45 minutes instructions to candidates for each · pdf filespec/4/physi/spm/eng/tz0/xx specimen...

43
18 pages SPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS STANDARD LEVEL PAPER 1 INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer all the questions. For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 45 minutes © IBO 2007

Upload: vuongminh

Post on 02-Feb-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

18 pages

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

SPECIMEN PAPER

PHYSICSSTANDARD LEVELPAPER 1

INSTRUCTIONS TO CANDIDATES

• Do not open this examination paper until instructed to do so.• Answer all the questions.• For each question, choose the answer you consider to be the best and indicate your choice on the

answer sheet provided.

IB DIPLOMA PROGRAMMEPROGRAMME DU DIPLÔME DU BIPROGRAMA DEL DIPLOMA DEL BI

45 minutes

© IBO 2007

Page 2: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 2 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

1. The order of magnitude of the weight of an apple is

A. 10–4 N.

B. 10–2 N.

C. 1 N.

D. 102 N.

2. The density of a metal cube is given by the expression ρMV

where M is the mass and V is the

volume of the cube. The percentage uncertainties in M and V are as shown below.

M 12 %

V 4.0 %

The percentage uncertainty in the calculated value of the density is

A. 3.0 %.

B. 8.0 %.

C. 16 %.

D. 48 %.

Page 3: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 3 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

3. A ball is thrown vertically upwards from the ground. The graph shows the variation with time t of the vertical displacement d of the ball.

d

D

0 0 T t

Which of the following gives the final displacement after time T and the average speed between time t 0 and time t T ?

Displacement Average speed

A. 0 0

B. 02DT

C. 2D2DT

D. 2D 0

Page 4: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 4 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

4. A general expression for Newton’s second law of motion is

F pt

.

What condition is applied so that the law may be expressed in the form F ma?

A. The mass m is constant.

B. The acceleration a is constant.

C. The force F is constant.

D. The direction of the force F is constant.

5. Mandy stands on a weighing scale inside a lift (elevator) that accelerates vertically upwards as shown in the diagram below. The forces on Mandy are her weight W and the reaction force from the scale R.

lift

scale

acceleration

The reading of the scale is

A. R + W.

B. W.

C. R.

D. R – W.

Page 5: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 5 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

6. Two spheres of masses m1 and m2 are moving towards each other along the same straight-line with speeds v1 and v2 as shown.

positive direction

m1 v1 v2 m2

The spheres collide. Which of the following gives the total change in linear momentum of the spheres as a result of the collision?

A. 0

B. m1v1 m2v2

C. m1v1 m2v2

D. m2v2 m1v1

Page 6: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 6 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

7. A brick is placed on the surface of a flat horizontal disc as shown in the diagram below. The disc is rotating at constant speed about a vertical axis through its centre. The brick does not move relative to the disc.

brick

disc

axis of rotation

Which of the diagrams below correctly represents the horizontal force or forces acting on the brick?

A. B.

C. D.

8. A frictionless trolley of mass m moves down a slope with a constant acceleration a. A second similar frictionless trolley has mass 2m. The acceleration of the second trolley as it moves down the slope is

A. 12

a.

B. a.

C. 2a.

D. 4a.

Page 7: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 7 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

9. The internal energy of a solid substance is equal to the

A. average kinetic energy of the molecules.

B. total kinetic energy of the molecules.

C. total potential energy of the molecules.

D. total potential and total kinetic energy of the molecules.

10. A gas is contained in a cylinder fitted with a piston as shown below.

pistongas

When the gas is compressed rapidly by the piston its temperature rises because the molecules of the gas

A. are squeezed closer together.

B. collide with each other more frequently.

C. collide with the walls of the container more frequently.

D. gain energy from the moving piston.

Page 8: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 8 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

11. The specific heat capacity c of a solid block of mass m is determined by heating the block and measuring its temperature. The graph below shows the variation of the temperature T of the block with the thermal energy Q transferred to the block.

T

0 Q

The gradient of the line is equal to

A. cm

.

B. mc

.

C. mc.

D. 1mc

.

Page 9: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 9 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

12. The graph below shows the variation with time t of the displacement x of a particle undergoing simple harmonic motion.

x

0 0 t

Which graph correctly shows the variation with time t of the acceleration a of the particle?

A. a

0 t 0

B. a

0 t 0

C. a

0 t 0

D. a

0 t 0

Page 10: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 10 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

13. A wooden block is at rest on a horizontal frictionless surface. A horizontal spring is attached between the block and a rigid support.

rigid support block

frictionless table

The block is displaced to the right by an amount X and is then released. The period of oscillations is T and the total energy of the system is E.

For an initial displacement of X2

which of the following shows the best estimate for the period of

oscillations and the total energy of the system?

Period Total energy

A. T E2

B. T E4

C. T2

E2

D. T2

E4

14. Which of the following correctly describes the change, if any, in the speed, wavelength and frequency of a light wave as it passes from air into glass?

Speed Wavelength Frequency

A. decreases decreases unchanged

B. decreases unchanged decreases

C. unchanged increases decreases

D. increases increases unchanged

Page 11: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 11 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

15. The diagram below shows a pulse travelling along a rope from X to Y. The end Y of the rope is tied to a fixed support.

X Y

When the pulse reaches end Y it will

A. disappear.

B. cause the end of the rope at Y to oscillate up and down.

C. be reflected and be inverted.

D. be reflected and not be inverted.

16. In the circuit below, the battery has negligible internal resistance. Three identical lamps L, M and N of constant resistance are connected as shown.

L M

N

The filament of lamp N breaks. Which of the following shows the subsequent changes to the brightness of lamp L and lamp M?

Lamp L Lamp M

A. stays the same decreases

B. increases stays the same

C. increases decreases

D. decreases increases

Page 12: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 12 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

17. In the circuit below, the voltmeter has a resistance 100 k�. The battery has negligible internal resistance and e.m.f. 6 V.

100 k�

6 V

100 k� V 100 k�

The reading on the voltmeter is

A. 0 V.

B. 2 V.

C. 3 V.

D. 4 V.

Page 13: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 13 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

18. In the circuit shown below, the cell has negligible internal resistance.

I 3

2R

I 1 R

I 2

Which of the following equations is correct?

A. I 1 2I 2

B. I 1 2I 3

C. I 2 2I 3

D. I 3 2I 1

19. In Newton’s universal law of gravitation the masses are assumed to be

A. extended masses.

B. masses of planets.

C. point masses.

D. spherical masses.

20. The electric field strength at a point may be defined as

A. the force exerted on unit positive charge placed at that point.

B. the force per unit positive charge on a small test charge placed at that point.

C. the work done on unit positive charge to move the charge to that point from infinity.

D. the work done per unit positive charge to move a small test charge to that point from infinity.

Page 14: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 14 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

21. An electron is moving in air at right angles to a uniform magnetic field. The diagram below shows the path of the electron. The electron is slowing down.

region of magnetic field

Which of the following correctly gives the direction of motion of the electron and the direction of the magnetic field?

Direction of motion Direction of magnetic field

A. clockwise into plane of paper

B. clockwise out of plane of paper

C. anti-clockwise into plane of paper

D. anti-clockwise out of plane of paper

22. The binding energy per nucleon of the nucleus 37 Li is approximately 5 MeV. The total energy

required to completely separate the nucleons of this nucleus is approximately

A. 15 MeV.

B. 20 MeV.

C. 35 MeV.

D. 50 MeV.

Page 15: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 15 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

23. The initial activity of a sample of a radioactive isotope of half-life 10 hours is A. What is the age of

the sample when its activity is A

32?

A. 30 hours

B. 40 hours

C. 50 hours

D. 320 hours

24. When the isotope aluminium-27 is bombarded with alpha particles, the following nuclear reaction can take place.

24

1327He Al X neutron

Which of the following correctly gives the atomic (proton) number and mass (nucleon) number of the nucleus X?

Proton number Nucleon number

A. 15 30

B. 16 31

C. 30 15

D. 31 16

25. The volume of a given mass of water at a temperature of T1 is V1 . The volume increases to V2 at temperature T2 . The coefficient of volume expansion of water may be calculated from

A. VT

VT

2

2

1

1

.

B. V VT T

2 1

2 1

.

C. V VV T T

2 1

1 2 1

.

D. V VV T T

2 1

2 2 1

.

Page 16: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 16 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

26. The commercial production of energy by nuclear fusion is not yet possible mainly due to difficulties with

A. obtaining plentiful supplies of a suitable fuel.

B. reaching the high temperatures required.

C. confining the hot plasma.

D. disposing of the radioactive waste products.

27. A wind generator produces 5.0 kW of power for a wind speed of 6.0 m s–1. The best estimate for the power produced for a wind speed of 12.0 m s–1 is

A. 10 kW.

B. 25 kW.

C. 40 kW.

D. 125 kW.

28. It is hypothesized that global warming may lead to significant changes in the average sea-level. This hypothesis assumes that

A. average rainfall will increase.

B. icebergs will melt.

C. glaciers will melt.

D. the rate of evaporation of seawater will increase.

Page 17: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 17 –

Turn over

SPEC/4/PHYSI/SPM/ENG/TZ0/XX

29. Two black bodies X and Y are at different temperatures. The temperature of body Y is higher than that of body X. Which of the following shows the black body spectra for the two bodies?

A. wavelength X

Y

B. wavelength Y

X

intensity intensity

C. wavelength Y

X

D. wavelength X

Y

intensity intensity

Page 18: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 18 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX

30. The diagram below shows a simplified model of the energy balance for Earth.

incident intensity 340 W m–2

reflected intensity radiated intensity 100 W m–2 240 W m–2

atmosphere

re-radiated intensity 2 W m–2

Earth surface

The albedo of the Earth according to this model is equal to

A. 2340

.

B. 100340

.

C. 238340

.

D. 240340

.

Page 19: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

SPEC/4/PHYSI/SPM/ENG/TZ0/XX/M

2 pages

MARKSCHEME

SPECIMEN PAPER

PHYSICS

Standard Level

Paper 1

Page 20: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 2 – SPEC/4/PHYSI/SPM/ENG/TZ0/XX/M

1. C 16. C 31. – 46. – 2. C 17. B 32. – 47. – 3. B 18. C 33. – 48. – 4. A 19. C 34. – 49. – 5. C 20. B 35. – 50. – 6. A 21. D 36. – 51. – 7. D 22. C 37. – 52. – 8. B 23. C 38. – 53. – 9. D 24. A 39. – 54. – 10. D 25. C 40. – 55. – 11. D 26. C 41. – 56. – 12. B 27. C 42. – 57. – 13. B 28. C 43. – 58. – 14. A 29. C 44. – 59. – 15. C 30. B 45. – 60. –

Page 21: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

23 pages

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

SPECIMEN PAPER

PHYSICSSTANDARD LEVELPAPER 2

IB DIPLOMA PROGRAMMEPROGRAMME DU DIPLÔME DU BIPROGRAMA DEL DIPLOMA DEL BI

INSTRUCTIONS TO CANDIDATES

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Section A: answer all of Section A in the spaces provided.• Section B: answer one question from Section B in the spaces provided.• At the end of the examination, indicate the numbers of the questions answered in the candidate box

on your cover sheet.

1 hour 15 minutes

Candidate session number

0 0

© IBO 2007

Page 22: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 2 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

SECTION A

Answer all the questions in the spaces provided.

A1. This question is about the electrical power available from a wind turbine.

The maximum electrical power generated by a wind turbine, Pout , was measured over a range of incident wind speeds, vin.

The graph below shows the variation with vin of Pout. Uncertainties for the data are not shown.

Pout / kW

800

700

600

500

400

300

200

100

0 0 5 10 15 vin / m s–1

(a) It is suggested that Pout is proportional to vin .

(i) Draw the line of best-fit for the data points. [1]

(ii) State one reason why the line you have drawn does not support this hypothesis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) The uncertainty in the power at 15 m s–1 is 5 %. Draw an error bar on the graph to represent this uncertainty. [2]

(This question continues on the following page)

Page 23: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 3 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question A1 continued)

(b) The theoretical relationship between the available power in the wind, Pin, and incident wind speed is shown in the graph below.

Pin / kW

4000

3500

3000

2500

2000

1500

1000

500

0 0 5 10 15 20 25 vin / m s–1

Using both graphs,

(i) determine the efficiency of the turbine for an incident wind speed of 14 m s–1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) suggest, without calculation, how the efficiency of the turbine changes with increasing wind speed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(This question continues on the following page)

Page 24: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 4 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question A1 continued)

(c) Outline one advantage and one disadvantage of using wind turbines to generate electrical energy.

Advantage: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disadvantage: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

Page 25: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 5 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

Blank page

Page 26: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 6 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

A2. This question is about an electric circuit.

A particular filament lamp is rated at 12 V, 6.0 mA. It just lights when the potential difference across the filament is 6.0 V.

A student sets up an electric circuit to measure the I-V characteristic of the filament lamp.

In the circuit, shown below, the student has connected the voltmeter and the ammeter into the circuit incorrectly.

12 V

A

100 k� S

V

The battery has e.m.f. 12 V and negligible internal resistance. The ammeter has negligible resistance and the resistance of the voltmeter is 100 k�. The maximum resistance of the variable resistor is 15 �.

(a) Explain, without doing any calculations, whether there is a position of the slide S at which the lamp will be lit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(b) Estimate the maximum reading of the ammeter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 27: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 7 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question A2 continued)

(c) Complete the circuit diagram below showing the correct position of the voltmeter and of the ammeter in order to determine the I-V characteristic of the filament lamp. [2]

12 V

Page 28: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 8 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

A3. This question is about gravitational fields.

(a) Define gravitational field strength.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) The gravitational field strength at the surface of Jupiter is 25 N kg–1 and the radius of Jupiter is 7.1 107 m.

(i) Derive an expression for the gravitational field strength at the surface of a planet in terms of its mass M, its radius R and the gravitational constant G.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Use your expression in (b)(i) above to estimate the mass of Jupiter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

Page 29: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 9 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

SECTION B

This section consists of three questions: B1, B2 and B3. Answer one question.

B1. This question is in two parts. Part 1 is about simple harmonic motion and its connection with the greenhouse effect. Part 2 is about specific heat capacity and heating water for a domestic shower.

Part 1 Simple harmonic motion and the greenhouse effect

(a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 30: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 10 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B1, part 1 continued)

(b) In a simple model of a methane molecule, a hydrogen atom and the carbon atom can be regarded as two masses attached by a spring. A hydrogen atom is much less massive than the carbon atom such that any displacement of the carbon atom may be ignored.

The graph below shows the variation with time t of the displacement x from its equilibrium position of a hydrogen atom in a molecule of methane.

x / 10–10 m 2.0

1.5

1.0

0.5

0.0

– 0.5

–1.0

–1.5

– 2.0

0 0.10 0.20 0.300.05 0.15 0.25t / 10–13 s

The mass of hydrogen atom is 1.7 10–27 kg. Use data from the graph above

(i) to determine its amplitude of oscillation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) to show that the frequency of its oscillation is 9.1 1013 Hz.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(iii) to show that the maximum kinetic energy of the hydrogen atom is 6.2 10–18 J.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 31: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 11 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B1, part 1 continued)

(c) On the grid below, sketch a graph to show the variation with time t of the speed v of the hydrogen atom for one period of oscillation starting at t 0. (There is no need to add values to the speed axis.) [3]

v

0 0.10 0.20 0.300.05 0.15 0.25t / 10–13 s

(d) Assuming that the motion of the hydrogen atom is simple harmonic, its frequency of oscillation f is given by the expression

f km

12 p

,

where k is the force per unit displacement between a hydrogen atom and the carbon atom and mp is the mass of a proton.

(i) Show that the value of k is approximately 560 N m–1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Estimate, using your answer to (d)(i), the maximum acceleration of the hydrogen atom.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 32: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 12 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B1, part 1 continued)

(e) Methane is classified as a greenhouse gas.

(i) Describe what is meant by a greenhouse gas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Electromagnetic radiation of frequency 9.1 1013 Hz is in the infrared region of the electromagnetic spectrum. Suggest, based on the information given in (b)(ii), why methane is classified as a greenhouse gas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 33: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 13 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B1 continued)

Part 2 Specific heat and a domestic shower

(a) Define specific heat capacity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Equal masses of two different solid substances A and B are at the same temperature. The specific heat capacity of substance A is greater than the specific heat capacity of substance B. The two substances now have their temperatures raised by the same amount.

Explain which substance will have the greater increase in internal energy assuming both remain in the solid phase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 34: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 14 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B1, part 2 continued)

(c) The diagram below shows part of the heating circuit of a domestic shower.

cold water 14 C

insulated wire

240 V water pipe

supply

insulated heating elementhot water 40 C

Cold water enters the shower unit and flows over an insulated heating element. The heating element is rated at 7.2 kW, 240 V. The water enters at a temperature of 14 C and leaves at a temperature of 40 C. The specific heat capacity of water is 4.2 103 J kg–1 K–1.

(i) Estimate the flow rate of the water.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(ii) Suggest one reason why your answer to (c)(i) is only an estimate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

Page 35: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 15 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

B2. This question is about nuclear power production.

(a) The purpose of a nuclear power station is to produce electrical energy from nuclear energy. The diagram below is a representation of the principal components of a nuclear reactor pile used in a certain type of nuclear power station that uses uranium as a fuel.

uranium fuel rods

control rods

graphite block (moderator)

The function of the moderator is to slow down the neutrons produced in a reaction such as that described above.

Explain,

(i) why it is necessary to slow down the neutrons.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) the function of the control rods.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 36: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 16 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B2 continued)

(b) With reference to the concept of fuel enrichment in a nuclear reactor explain,

(i) the advantage of enriching the uranium used in a nuclear reactor.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) from an international point of view, a possible risk to which fuel enrichment could lead.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) A particular nuclear reactor uses uranium-235 as its fuel source. When a nucleus of uranium-235 absorbs a neutron, the following reaction can take place.

92235

01

54144

3890

01U n Xe Sr n2

The following data are available.

rest mass of 92235 U 2.1895 105 MeV c–2

rest mass of 54144 Xe 1.3408 105 MeV c–2

rest mass of 3890Sr 8.3749 104 MeV c–2

rest mass of 01n 939.56 MeV c–2

(i) Show that the energy released in the reaction is approximately 180 MeV.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) State the form in which the energy appears.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

Page 37: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 17 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B2 continued)

(d) The energy released by 1 atom of carbon-12 during combustion is approximately 4 eV.

(i) Using the answer to (c)(i), estimate the ratio

energy density of uranium-235energy density of carbon-12

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Suggest, with reference to your answer in (d)(i), one advantage of uranium-235 compared with fossil fuels.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

Page 38: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 18 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B2 continued)

(e) When a uranium-238 nucleus absorbs a neutron the following reaction can take place.

92238

01

92239U n U

The isotope uranium-239 is radioactive and decays with a half-life of 23 minutes to form an isotope of neptunium-239 (Np-239).

(i) Define radioactive half-life and explain what is meant by an isotope. [2]

Radioactive half-life:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isotope:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Complete the reaction equation for this decay.

92239 U

[3]

(iii) The isotope neptunium-239 undergoes radioactive decay to form an isotope of plutonium. Outline one advantage and one disadvantage of this decay in relation to nuclear power production. [4]

Advantage:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disadvantage:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 39: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 19 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

B3. This question is in two parts. Part 1 is about mechanical power. Part 2 is about radioactive decay.

Part 1 Mechanical power

(a) Define power.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) A car is travelling with constant speed v along a horizontal straight road. There is a total resistive force F acting on the car.

Deduce that the power P to overcome the force F is P Fv.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

Page 40: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 20 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B3, part 1 continued)

(c) A car drives up a straight incline that is 4.8 km long. The total height of the incline is 0.30 km.

4.8 km

0.30 km

The car moves up the incline at a steady speed of 16 m s–1. During the climb, the average friction force acting on the car is 5.0 102 N. The total weight of the car and the driver is 1.2 104 N.

(i) Determine the time it takes the car to travel from the bottom to the top of the incline.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Determine the work done against the gravitational force in travelling from the bottom to the top of the incline.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) Using your answers to (c)(i) and (c)(ii), calculate a value for the minimum power output of the car engine needed to move the car from the bottom to the top of the incline.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(This question continues on the following page)

Page 41: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 21 –

Turn over

SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B3, part 1 continued)

(d) From the top of the incline, the road continues downwards in a straight line. At the point where the road starts to go downwards, the driver of the car in (c), stops the car to look at the view. In continuing his journey, the driver decides to save fuel. He switches off the engine and allows the car to move freely down the hill. The car descends a height of 0.30 km in a distance of 6.4 km before levelling out.

6.4 km0.30 km

The average resistive force acting on the car is 5.0 102 N.

Estimate

(i) the acceleration of the car down the incline.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[5]

(ii) the speed of the car at the bottom of the incline.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(e) In fact, for the last few hundred metres of its journey down the hill, the car travels at constant speed. State the value of the frictional force acting on the car whilst it is moving at constant speed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

Page 42: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 22 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B3 continued)

Part 2 Radioactive decay

(a) Carbon-14 is a radioactive isotope with a half-life of 5500 years. It is produced in the atmosphere by neutron bombardment of nitrogen. The equation for this reaction is

714 N n C X.0

16

14

(i) Explain what is meant by isotopes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Identify the particle X.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(This question continues on the following page)

Page 43: 45 minutes INSTRUCTIONS TO CANDIDATES For each · PDF fileSPEC/4/PHYSI/SPM/ENG/TZ0/XX SPECIMEN PAPER PHYSICS ... law may be expressed in the form F ... and Y are at different temperatures

– 23 – SPEC/4/PHYSI/SP2/ENG/TZ0/XX

(Question B3, part 2 continued)

(b) Each gram of a living tree contains approximately 4 1010 atoms of carbon-14.

On the axes below, draw a graph to show the variation with time of the number of carbon-14 atoms in one gram of wood from a tree. Your graph should indicate the number of atoms for a period of 1.8 104 years after the tree has died. (Half-life of carbon-14 5500 years) [3]

number of atoms %1010

4

3

2

1

0 0 0.40 0.80 1.20 1.60 2.00

time / years %104

(c) The activity of a radioactive sample is proportional to the number of atoms in the sample. The activity per gram of carbon from a living tree is 9.6 disintegrations per minute. The activity per gram of carbon in burnt wood found at an ancient campsite is 1.9 disintegrations per minute.

(i) Estimate the number of atoms of carbon-14 in the burnt wood.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) From the graph you have drawn in (b), estimate the age of the burnt wood.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]