillprovide

    asimpleversionofthecalculation.ThewrittencalculationscanbefoundinAppendixG.

    SolarData SolarAngles SurfaceProperties

    A=350.6btu/hrft2 =64.12 g=0.32(concrete)

    B=0.177 =255

    C=0.130 z=64.51

    CN=0.94 =40.5

    =95.63

    Table4.8:InformationforMay21,2009inColumbia,SouthCarolina

    . . . 0.94 o 270.71

    cos cos 64.12cos 40.5 sin 95.63 sin64.12cos 95.63

  • 8/12/2019 4Final CW Design Analysis

    14/18

    DeLuca34

    o cos 0.242 .

    o 0.451 .

    o 0.549 0.242 0.130.451 0.320.549 sin64.120.13270

    o 124.22 ThetotalsolarradiationonMain&Gervaisslopedcurtainwallonthewestelevationat3:00pmMay

    21,2009,is124.22btu/hrft2.AppendixHprovidesacomprehensivelistofvaluesforthe21stofMay,

    June,July,andAugust.Thevalueslistedinthetableareonlyforthetimesinwhichthesunisshining

    downonthewestfaade.Allotherpointsofthedayareirrelevantforthisanalysis.

    VerticalFaadeSolarRadiationCalculationCalculationSteps

    Thefollowingstepsincludethecalculationsnecessarytoobtaintheamounttotalsolarradiationonthe

    proposedverticalcurtainwallfaade.

    Step1

    Calculatenormaldirectirradiation,GND(btu/hrft2)

    o A=apparentsolarirradiationatairmassequaltozero(btu/hrft2)o B=atmosphericextinctioncoefficiento =solaraltitudeangleo CN=clearnessnumber

    Step2

    Calculatedirectradiation,GD(btu/hrft2)

    cos

    o GND=normaldirectionirradiationo =angleofincidence

    cos cos cos =solaraltitudeangle =surfacesolarazimuth

  • 8/12/2019 4Final CW Design Analysis

    15/18

    DeLuca35

    Step3

    Calculatediffuseirradiation,Gd(btu/hrft2)

    o 0.55 0.437 cos 0.313 cos

    o C=dimensionlessfactoro GND=normaldirectionirradiation

    Step4

    Calculatereflectedirradiation,GR(btu/hrft2)

    o GtH=rateatwhichthetotalradiation(directplusdiffuse)strikesthehorizontalsurfaceorgroundinfrontofthewall(btu/hrft2)

    o g=reflectanceofgroundorhorizontalsurfaceo Fwg=configurationoranglefactorfromwalltoground,definedasthefractionofthe

    radiationleavingthewallofinterestthatstrikesthehorizontalsurfaceorground

    directly

    =angleoftiltforanarbitrarysurface

    Step5

    CalculateGt,totalsolarradiation,bysummingGD(Step2),Gd(Step3),GR(Step4)

    ApplicationtoMain&Gervais

    Nowthatthestepstocalculatethetotalsolarradiationonaverticalsurfacehavebeenoutlined,itis

    necessarytoapplythemtotheproposedcurtainwalldesignforMain&Gervais.Theapplicationbelow

    issetfor3:00pmonMay21,2009,at34latitude.Table4.8providestheinformationnecessaryto

    computethecalculations.Thissectionwillprovideasimpleversionofthecalculation.Thewritten

    calculationscanbefoundinAppendixG.

    . .

    .

    0.94 o 270.71

    cos cos 64.12cos 40.5o cos 0.242

  • 8/12/2019 4Final CW Design Analysis

    16/18

    DeLuca36

    0.55 0.4370.242 0.3130.242 o 0.73

    o 0.5 0.242 0.2420.73 0.320.5 sin64.120.13270

    o 154.58 ThetotalsolarradiationonMain&Gervaisverticalcurtainwallonthewestelevationat3:00pmMay

    21,2009,is154.58btu/hrft2.AppendixIprovidesalistofvaluesforthe21stofMay,June,July,and

    August.Thevalueslistedinthetableareonlyforthetimesinwhichthesunisshiningdownonthewest

    faade.Allotherpointsofthedayareirrelevantforthisanalysis.

    WindowHeatGainCalculationThetwoprevioussectionsprovidedthetotalsolarradiationonthebuildingataspecifictime.Nowitis

    importanttonotehowthatsolarradiationwillimpactthecurtainwall.Thisanalysisfocusesstrictlyon

    theofficeportionofthebuilding.ThetypicalglazingfortheofficetowerisSolarscreenRadiantLowE

    (VRE)InsulatingGlassVRE146manufacturedbyViracon.

    Figure4.12:CurtainWallGlazingProperties

    Thesolarfactor(SHGC)forthisproductis0.278.Thisvaluemultipliedbythetotalsolarradiation,whichishighlightedineachofthetwoprevioussections,willobtainthewindowheatgainat3:00pmonMay

    21,2009.AppendixIprovidesalistofvaluesforwindowheatgainforthe21stofMay,June,July,and

    August.

  • 8/12/2019 4Final CW Design Analysis

    17/18

    DeLuca37

    124.220.278 34.53

    154.580.278 43.06

    Theleftcolumndisplaysthecalculationsfortheslopedcurtainwallandtherightcolumndisplaysthe

    calculationsfortheverticalcurtainwall.Thereisa25%increaseinheatgainforthisparticularhour.

    EnergyLoadComparisonTheprevioussectionsanalyzedoneparticularhourforonedayforthepurposeofunderstandingthe

    calculations. Thefollowingtable,Table4.9,providestheincreaseinwindowheatgainoverthecourse

    offourmonths:May,June,July,andAugust.Thisprovidesalegitimatemeansofcomparingtheenergy

    costsbetweenthetwodifferentdesigns.

    Day(btu/ft2/day) Month(btu/ft

    2/month)

    Month Sloped Vertical qiInc. %Inc. Sloped Vertical qiInc. %Inc.

    May 279 333 54.29 19% 8364 9993 1628 19%June 281 337 55.92 20% 8437 10115 1677 20%

    July 273 327 54.53 20% 8189 9825 1636 20%

    August 244 292 48.90 20% 7322 8789 1466 20%

    Table4.9:EnergyComparison

    AsshowninTable4.9,theenergydemandincreasesby20%.Thiswillincreasetheenergybilleach

    monthfortheownerofthebuilding.TheaverageutilityrateduringNovember2008forcommercial

    buildingsinSouthCarolinais8.76cents/kwh.ThisvaluewasobtainedfromtheEnergyInformation

    Administration.Table4.10providestheconvertednumberstobecapableofcalculatingtheenergy

    costs.Table4.11providestheenergycostsfortheselectmonthsandtheincreaseincostforthechange

    indesign.

    (btu/ft2/hr) (btu/hr) (kwh)

    Month Sloped Vertical Sloped Vertical Sloped Vertical

    May 39.83 47.58 52692 62953 15.44 18.45

    June 40.18 48.17 53156 63725 15.57 18.67

    July 39.00 46.79 51593 61899 15.12 18.14

    August 34.87 41.85 46130 55371 13.52 16.22

    Table4.10:EnergyUnitConversion

    ($/day) ($/month) $Inc. %Inc.

    Month Sloped Vertical Sloped Vertical Sloped Vertical

    May $324.58 $ 387.79 $ 9,737.39 $11,633.73 $ 1,896.34 19%

    June $327.44 $ 392.54 $ 9,823.14 $11,776.29 $ 1,953.15 20%

    July $317.81 $ 381.30 $ 9,534.31 $11,438.95 $ 1,904.64 20%

    August $284.16 $ 341.09 $ 8,524.81 $10,232.61 $ 1,707.80 20%

    Table4.11:EnergyCosts

  • 8/12/2019 4Final CW Design Analysis

    18/18

    DeLuca38

    Theenergyconsumptioninbtu/hriscalculatedinTable4.10giventhattheareaofcurtainwallunder

    considerationis4,536ft2.AsseeninTable4.11,thepriceforenergycostsincreasesby20%.The

    amountexpressedunder($/day)isbasedonsevenhoursofthedaythattheenergyistransmitting

    throughthewindow.Thesemonthsunderconsiderationareassumedtobewhentheairconditioning

    systemwillberunning.Thetotalincreaseinpriceduringthistimeperiodis$7,461.94.Thisamountis

    minimalconsideringthisportionisafractionofthetotalfootprintofthebuilding.

    ConclusionTheimplementationofthenewcurtainwalldesignrequiresseveralconsiderations.These

    considerationsincludeexaminingthebenefitsofthenewcurtainwalldesign,inputtingnewstructural

    elementsandverifyingtheintegrity,andcalculatingtheincreasesinenergydemandduetowindow

    heatgain.Thefollowingconclusionscanbeobtainedfromthisanalysis.

    AdditionalArea

    Extendingthecurtainwallprovidesadditionalareatothefloorplanforeachlevelofofficespace.This

    extraareaamountsto2756ft2.Theownercancharge$21.00/ft2/yearforthisspace,whichwillamount

    toanadditional$57,876.00.

    StructuralLoadAnalysis

    Addingextrafloorareawillrequireadditionalcolumns,joists,andbeamstosupporttheextendedslab.

    Theconstructioncostsforaddingtheseelementswillcost$30,828.07.

    SolarHeatGainAnalysis

    Changingtheslopeofthecurtainwallwillchangetheamountofsolarenergythattransmitsthrough.

    Theamountofwindowheatgainincreasesby20%withtheproposeddesign.Thiswillresultinan

    additional$7,461.94fortheenergybilleachyear.

    FinalComments

    Implementingthenewdesignwillputmoremoneyintheownerspocketovertime.Thereisanupfront

    costof$30,828.07forconstructionofthenewstructuralelements.Also,eachyeartheownerwill

    expectanincreaseintheenergybudgetof$7,461.94toruntheairconditioningunitstocompensatefor

    thewindowheatgain.Thefirstyear,theownercanexpectanadditional$19,585.99inrevenue.Years

    following,theownercanexpecttobringanadditional$50,414.06.ThiscanbeseeninTable4.12.

    ConstructionCost EnergyCost RentIncome Difference

    Year1 $ 30,828.07 $ 7,461.94 $ 57,876.00 $ 19,585.99

    Year2 $ $ 7,461.94 $ 57,876.00 $ 50,414.06

    Year3 $ $ 7,461.94 $ 57,876.00 $ 50,414.06

    Table4.12:Profit