4. Κανάλια ιόντων και μεταγωγή σήματος

41
Κανάλια ιόντων και μεταγωγή σήματος 1. Αρχές της Νευρικής Διαβίβασης Ηλεκτρική επικοινωνία Χημική επικοινωνία στη σύναψη 2. Δυναμικό της μεμβράνης και ηλεκτρική διαβίβαση 3. Δομή και λειτουργία των τασεο-εξαρτώμενων καναλιών ιόντων Αρχές της ρύθμισης των καναλιών ιόντων Χαρακτηριστικά των τασεο-εξαρτώμενων καναλιών ιόντων Δομή των τασεο-εξαρτώμενων καναλιών ιόντων Ενεργοποίηση που εξαρτάται από το δυναμικό Η διέλευση των ιόντων και τα τοιχώματα του πόρου Απενεργοποίηση των τασεο-εξαρτώμενων καναλιών ιόντων 4. Προσδετο-εξαρτώμενα κανάλια ιόντων υποδοχείς (ligand-gated ion channel receptors) Δομή των υποδοχέων καναλιών ιόντων της οικογένειας Cys-loop Συνολική εικόνα της δομής του νικοτινικού υποδοχέα Δομικές διαφορές της ανοιχτής και κλειστής κατάστασης του καναλιού Η Gabaεργική σύναψη: η ποικιλομορφία της ανασταλτικής νευροδιαβίβασης Υποδοχείς κανάλια ιόντων της οικογένειας του γλουταμινικού υποδοχέα Δομή του υποδοχέα NMDA 5. Κανάλια ιόντων που ρυθμίζονται από G-πρωτεΐνες 6. Κανάλια ιόντων που ρυθμίζονται από δεύτερους διαβιβαστές Κανάλια κυκλικών νουκλεοτιδίων (cGMP, cAMP) Κανάλια τριφωσφορικής ινοσιτόλης (ΙΡ 3 ) 4 o

Upload: -

Post on 25-Nov-2015

90 views

Category:

Documents


4 download

DESCRIPTION

f

TRANSCRIPT

  • 1.

    2.

    3. - - - -

    4. - (ligand-gated ion channel receptors)

    Cys-loop

    Gaba : NMDA

    5. G-

    6. (cGMP, cAMP) (3)

    4o

  • 80

    1.

    , . , , .. .

    , .

    . . - , .

    -- . , , - . , , , GABA, , , , ( 4.1). . , - Ca2+ Ca2+ . Ca2+ .

    4.1 . Kraus, Biochemistry of Signal Transduction, 2000.

  • 81

    ( 4.2). - (ligand gated ion channels), G- -. , -.

    - . -. : - Na+/K+ - Cl-. , .

    4.2 . ,

    . Ca2+ . , , . .

    (), , G (), . G , cAMP. cAMP cAMP-, . Eric Kandel, , 2000.

  • 82

    2. : -

    Na+ Cl-

    , K+ , . , , . , , :

    1. Na+ K+ . - Na+/K+.

    2. K+ K+.

    , . , 30mV 50 mV . , : Na+, , , , , K+ Cl- , . , , . : - Na+ , (msec) , ( +30mV). , K+, K+, , . msec, ( 4.3).

    , - Ca2+ ( 4.4).

    140 mM K+ 4 mM K+ 12 mM Na+ 150 mM Na+ 4 mM Cl- 120 mM Cl- 148 mM A- ( ) 34 mM A-

  • 83

    4.3 . 1. . 2. a+

    . 3. . 4. + . 5. .

    4.4 . , .

    1.

    2.

    3. 4.

    5.

  • 84

    3. -

    . :

    - , .

    -, , .

    (effectors) . , Gai , G- (GPCRs).

    , , . NMDA .

    , , , .

    -

    - . , , a+, + Ca2+. : , 0,5 2 msec, a+, + Ca2+. msec. , 2 msec . . , , . , . : , . . . .

    I: a+, + Ca2+ . , a+ 12 .

  • 85

    Ca2+ Ca2+ 1000 .

    -

    - 140 , (review Yo et al, 2005).

    - a+ Eliktrophorus electricus, Ca2+ + shaker Drosophila. a+ Ca2+ , + .

    - Na+ Ca2+ -, 1-4 . - 4 (-IV).

    4.5 . - - Na+ ( Ca2+). - Na+ Ca2+ 4 (-IV). Yu et al, Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological Reviews, 2005, 57, 387-395. . - - (auxiliary subunit) Na+.

    .

    .

  • 86

    - + -, (-IV) - Na+ Ca2+.

    4.6 - + . -

    + 4 -, I-IV Na+ Ca2+. - 6 (S1-S6),

    -. S4 , SS1 SS2 . .

    . 4.7 - -. 6 (S1-S6), -. S4 , SS1 SS2 .

    , . , , , / . (gating current). , .

  • 87

    S4 . S4 . 4. 8 S4. S4 + . S4. (R1, R2, R3, R4, K5, R6).

    . . . S4 , , . S4 - - . .

    4.9

    ( S4), , .

  • 88

    - (-IV). , , , , . a+ , , . SS1 SS2 ( 4.7). SS1 SS2, . , , SS1 SS2 . , S6 .

    -

    , . , msec sec, . a+, , , . a+: Na+

    - ,

    - . - 200 . , , .

    , .

    Ion passage and ion selectivity

    4.10 Na+,

    .

  • 89

    . .

    -

    - - , , (. ) , . , .

    Na+ (1 4). , - , C- . , . Cys .

    Ca2+ 4 (2, , , ). 2 , ( 2 ) . - . 4 , , .

    + -, - . .

    4.11 - . Yu et al,

    Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological Reviews, 2005, 57, 387-395.

  • 90

    4.12 - Ca2+. 1 2, , .

    4. - (Ligand-gated ion channel receptors)

    - - .

    3 :

    (2), , , - C- . 7 2, . 22/3, 21/5, 22/6, 24/6.

    cys-loop , -, 5 (2) . 4 , C- - . , / / . , . 3 4 , . Cys-loop ( nAChR, 5-3, C-Zinc activated ion channel Zn2+) (- GABAA, GABAC ).

    , 4 . - , , P loop, . C- . NMDA ( NR1 R2A, NR2B, NR2C, NR2D), AMPA .

  • 91

    4.13 (A) :

    (2), (GluR) Cys-loop (nAChR, 5HT3, ZAC, GABAA gly). (B) 4 /, . . Hogg RC., Buisson B., Bertrand D., Allosteric modulation of ligand-gated channels, Biochemical Pharmacology, 2005, 70, 1267-1276.

    - , , : a+ Ca2+ , 5-3 , Cl- GABAA, GABAC . (depolarization) -. , 5-3 ( NMDA, AMPA ), . (hyperpolarization) -. GABAA GABAC , .

  • 92

    , msec, (fast responding receptors), G, , G, .

    - Cys-loop

    O 5 (subunits) - : 4 , - , - .

    4 EN (-V). 20-30

    -, . ( 20) .

    4.14 (A) GABAA. 5 (22)

    . : 4 , NH2 COOH , 2 . Bormann J., The ABC of GABA receptors. TiPS, 2000, 21, 16-19. (B) 4 22 GABAA. 4 (1, 2, 3, 4). G.B. Smith and R.W.Olsen, TiPS 1995, 16, 162-167.

    ( ,

    ) ( 5,6 ). , . (Pro) .

    Cys-

  • 93

    , (Ser248, Ser254, Ser256, Ser262) , (non competitive blockers)* ( 4.15, 4.16). (. , , ) (), , N- -.

    4.15 . -. 4 (1-4), 20-30 - . . . 2 . H.R. Arias, Brain Res.Rev., 1997, 25, 133-191.

    () , 2 ( ) . CPZ (), (-), TID Arias H.R., Brain Res. Review, 1997, 25, 133-191.

    * , . (D). . (J-P. Changeux et al, Achetylcholine receptor: an allosteric protein, Science, 1984, 225, 1335-1344).

    A B

  • 94

    4.16 .

    -. (high affinity site) , 30 , (low affinity sites) . J-P. Changeux et al, Science, 1984, 225, 1335-1343. 1 E 2-

    3 .

    : , GABAA, Cl-, , , Na+ Ca2+. - , (driving force) .

    2 . -

    , cAMP. .

    AMINOTEIKO AO (NH2-TERMINAL). , - , (Cys139 Cys153), S-S. Cys-Cys ,

    , . . , , , ( - -). (2).

    . (2) GABA (22) 5-3, -, . . , . 2001, Changeux, ( ACh). ( ) -, , ACh - - ( 4.17).

  • 95

    ACh

    ACh

    ACh

    4.17 () . ()

    . () , . . . () , ACh, - -. () , Galzi and Changeux, 1995. -. () , Changeux 2001. -, - -. Lester et al, Cys-loop receptors: New twists and turns, Trends in Neurosciences, 2004, 27, 329-336. - - GABA

    . GABA . GABA .

    (COOH-TERMINAL).

    G, , - .

  • 96

    . , . , . , . . 2-3 nm .

    4.18 , . ) . , . . . ) 2 -, . Unwin, 1993.

    .

    -

  • 97

    .

    prefilter

    M2M2M2

    4.19 () 2 .

    ( ) . .

    () 2 . . 2 . (): 2 . . (): 2 . 2 . ( ) , . Unwin, 1995. , 2 . . , . , - , , 2. 2 . , . 2 , . .

  • 98

    4.20 ACh, ACh. ACh Torpedo , Unwin et al (2003). (2). Ch () (). 2 - (), () . Colquhoun D., and Sivilotti L., Function and structure in glycine receptors and some of their relatives, Trends in Neurosciences, 2004, 27, 327-344.

    4.21 ACh, ACh . Ch . Lester H., Dibas M., Dahan D., Leite JF., Dougherty DA., Cys-loop receptors: New twists and turns, Trends in Neurosiences, 2004, 27, 329-336.

    GABA :

    GABA . GABA ( , 17-20% GABA, ~6.000 ),

    , -

    , -

  • 99

    - GABAA, Cl- .

    GABA :

    GABA ,

    GABA . GABA , 2, -

    ..

    (.

    ). () GABA, , GABA. 6 - GABA ,

    GABA.

    E 4.22 GABA. GABA GABA

    . GABAA - Cl-, () , (GABA spillover) GABAA , () .

    Semyanov A, Walker M., Kullman D., Silver R., Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences 2004, 27, 262-269.

    GABA :

    (. CA1 ). () GABA, , GABA. 6 - GABA , GABA.

    GABA , GABA . GABA ,

  • 100

    2, - . , GABA GABA . GABA (ipsc) , GABA.

    GABA

    1. GABA: GABA -

    : (1-6), (1-3), (1-3), , , . , . , GABA , .

    GABA , . , .

    (ipsps) GABA. ,

  • 101

    . , CA1 GABA 1, 2 5 . , ipsps . ; , .

    2. - GABA

    , GABA . .

    6 ( ) . 6 .

    3. GABA,

    . GABA , . , GABA , GA , .

    4. GABA () () ,

    GABA . , .

    5. Cl- Cl- GABA

    . , K+/ Cl- Cl-, Cl- GABA.

    6. GABA

    , . , GABA. /. Ser410 2 (Akt), GABA . , 2 / 3 .

    7. GABA

    . GABA , , , 5-, ACh .

  • 102

    GABA GABA. GABA , GABA GABA . GPCR , GABA, Ca2+.

    4.23 GABAA. , : (1) . (2) . (3) , C (PKC). (4) Cl-, K+/ Cl- (KCC2) . , : (5) Ca2+ (6) GABAB , (7) , , (8) , GB1 , (9) , , 5-, ACh. , , , (10). Mody I., Pearce R., Diversity of inhibitory neurotransmission trough GABAA receptors, Trends in Neurosciences, 2004, 27, 569-575.

    -

    - (Glu), . , , NMDA (--D-), AMPA (--3--5--4- ).

  • 103

    , NMDA . NMDA LTP ( ). , Ca2+. NMDA . NMDA :

    .

    AMPA NMDA. NMDA Mg2+ ( Zn2+),

    . , , Na+.

    Mg2+ NMDA.

    NMDA a+ Ca2+.

    4.24 NMDA, ,

    ( ) . . NMDA ( Mg2+ ) ( Na+). . , NMDA, Mg2+ , a+ Ca2+. Ca2+ .

  • 104

    NMDA

    NMDA -, 4 : NR1 2 NR2A, NR2B, NR2C NR2D ( NR1-NR1-NR2A-NR2A).

    3 (1, 3 4). 2 2 . 2 , , S1, S2 ( 4 , , ). COO- , .

    4.25 NMDA. (NR1-NR4). 3 (1, 3 4). 2 2 .

    4.26 . D (Amino Terminal Domain) 2 , . S1 , 1 , 2 3 . 3 4 S2 . S1 S2 . CTD (Carboxy Terminal Domain) . Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

  • 105

    2 . 2 -, , 1 3 . Q/R/N . (Q), (R) , () DA ( 4.28).

    4.27 2 .

    + + . + 6 ( 4.6). , + . 2 +. . .

    4.28 +. + . 2 ( ) & Q/R/N . Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

    2

    3

  • 106

    NMDA 2 NMDA . QRN . 4.29 -615 () R2 616 (+1) R1. . NMDA Ca2+ Mg2+. , NMDA Mg2+.

    4.29 NMDA Mg2+. (616)

    2 R1 (615) NR2B . Ca2+ Mg2+.

    NMDA

    Q/R/N , 3 -. SYTAANLAAF, . NMDA SYTAANLAAF. 4.30, SYTAANLAAF 3 . , - 3 . AMPA . NMDA Ca2+ AMPA. - 3. S1 S2 S2 8 Amstrong ( ). 3, 3 . 3

  • 107

    2 , ( 4.31).

    4.30 () 2 3 - . (Q582) Q/R/N 2 - SYTAANLAAF ( ) 3 -. 3 , . () SYTAANLAAF 3 , DA ( ) ( ). Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

    4.31 .

    .

    .

    3

    R1 R2

  • 108

    NMDA, -, . NMDA , PCP, .

    4.32 NMDA.

    5. G-

    G-. , , G-. GPCR G-. . + Gi Gq. GIRK ( Kir) (G protein-coupled inwardly rectifying potassium channels: G- +) , , . GPCRs ( 2, 2, D2, 5-1, GABA), G . GIRK, +, + ( ). , GIRK ACh, 2 .

  • 109

    GPCR, - G, GDP GTP. G-GTP G-, G . G GIRK G . Gi, G GIRK . + ( +, + ). G GTP GDP, G . Gq, GIRK , . Gq PLC, (2), (3) (DAG). PKC, , .

    4.33 GIRK, G . . Gi , G , . . Gq , PKC 2 . Breitwieser GE, GIRK channels: hierarchy of control. Focus on "PKC-delta sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells". Am J Physiol Cell Physiol. 2005, 289, C509-11.

    +,

    . + , . , +, , ( ) Mg2+, .

  • 110

    GIRK . 4 . (1 2) . .

    4.34 G (GIRK).

    (1 2) , . .

    6.

    (CAMP, cGMP) (3).

    , cGMP cAMP, (cGMP- ) (cAMP- ) . : (). , G- (), - (effector). cGMP. cGMP. cGMP Ca2+ Na+ . cGMP . cGMP , Ca2+ Na+ .

    GIRKGIRKVoltagegatedK+Channel

  • 111

    4.35 . (R) . cis/trans . (R*) G- . Gt,a cGMP (PDE), cGMP GMP. PDE , , . PDE cGMP. cGMP Na+ Ca2+ . cGMP , Na+ Ca2+ . . , cGMP cGMP . cGMP , Na+ Ca2+ .

    : GPCR. , G- , cAMP. cAMP Ca2+ Na+ . cAMP , Ca2+ Na+ , .

  • 112

    4.36 . (R) . , G- (AC), cAMP. cAMP Ca2+ Na+. cAMP , Ca2+ Na+ , . Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    cGMP cAMP . 4 . 6 , - - . +,

    . cAMP/cGMP C- - (, , C) 8 (1-8).

    4.37 ( 4) . cAMP/cGMP - (, , C) 8 (1-8). Biel M et al, Arch. Pharmacol., 1998, 358.

    (CNG: cyclic

    nucleotide gated ion channels) Ca2+. Ca2+ , Ca2+/, -

  • 113

    (cAMP, cGMP). feed-back -. 4.38 (CNG) (). cAMP/cGMP , Ca2+/ - . Ca2+/ - C- , cAMP/cGMP. Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    (3)

    InsP3, Ca2+ (InsP3). 3 Ca2+ . 15.000 , , Ca2+ .

    - 3

    1,4,5 (IP3) Ca2+ Ca2+ IP3. , , . IP3Rs : Ca2+ , Golgi .

  • 114

    4.39 () P3. 6 2 , NH2- IP3. 5 6 . () 4 IP3R. (,) . Bosanac et al, Structural insights into the regulatory mechanisms of IP3 receptors, Biochimica et Biophysica Acta 2004, 1742, 89-102. IP3Rs . ( 2700 ) (R) , - C- . 5 6, IP3Rs.

    IP3R, - 226-576, IP3. IP3Rs 4 . 3 3 - .

    3 1 TMR (~1600 ) , IP3Rs. , , IP3Rs : 3, .

    IP3Rs 3 Ca2+. 3 - IP3R Ca2+ ( IP3) Ca2+. 3 Ca2+

    ()

    () () ()

  • 115

    - C- , .

    4.40 - P3. : , Ca2+, 3 ( ). Taylor C., da Fonseca C., Morris E., IP3 receptors: he search for structure, Trends in Biological Sciences, 2004, 29, 210-219.

    4.41 - 3. ()

    , (suppressor) - 1 (gatekeeper) C- 2 , . () 3 - , Ca2+. 3 Ca2+ - C- , . () Ca2+- - (gatekeeper) C- . Taylor C., et al, TiPs, 2004, 29, 210-219.

    -

    () () ()

  • 116

    Ca2+ . 3 20 Ca2+. (CAM: calmodulin), -, Ca2+/- (CAM-kinases).

    : , G ( G ) cAMP, cGMP, 3.

    1. GPCR, G

    2. C

    IP3 DAG 3. (DAG)

    4. IP3 - Ca2+

    5. To Ca2+

    6. Ca2+ , -.

  • 117

    -

    GPCR - G -

    GPCR G Effector -

    4.42 , . ) -: . ) G: . ) (cAMP, cGMP), .

    Arias H.R., Topology of ligand binding sites on the nicotinic acetylcholine receptor, Brain Res. Rev., 1997, 25, 133-191.

    Arias H.R., Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors, Neurochem Int. 2000, 36, 595-645.

    Barnard E.A., The transmitter-gated channels: a range of receptor types and structures, TiPS, 1996, 17, 305-308

    Biel M., Sautter A., Ludwig A, Hoffmann F., Zong X., Cyclic nucleotide-gated channels mediators of NO: cGMP-regulated processes, Naunyn-Schiedebergs Arch. Pharmacol., 1998, 358, 140-144.

    Bradley J., Reisert J., Frings S., Regulation of cyclic nucleotide-gated channels, Current Opinion in Neurobiology, 2005, 15, 343-349.

    Brandon NJ., and Moss SJ., Receptor cross-talk: ligand-gated ion channels start to communicate, Sci. STKE, 2000, 24, PE1.

    Cascio M., Structure and Function of the glycine receptorand related nicotinicoid receptors, J. Biol. Chem., 2004, 279, 19383-19386.

    ()

    ()

    ()

  • 118

    Catterall WA., Structure and function of voltage-gated ion channels, Ann. Rev. Biochem., 1995, 64, 493-531.

    Changeux J-P., Le recepteur de lacetylcholine, un canal ionique membranaire regle de maniere allosterique par un neurotransmetteur, Ann. Institut Pasteur, 1992, 231-239

    Colquhoun D., and Sivilotti L., Function and structure in glycine receptors and some of their relatives, Trends in Neurosciences, 2004, 27, 327-344

    Connolly CN., and Wafford KA., The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure and function, Biochemical Society Transactions, 2004, 32, 529-533.

    Dingledine R., et al, The glutamate receptor ion channel, Pharmacol. Rev., 1999, 51, 7-61. Enz R., and Cutting G.R., Molecular composition of GABAC receptors, Vision Research,

    1998, 38, 1431-1441. Finer-Moore J. and Stroud R.M., Amphipathic analysis and possible formation of the ion

    channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. (USA), 1984, 81, 155-159

    Galzi J-L., and Changeux J.P., Neuronal nicotinic receptors: Molecular organization and regulations, Neuropharmacology, 1995, 34, 563-582

    Grenningloh G. et al, The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature, 1987, 328, 215-220

    Haefely W.E., The GABAA-benzodiazepine receptor: biology and pharmacology, Handbook of Anxiety, eds G.D. Burrows, M. Roth and R. Noyes, (1990), Elsevier Science Publishers, pp.165-188

    Hogg RC., Buisson B., Bertrand D., Allosteric modulation of ligand-gated channels, Biochemical Pharmacology, 2005, 70, 1267-1276

    Karpen JW., and Ruiz M., Ion channels: does each subunit do something on its own, TiBS, 2002, 27, 402-9.

    Kaupp UB., and Seifert R., Cyclic nucleotid-gated channels, Physiol. Rev., 2002, 82, 769-824.

    Leite J.F., and Cascio M., Structurte of Kigand-gated Ion channels: critical assessment of Biochemical data supports novel topology, Mol. Cell. Neurosci., 2001, 17, 777-792.

    Lester H., Dibas M., Dahan D., Leite JF., Dougherty DA., Cys-loop receptors: New twists and turns, Trends in Neurosience, 2004, 27, 329-336.

    Lipton SA., Choi Y-B. et al, Cysteine regulation of protein function as exemplified by NMDA-receptor modulation, TiNS, 2002, 25, 474-480.

    Lynch JW., Molecular structure and function of the glycine receptor chloride channel, Physiol. Rev., 2004, 84, 1051-1095.

    Mody I., Pearce R., Diversity of inhibitory neurotransmission trough GABAA receptors, Trends in Neurosciences, 2004, 27, 569-575.

    Montal M. et al, Desing, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor, FEBS Lett., 1993, 18, 275-277

    Noda M. et al, Structural homology of torpedo californica acetylcholine receptor subunits, Nature, 1983, 302, 528-531

    Reeves DC., and Lummis SC., The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel, Mol. Membr. Biol., 2002, 19, 11-26.

    Semyanov A, Walker M., Kullman D., Silver R., Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences 2004, 27, 262-269.

  • 119

    Schofield P.R. et al, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily, Nature, 1987, 328, 221-227.

    Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    Verrall S. and Hall Z.W., The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly, Cell, 1992, 68, 324-20.

    Unwin N., Achetylcholin receptor channel imaged in the open state, Nature, 1995, 373, 37-43.

    u F., Yarov-Yarovoy V., Gutman G., Catterall W., Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological reviews, 2005, 57, 387-395

    Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in Neurosciences, 2004, 27, 321-328.