3d seismic set boonsville

46
GRI-96/0182 rr DOE Boonsville 3-D Seismic Data Set A Technology Transfer Product Generated as Part of the Secondary Gas Recovery Project Bob A. Hardage, James L. Simmons, Jr., David E. Lancaster, Robert Y. Elphick, Richard D. Edson, and David L. Carr Supported by Gas Research Institute, the U.S. Department of Energy. and the State of Texas Bureau of Economic Geology Noel Tyler, Director The University of Texas at Austin Austin. Texas 78713-8924 1996

Upload: bmmanuals

Post on 18-Apr-2015

204 views

Category:

Documents


3 download

TRANSCRIPT

GRI-96/0182 rr DOE

Boonsville 3-D Seismic Data Set

A Technology Transfer Product Generated as Part of the Secondary Gas Recovery Project

Bob A. Hardage, James L. Simmons, Jr., David E. Lancaster, Robert Y. Elphick, Richard D. Edson, and David L. Carr

Supported by Gas Research Institute, the U.S. Department of Energy. and the State of Texas

Bureau of Economic Geology Noel Tyler, Director The University of Texas at Austin Austin. Texas 78713-8924

1996

GRI-96/0182 Grl ® DOE

Boonsville 3-D Seismic Data Set

A Technology Transfer Product Generated as Part of the Secondary Gas Recovery Project

Bob A. Hardage.1 James L. Simmons. Jr.,1 David E. Lancaster.2 Robert Y. Elphick.3 Richard D. Edson,1 and David L. Carr4

1 Bureau of Economic Geology. The University of Texas at Austin 2S. A. Holditch & Associates. Inc., College Station. Texas 3Scientific Software-Intercomp, Inc.. Denver. Colorado 4Consulting Geologist, Austin. Texas

Supported by Gas Research Institute, the U.S. Department of Energy.

and the State of Texas

Bureau of Economic Geology Noel Tyler, Director

The University of Texas at Austin Austin. Texas 78713-8924

1996

Legal Notice This seismic and well log data set was prepared by the Bureau of Economic Geology as an

account of work sponsored by Gas Research Institute (GRI). Neither GRI, members of GRI, nor any person or organization acting on behalf of either

a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this seismic and well log data set, or that the use of any information, apparatus, method, or process disclosed in this seismic and well log data set may not infringe privately owned rights, or

b. Assumes any liability with respect to the use of, or for any and all damages resulting from the use of, any information, apparatus, method, or process disclosed in this seismic and well log data set.

This technology transfer product contains the following:

• 5.5 mil of time-migrated 3-D seismic data, • digitized well log curves from 38 wells inside this 3-D seismic grid, • depths to the boundaries of many Bend Conglomerate genetic sequences interpreted

from these logs, • perforation depths, reservoir pressures, and production and petrophysical data for the

38 wells, and • vertical seismic profile (VSP) data and explosive-source checkshot data recorded in a

calibration well near the center of the seismic grid.

Use of the data:

We encourage use of this data set and welcome suggestions for the development of future digital products. This data set may be used for research and demonstration purposes provided that the authors, publisher, and supporting organizations are acknowledged. Components of this data set are considered a single product for use on one computer by one user. Any requests to use these data in any other way must be made in writing to the Director, Bureau of Economic Geology, The University of Texas at Austin.

Cover: Interpreted time-structure map of the top of the Caddo, which is the shallowest genetic sequence in the productive Bend Conglomerate section (fig. 3). Features 1, 2, and 3 are circular depressions created by karst dissolution and collapse in the Ellenburger carbonates (Ordovician) some 2,000 to 2,500 ft (610 to 760 m) below this siliciclastic Caddo (Middle Pennsylvanian) sequence. The downward continu-ation of these karst-generated collapse features appears in figure 6 in the text, which is the time-structure map of the top of the Vineyard sequence approximately 1,000 ft (305 m) below the Caddo (fig. 3).

Contents Summary 1

Project study area 2

Overview of public data base area 2

Detailed map of public data base area 3

3-D seismic data 3

Well log data 3

Sequence stratigraphy information 3

Reservoir engineering data 4

VSP and checkshot data 4

Acknowledgments 34

References 34

Appendix 35

Figures

1. Middle Pennsylvanian paleogeographic map showing the Fort Worth Basin and other basins related to the Ouachita orogeny and the Boonsville project area 5

2. Generalized stratigraphic column for the Fort Worth Basin 6 3. Stratigraphic nomenclature used to define Bend Conglomerate genetic

sequences in Boonsville field 7 4. Number of net-pay intervals occurring between the Caddo and Vineyard

sequences across the Boonsville study area 8 5. Distribution of net hydrocarbon feet between the Caddo and Vineyard

sequences 9 6. Interpreted time-structure map of the top of the Vineyard sequence 10 7. Seismic reflection amplitude response on the Vineyard surface 11 8. Seismic profile ABC 12 9. Map of public data set area showing inline and crossline coordinates of

the 3-D seismic grid and locations of the wells within the grid 13

Tables

1. Seismic inline and crossline coordinates of well data base 14 2. Digital log data provided for wells 15 3. Boonsville public data set log depths of interpreted genetic sequence boundaries 17 4. Perforation, production, pressure, and petrophysical data 20 5. Velocity checkshot data 32

iii

Summary This 3-D seismic data set is made publicly available as a part of the technology transfer

activities of the Secondary Gas Recovery (SGR) program funded by the U.S. Department of Energy and the Gas Research Institute. The data are a significant part of the total data base amassed during a 2-year SGR study of the Bend Conglomerate reservoir system in Boonsville field, located in the Fort Worth Basin of North-Central Texas.

The objective of this publication is to provide the public with an affordable copy of digital 3-D seismic data, together with supporting geologic and reservoir engineering information, which can be used for educational and training purposes for a broad range of industry and academic interests. This data set should be particularly appealing because the 3-D seismic data have a high signal-to-noise ratio and a wide frequency range of approximately 10 to 115 Hz. When coupled with the geologic and engineering control provided with this publication, the 3-D data present a challenging opportunity to study a complex reservoir system of genetic sequences (sensu Galloway, 1989) that were deposited in a low- to moderate-accommodation basinal setting. The 3-D data also show how karstification of deep Ellenburger carbonates has generated collapse structures that have compartmentalized siliciclastic Bend Conglomerate reservoirs 2,000 to 2,500 ft (610 to 760 m) above the depths where the collapse structures originated, which is perhaps the most important geological phenomenon represented by these Boonsville data.

This public data set consists of the following components: • 5.5 mil of time-migrated 3-D seismic data, • digitized well log curves from 38 wells inside this 3-D seismic grid, • depths to the boundaries of many Bend Conglomerate genetic sequences interpreted

from these logs, • perforation depths, reservoir pressures, and production and petrophysical data for

the 38 wells, and • vertical seismic profile (VSP) data and explosive-source checkshot data recorded in

a calibration well near the center of the seismic grid.

The 3-D seismic data are provided on an Exabyte tape in SEGY format; the digital well log data are ASCII files on 3.5-inch floppy disks; well completion, production, pressure, and petrophysical data are provided as a digital spreadsheet file on the disks and also as a tabular listing (table 4); VSP data are digital SEGY files on the disks; and all other geologic and geophysical data are given in tables 3 and 5.

Anyone who benefits from the public availability of these data should be particularly appreciative of three companies—Arch Petroleum (and their production company, Threshold Production), Enserch, and OXY USA, Inc. Collectively, these three companies operated all of the property inside the SGR Boonsville study area, and they were industry partners with the Bureau of Economic Geology in the reservoir characterization study that amassed this data set. Arch, Enserch, and OXY paid approximately 90 percent of the cost of the 3-D seismic data acquisition and processing, yet they are graciously allowing the public to have access to, and to benefit from, these data.

Keywords: 3-D seismic technology, karst phenomena, reservoir characterization, sequence stratigraphy

1

Project Study Area

The SGR Boonsville study area is located in Jack and Wise Counties in the Fort Worth Basin in North-Central Texas (fig. 1). The accomplish-ments achieved in the 2-year study of this project area are described in a two-volume report by Hardage and others (1995), which is publicly available through the Gas Research Institute (phone 312-399-4601).

A generalized post-Mississippian descrip-tion of the stratigraphy of the Fort Worth Basin is shown by the stratigraphic column in figure 2. Several formations, extending from the Ellen-burger (Ordovician) to the Strawn (Middle Pennsylvanian), produce hydrocarbons in the

Boonsville area, but only the Atokan Bend Conglomerate reservoir system is described by the geologic and engineering components of this data base. The Bend Conglomerate is defined as the interval from the base of the Caddo Limestone to the top of the Marble Falls Limestone (fig. 3). Within the SGR study area, the thickness of the Bend Conglomerate ranges from 1,000 to 1,200 ft (305 to 365 m). Numerous genetic sequences exist within this interval; 13 are illustrated in the type log in figure 3. Other genetic sequence boundaries are defined in the accompanying geologic data base.

Overview of Public Data Base Area

The total data base involved in the Boonsville study consists of 26 mil of 3-D seismic data, VSP and checkshot control from five wells, and geologic and engineering information from more than 200 wells. The data that are publicly released through this publication are a carefully chosen subset of this larger data base, consisting of 5.5 mil of full-fold, time-migrated 3-D data near the center of the 26-mil seismic grid, VSP and checkshot control from 1 centralized well, and geologic and engineering data from 38 wells. The boundaries of the public data area are shown in a series of maps included as figures 4 through 7.

The most productive reservoir sequences described by this data base are the Caddo and Vineyard, the units at the top and near the base of the Bend Conglomerate (fig. 3). The map in figure 4 documents how many Bend Conglom-erate net-pay intervals exist between these two primary reservoir sequences across the study area. The public data set is thus deliberately positioned so that it spans a region where there is significant lateral and vertical variability in the productive potential of the central portion of the Bend Conglomerate section. The map in figure 5 illustrates the amount of net hydrocarbon feet that exists between the Caddo and Vineyard

levels. This display reinforces the concept that the public data span an area of considerable variation in reservoir facies, which allows users to evaluate data that describe both high- and low-productivity areas of the Bend Conglomerate.

The displays in figures 6 through 8 illustrate some of the intriguing seismic phenomena that are demonstrated with the public 3-D seismic data. Figure 6 is a seismic time structure map of the top of the Vineyard sequence, which is located near the base of the Bend Conglomerate (fig. 3). Several circular or quasi-circular depressions occur across this surface. Hardage and others (1995) explained that each of these depressions is a structural collapse of the Bend Conglomerate strata and that each collapse is genetically related to karst dissolution of Ellenburger carbonates some 1,000 to 1,500 ft (305 to 455 m) below the Vineyard level. The public 3-D seismic data are positioned so that the 3-D image spans several of these karst features. Figure 7 illustrates the reflection amplitude behavior across the top of the Vineyard sequence. Each white area in this display indicates a localized area where the reflection amplitude weakens and becomes distorted. Each of these disruptions in the Vineyard reflectivity corresponds to one of the karst-generated depressions in figure 6. Thus,

2

the public 3-D seismic data allow the reflection character of several of these karst phenomena to be studied in detail by those who wish to understand how deep carbonate dissolution affects overlying strata.

The profile labeled ABC in figure 7 traverses three of the disruptions on the Vineyard surface,

one rather large area of disruption located between A and B, and two smaller areas be-tween B and C. This profile is shown in figure 8 to illustrate how these karst collapse effects appear when they are viewed in a vertical section display.

Detailed Map of Public Data Base Area A more detailed depiction of the area

spanned by the public data set is provided by figure 9. This map specifies the inline and cross-line coordinates of the 3-D seismic grid, locates

3-D Seismic Data The seismic data provided on the Exabyte

tape are 3-D time migrated; no field records or unmigrated data are released in this publication. The digital seismic data exist as a time-migrated 3-D data volume composed of stacking bins

the VSP and checkshot calibration well (Billie Yates 18D), and sites all of the wells where geologic and engineering control is provided.

measuring 110 x 110 ft (33 x 33 m). The seismic reference datum is +900 ft (274 m). Specific information for reading this seismic data file is given in the appendix and on the sheet inserted in the tape box.

Well Log Data The wells included in this public data set

are sited on the map in figure 9. The specific inline and crossline coordinates for each well in the seismic grid are listed in table 1. The well log data for each well are listed in table 2. These

well log curves are digitized at depth increments of 0.5 ft (0.15 m) and are provided as ASCII files on the enclosed floppy disks. Specific instructions for reading these ASCII data are given in the appendix.

Sequence Stratigraphy Information Several genetic sequence boundaries have

been interpreted from the Boonsville well log data (table 3). These boundaries are designated by the descriptive abbreviations MFS, FS, or ES, and each of these abbreviations is then followed by a sequence code number N, where

MFS = maximum flooding surface, FS = flooding surface, ES = erosional surface, and N = a code number that identifies the

sequence.

The sequence code number N decreases as depth increases, with 90 referring to the Caddo sequence at the top of the Bend Conglomerate and 02 referring to the deepest Bend Conglomerate sequence just above the Marble Falls Limestone (fig. 3). The depths of the genetic sequence boundaries that have been interpreted at each of the wells are listed in table 3. These depths are measured relative to kelly bushing (KB). The deepest sequence boundary listed in this public data set is MFS10.

3

Reservoir Engineering Data

Company and public records were searched to build the reservoir engineering data base used in the Boonsville study. The information in this engineering control includes such parameters as perforation depth, initial reservoir pressure, and

volume of produced hydrocarbons. The engineering and petrophysical data amassed for the 38 wells composing this public data base are summarized in table 4. All depths listed in this table are measured from kelly bushing.

VSP and Checkshot Data

Both vibroseis-source VSP data and explosive-source checkshots were recorded in the Billie Yates 18D well and are included in this public data set. The location of the B. Yates 18D well is shown in figure 9, and its geographic coordinates are defined in table 1. The VSP data consist of two image profiles, each of which is a separate file on one of the enclosed disks. Image 1 is an offset profile that extends N18°E away from the B. Yates 18D well for a distance of 1,100 ft (335 m) (the vibrator was offset 2,752 ft [840 mi in this azimuth direction). Image 2 is a zero-offset profile.

The sources used for the 3-D seismic acqui-sition were small directional charges placed in shallow 10-ft (3-m) shot holes. A technical description of these specific directional charges is provided by a publication available from the Bureau of Economic Geology or the Gas Research Institute (Bureau of Economic Geology, 1995). For reasons of economy, vibrators were used as the

energy sources for the VSP data acquisition rather than drilled shot holes. Following the completion of the vibroseis-source VSP data collection in the B. Yates 18D well, an explosive-source checkshot survey was recorded so that the traveltime coordinates of the vibroseis-source VSP data could be adjusted to the traveltime coordinates of the 3-D seismic explosive-source wavefields, if significant traveltime differences occurred between the wavefields produced by these two energy sources. Traveltime differences of 6 to 10 ms do exist between the vibroseis and explosive wavefields, but in most applications using these public data, these differences can be ignored. However, for completeness of the public data package, the downhole seismic measurements recorded for both vibroseis and explosive sources are included in this publication. The explosive-source checkshot data and the equivalent zero-offset vibroseis checkshot data are listed in table 5.

4

N

A«h. Wictütà:

Booneville prdjeât area ~C~ w`is~

Boonsville gas field

Fort - Worth -o

~J

• Dallas

Abilene.

Fort Worth Basin i?

a

~tr •

OJ Waco

0 50 mi

0 80km

• Austin

Modified from Lahti and Huber (1982)

- Ozarka Uplift": ;:: N J J-

Val Verde Basin

Kerr Basin

Marathon Uplift ;:<:;!:; QC :.

o -~ ..G.~ OF MEXICO o ~' ~. F

ga. ~ ~ . m ,

~~ 0 300 mi d~ ~~~ ~

:

; I ~ 0 400 km

Modified from Thompson (1982) OAb607c

Figure 1. Middle Pennsylvanian paleogeographic map showing the Fort Worth Basin and other basins related to the Ouachita orogeny and the Boonsville project area. The solid rectangle on the Wise Jack county line designates the area where the 3-D seismic data were gathered.

I , gnl

5

SYSTEM SERIES GROUP OR FORMATION

K UNDIVIDED

p WOLFCAMPIAN

Cisco Group

IP

UP

PE

R VIRGILIAN

Canyon Group MISSOURIAN

Strawn Group

MID

DL

E DES

MOINESIAN

ATOKAN

MORROWAN

Atoka Group

Marble Falls and Canyon Formation L

OW

ER

MISSISSIPPIAN

Gas from Bend

Conglomerate

QAb1131 c

Figure 2. Generalized post-Mississippian stratigraphic column for the Fort Worth Basin. The geologic and engineering data components of the public data base are restricted to the Bend Conglomerate interval, which in Boonsville field is equivalent to the Atoka Group shown here. The specific stratigraphic nomenclature used in this Boonsville study is described in figure 3. Modified from Thompson (1982).

6

*Main target zone in past Best gas-reserve-growth potential

Runaway

Beans Creek

GR SP

Bureau of Economic Geology sequence nomenclature

Caddo

Davis

Bridgeport

upper

middle

lower

Vineyard

Wade

Elvis

Marble Falls Limestone

Res

Maximum flooding surfaces

MFS90

Caddo Limestone

MFS80

0 0 ° MFS60

MFS55

314"

MFS53

MFS40

MFS39

MFS34 O ~ r

MFS32

MFS20 — ~

MFS10

MFS02

Depth (ft)

~ <~

Jasp

er C

ree

k

Wizard Wells

Be

nd C

onglo

mera

te

QAb609c

Figure 3. Stratigraphic nomenclature used to define Bend Conglomerate genetic sequences in Boonsville field. As defined by the Railroad Commission of Texas, the Bend Conglomerate is the interval from the base of the Caddo Limestone to the top of the Marble Falls Limestone; however, the Caddo was also included in this particular study. The term MFS is an abbreviation for maximum flooding surface.

7

MFS70

AT

OK

A G

RO

UP

Low

er A

toka

a.

Trinity

:z _

?4 net-pay intervals

3 net-pay intervals <3 net-pay intervals

QAb632c

Figure 4. Number of net-pay intervals occurring between the Caddo and Vineyard sequences across the Boonsville study area. The outlined area defines the boundaries of the public data set.

8

Net hydrocarbon feet > 2.0

Net hydrocarbon feet > 1.5

Net hydrocarbon feet < 1.5

QAb631 c

Figure 5. Distribution of net hydrocarbon feet between the Caddo and Vineyard sequences. The outlined area defines the boundaries of the public data set.

9

C S

k \k

= E //: k / e 0 ~ c =

Q % Æ' 3 A 7 \E\

E é £ § k

2 ~ § § ô Q.,

&032 ~ o Q)) « ® 2 § § ) \ z':14q§ kk

§: \ ô

~(Ç a ~

//\ £

S § \ ci \ ~ ~ / c @

R t S ~ /\~7

§ L.

é

11H! •Ti"Sa

~ '••"' t ~~

S £ t U ~ a , ,4>£/ ~

§ ƒ ~«~_ \ 0.) @ °§

IUU § ~

t

/ k 7 \

c0?)\

2 § f 4 < 4 2 2 \ 2 \ § é C

~Æ\ Æ ~ q, 2 Æ )

~

Ç\ \ ~\ Æ 2 J \ 4

\b\ ~ § a§t«

§~§ 3 •

4 ~ & §

z

(sw)

\ \ \ ! ~

ÿ

10

z

) § ~ §/ /

/~/

= E J: ~

_ o a - ~

\ j (\~ c ~A~

~ \ .z3.)

3 ~ 2 ~

°°° \ \\ @ ~ - \ 2

~ /\ 4- -~

\ ) Z.

Ç\\ k~

\ (

t

\

C■1 0.1 o ~

] § £

2 Æ 3 t11

§q m q"`)\

2/ §

/ "t1

% § ` / E §\ £

ut

\ à

o % 2 („)

CO @$$ ~ u §

\ \ ~u%

¢~Q ~é/f ~

t ~ q % ~

@2/ 4E1. §

/ ~qk /$ Ft U

&'13 $ co , / a kk C=, 432 ~

epnlud u v \ %

11

0

0.6

0,7

0.8

c) E H

0.9

1.0

1.2

+127

0

-128

A

B

C

1°iR~n*.,~r _ A.,„

~ 1~~~:Y` -i .

' ~

.. •a•.~s . -

~ ... . .

~

,~a,~ •

ru

~ ~ ~~~"•

• M+.1 -

~t

'• r Lip- <..

•~

P • rs•11.,1111.,t

"'r., ..• ,,•wF,. ;Y - e

a. .

~ , • ~

a4 4,6 41.1;11.k .4.'-..

... -

il ..

'

1

MVP . . .~. -i 'tri

v ~~.".b++~st f

~w

`~

-r~. s.~ 1~! ~

~

> ~/►

lailihrill . ..~ 5100601 ~

. ~ ~

f ~s~►~

• ~ .

~ ,.

•»

• 4r r ~

— ..- sr * . .

•' + " 1►~~ - _ .. ►

2

3

4

r~ ~~^"~r++

, , A 11,

-! ~. .

~• ~ ~ z-_

'wre►

' -+' . ~~ ti

_

Ire

._

..w ..--'

-tiwz,-_ ~ s

~

iN•swR ~ ~ w a r~

Karst

1 Caddo 2 Davis 3 Runaway

Karst

4 Vineyard 0Ab592c

Figure 8. Seismic profile ABC. This profile passes through a rather large area of seismic disruption betweenA and B and two smaller areas between B and C. Note that the karst collapse extends quite deep; the Ellenburger is below this data window at a two-way time of approximately 1.3 s. This profile view should help users recognize the appearance of karst-generated phenomena when reviewing the 3-D seismic data. Location of profile shown in figure 7.

12

190

180 —

206

QAb2601 c

170 a> its

ô 160 — 0

150 N cr) 0 U

140 —

201

130 —

120 —

• ' •

C. Yates 9 I Ashe B2

• B. Yates 3 ~ Ashe B3 Ashe C4•

Arch I • I Ashe C1

• B. Yates 2 I Ashe C6 Ashe C5 I •

• I B. Yates 7 I OXY •

Ashe C3 ♦

Fancher 4 •

I.G. Yates 21

• I.G. Yates 32 • • I.G. Yates 13 1

I.G. Yates 3 Fancher 5 I • • • 1 Craft Wtr. Bd.

• • Fancher 3 I

1 12-1

I.G. Yates 19 • Fancher 2 1

I.G. Yates 31 1 Enserch F. Yates 10 • I.G. Yates 9 . • • 1

I.G. Yates 18 • I.G. Yates 14 i • W. Dewbre 2 • F. Yates 7

I.G. Yates 4 1 • W. Dewbre 1 1

I I I T •

I I I I I I I 1 110 130 150 170 190 90

Inline coordinate

N

B. Yates 11

■ Craft Wtr. Bd. B. Yates 18D ♦ Ashe C21— — — — 21-2

• • • `♦ Craft Wtr.

B. Yates 15 — —I 21-1

• B. Yates 13

Fancher 1

• 1

110 — 105

74 2200 ft —1 670 m

Figure 9. Map of public data set area showing inline and crossline coordinates of the 3-D seismic grid and locations of the wells within the grid. Company names (Arch, Enserch, and OXY) indicate leaseholder at time of publication.

13

Tot

al

dep

th

fro

m K

B

( ft)

1 5880.0

1

0

~ LC)

~ 5953.0

1

57

10.0

1

1

4710.0

1 5788.0

1 572

7.0

1 58

19.0

1

o D1 ~ Ln

I 5701.0

1

577

3.0

1

5800.0

1

5800

.01

O '

w LC)

O Ô ~ LC) 5

763.0

1 5

945.0

1

59

10.0

1

o cD rn LC) 5

98

7. 0

1

575

1.0

1

47

00

.01

49

19

.01

46

90

.01

o Ô

~ v 4

87

5.0

1

57

64.0

1

4750

.01

470

0.0

1

585

1.0

570

1. 0

Dat

um

(g

round

le

vel [f

t]) O

N O

L 1038.0

0

é') O)

0

(ND co

O'C

L8

L 8

89

.0

89

8.0

952

. 0

10

25

.0

10

19

.0

O

ON) O)

o

~ O)

O

M O

I 1062

. 0

10

40

.0

O

M co

O

LO co

o

CO0 co

0

CO O)

104

0. 0

1

1037

.0

~1

072

. 0

0

CO~ O

0

~(D 00

0

00

0 ~

co

10

81

. 01 ~0'

006

0 0 O U

O) c0 O) 10

68.0

1 8

58

.01

0

~ c0

0

CD c0

0

~ co

0

LA co

0

.71- co 8

42. 0

1

Dat

um

(k

elly

b

ush

ing

[KB

], ft)

10

32

.0

104

0.0

O C7 V' O)

O N (1) CO

O 00 !~ CO

O N co 00

00

06

O O LC) 0) 1 0

29.0

102

2. 0

O 4 O) O)

O LC) 00 O)

104

2. 0

1072

. 0

O O LC) O

O I, ~ CO

O (D co CO 8

88.0

1

O

0 O) 10

46.0

104

6.0

10

74

.0

o V O) O 8

56

.0-1 O

M h co

O cd N. co

1 08

8.0

O LC) O O)

O O O O) co c0 O) 1

074

. 01

O

(D 00

O LC) Ln co

1

O O (D co

O Ln f~ c0 8

54

.01

848.0

1

850

.01

•N Q

a) Ç •~ ç coM r 1

80

N r 178

~ 8 ,- N

(p O N 17

3

N r N 1....

r-

94

^ 88

N r r r COO r CO r p ô~ N r

I L

L

co (+~ ('~ r

N~ r r

LC) r

~ r r

N~ ~ ~ r r r

~ r

r(ND r r

LOC) r

(nD r 1

67

CON r

COM r

C) d

C

E H .~ ô

0 ~ V

N r 189 ~

r 152

(MD r ~ r n r r r r r COM r (OD r CO (D r •~ r 1

50

LN r M r LN r Û r 0 0)

r N r CO r

LC) r

•71- r N r r r +M- r

t0 r 13

4

11

7

N r M r N r CO r (~ r N r Ô r ~ r

Sta

te p

lan

e Y

lo

ca

tio

n

560

65

5.9

6

L.NC)

Ô

~) LA 5

58

49

0.8

6

555506.9

3

(OD

CD

LOC) LC) 5

59

072.0

3

55757

9.6

3

5576

00

.98

557667. 2

8

559004

. 76

557

10

8.1

7

557418.6

7

554

662. 39

55

53

91

. 46

N

LoC) Lc) Û LC) 5

532

35

.32

55

55

01

. 19

55

5486.7

3

560830.9

8

550

86

2.0

5

552183.9

5

552

950.4

0

55

03

51. 3

4

55

13

00

.91

552

60

3.8

6

55

134

9.7

7

55

13

08

.78

552

63

6.6

7

5535

38.7

7

5517

5 3.2

6

5526

42.1

5 ~

5540

75.3

9

ÔO

L~n

Û in 55

3557

.55

J

L!)

v

(~f) LC) 5

53

00

1. 5

3

550

481.2

1

550954

.72

Sta

te p

lan

e

X lo

cat

ion

18

77058.8

6

18

76

632

.73

18

77

16

0.6

9

18

76

37

5.3

4

18

77

921

.50

18

79

328

.49

~ 18

79

52

7.8

3

18

75

82

9.7

4

18701

03

.82

187

0442.6

2

18

67

14

6.6

4

~ 1

865098

.47

186

6494.1

1

18

70

590.1

9

18691

19

.42

18

776

91

.27

187

787

7. 32

187

8813.3

4

186957

8.3

0

18652

51

. 46

18

67

579.0

7

187

1458.3

8

18

7 000

0.8

1

18

73

648.4

8

18

73

522

. 05

1 872

33

0.0

4

18

70754. 2

6

1872

586.0

2

18

73

547.1

4

187

1505.6

0

18694

07. 3

9 I

N •:1' C6 CO CO IC) ~ CO 1

87 4

545.5

8

187

432

4.2

7

18

751

51. 0

5

18

750

99

.15

187674

4. 5

7

1874

721.

00

41-a ~ ~

J 33.2

07

13

33.2

042

3

33.2

01

18

I 33.1

9297

O

O) r

coM 33.2

02

80

33.1

9870

33

.1987

2

33

.1988

4

(C) O N

coM 33

.1972

7

33.1

9810

33.1

9054

33.1

9259

33.1

93

01

33

.18674

33.1

92

97

_

O) O) r coM 3

3.2

07

53

33

.1800

8

N. CO r

M 33.1

8589

33

.17

8 73

33.1

8138

L_ 33.1

8496

33.1

8150

I 33.1

813

7

I 33.1

85

04

33.1

87

53

33.1

8260

33.1

85

02

1

1

33.1

89

03

O 00 r coM 3

3.1

8759

33

.19032

33.1

86

07

co ~ r

coM 33.1

8044

Lo

ngit

ud

e

co O)

O O) . ~ 9'

r (") .4 CO O O) . r~ 9'

O CO O O) . ~ 9'

r ~ co

O O) . ~ 9'

O) O O) O) co . ~ 9' -9

7. 8

9452

-97.

89385

-97

. 90

594

CO (0 V N O) . r~ rn -9

7.9

23

57

-97

. 934

32

-97.

9410

2

-97

. 93

642

-97.

92

30

4

LC) CO ~ N O) . ~ rn

O CO O) O) co . n rn -9

7. 8

992

2

CO

O O) co . r rn -9

7.9

264

2

-97. 9

4043

-97

.93

28

4

I-

o N O) . ~ rn

O O) v N O) . ~ rn

O) O) N_ O) . ~ rn -9

7.9

134

2

O M N. O) . ~ 9) -9

7.9

224

5

-97.9

164

8

-97. 9

1335

-97.9

2000

f~ CO CD N O) . ~ rn -9

7.9

0572

i~ O O_ O) . ~ rn

CO O O) . ~ rn -9

7.9

08

12

~ N CO O O) . ~ rn

(D CO N O co . n rn -9

7.9094

8

AP

I nu

mb

er

42

497

0137

800

I

42

49

701

37

70

0

42497

0137 4

00

42

49

70

1373

00

4

2497

013

7200

4

2497

01

37

10

01

424

9701

3700

0

I 42

49732

41700

142

2370

15

5600

142

2370

15

5700

1 42

23

70

26

1200

I 42

2373

0315

00

I 4

223

7356

6300

I 42

237

367

1100

I 42

237381

30

00

1 424970164200

I 42

497

0163

20

0

I 424

9701

6060

0

1 4223

730

2800

0

14

22

37

0259

900

I 4

2237

0259

600

1

42

23

70

25

93

00

0 0 N O) cf) N O (` CO N N V'

I 42497

3231

60

0

I 4

24

973243300

I 42497

3243400

I 42

23

734

6730

0 1

42

49 7

3247

800

424973251

40

0

4223

7367

0200

I

4223

7380

0600

I 4

24

970

2142

00

142

49

732

2240

0

I 42

4973

2394

00

4249

7325

3200

424

97

3253

400

424

9 70

1656

00

4249732

2730

0

We

ll n

ame

1Ash

e B

2

1Ash

e B

3

1Ash

e C

l

1Ash

e C

2

1Ash

e C

3

1Ash

e C

4

1Ash

e C

5

1Ash

e C

6

1B Y

ate

s 2

1B Y

ates

3

1B Y

ate

s 7

1B

Yat

es 1

1

1B Y

ate

s 13

1B Y

ate

s 1

5

B Ya

tes

18D

1Cra

ft W

B 12

-1

Cra

ft W

B 2

1-1

'Cra

ft W

B 21

-2

IC Y

ate

s 9

IF Y

ate

s 7

IF Y

ate

s 10

11.G

. Yat

es

3

11. G

. Yat

es 4

I. G. Y

ate

s 9

11. G

. Yat

es

13

11.G

. Ya

tes

14

11. G

. Ya

tes

18

11

. G. Y

ate

s 19

1 1.G. Y

ate

s 2

1

I. G. Y

ate

s 31

11.G

. Yat

es

32

1L. O

. F

anch

er

1

1L. O

. F

anch

er

2

L.O

. F

anch

er

3

1L. O

. F

anch

er

4

1L.O

. F

anch

er

5

1W

Dew

bre

1

W D

ewb

re 2

14

Tab

le 2

. Dig

ital lo

g d

ata

pro

vided

for

wel

ls.

J

N 2

X X X X X X X X X X X X X X X x X X X X X x X X X X X X X X x

J Q U

X X X X X X X X X X X X X

O cc v X X

I-

G X X X X

LL

â X X X X X X

CO

= C<

X X X X X X X X X X X X X

= a z

x X X X X X X x x x x

°C c) x x X X X X x X X X X X X X X x x

N x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x I- 4 J

x x x

Z J X X

Z 0 X X X X X X X X X X X

0 CC (.7 cn

X

co J J

X X

CO

J X X X X X

J LL ci)

X X x X X X x X

2 J_ ~

X X X X X X X X X X X X X X X X

cm J_ ~

X X X X X X X X X X X X X X X X X x X X x X X X X X X X X X x

Lat

itu

de

3

3.2

07

13

j

CO N 'Tr O N M co 3

3.2

01

18

N- M N 0)

CO co

CO r CD 0)

CO co

~ 33.2

02

80

33.1

98

70

33.1

987

2

71- CO CO 0)

CO co

N LO N O N CO co 3

3.1

972

7

O ~ r CO0)

CO co

tn O 0)

CO co 3

3.1

92

59

33

19301

1 33

.18

67

4

33

.192

97

33

.19294

332

07

53

33

.18

008

V N- CO CO

CO co 3

3.1

858

9 1

33

.178

73

CO Co

M

CO co 3

3.1

849

6A

33

18150

N- co

07

CO co 3

3.1

85

04

I

33.1

875

3

33.1

82

60

N O tl) 00

CO co 3

3.1

89

03

N O •zr CO

CO co 3

3.1

8759

Lo

ng

itu

de

CD 0) ~ O 0) . N.: 0)

V co CO O

r` 0)

Q) .

-97.9

0160

CO *- ~ O Cn . ` O

0) O O 0)

r` (3)

CO .

-97

.89

452

-97

. 89385

~ O) ln O 0) . ~ 0)

CD CD ~ N

r` 0)

CT) .

-

97

. 92

35

7

-97

. 9343

2

N O

~

r` O -9

7. 9

36

42

-

97

.92304

0) .

-97.

927

85

-97

. 89980

-97

. 89922

CD

CD 0)

~ O -9

7. 9

264

2

CO

.

-97

.940

43

-97. 9

3284

n — O

Cc; ) . r` Q)

O 0 ~ N ~ 0) . r` 0)

0) Q) N

O) . r` 7)

N ~ CO

0) . ~ Q)

O Co f~

` m

O) .

-97

. 92

24

5 I

CO ~ CD

r\ 0)

M .

-97

. 91335

O O O N O . r` O

N- CO CD N M . ~ Cr)

N N- in O

r` 0)

0) .

-97

. 910

07 I

,— CO O

O) . ~ O)

AP

I nu

mb

er

424970

1378

00

42

49

701

37

700

42

49

701

37

400

42

49

70137300

42497

01

37

200

42

49

70

13

71

00

42

49

70137000

42

49

73

241

70

0

42

23

70

15

5600

4223

701

55700

42

23

702

61

20

0

42

2373031500

4223735

66

30

0

42237

36

71100

42

23

73

81

300

0

142

49

70

164

20

0

142

49

70

16

3200

142

49

70

160600

142

23

73

028000

142

23

70

259

900

142

23

70259

60

0

142

23

70

25

93

00

~42

23

70

25

9200

142

49

732

31

60

0

142

49

73243300

142

49

732

43

40

0

422373467300

24

97

3247

800

42497

32

51400

42

23

73

67

0200

422373800600

42

49

70

21

4200

42497

32224

00

424973239400

Well

na

me

IAsh

e B

2

CO CO

a) L up Q

U a) L cn Q A

sh

e C

2

Ash

e C

3

Ash

e C

4

Ash

e C

5

lAsh

e C

6

B Ya

tes

2

B Ya

tes

3

IB Ya

tes

7

N ra >- CO B

Yate

s 1

3

B Y

ate

s 15

B Y

ate

s 1

8D

Cra

ft W

B 1

2-1

Cra

ft W

B 2

1-1

Cra

ft W

B 2

1-2

IC Ya

tes

9

IF Y

ate

s 7

IF Y

ates

10

II G

. Ya

tes

3

II. G

. Y

ate

s 4

II. G

. Ya

tes

9

1I.G

. Y

ate

s 13

11.G

. Y

ate

s 1

4

IG. Y

ate

s 18

I. G.

Ya

tes

19

I. G.

Ya

tes

21

I. G.

Ya

tes

31

I.G.

Ya

tes

32

~L. O

. F

an

che

r 1

IL. O

. F

anch

er

2

IL. O

. F

anch

er

3

15

X X X X

J

U

X

o m U

2

I-- J W

o _ m

X

We

ll n

am

e

O.

Fanche

r 4

L.O

. F

anch

er

5

W D

ew

bre

1

W D

ewb

re 2

x a z cc ~

a ~ X X X X

f- *g( J z J z ~

X

CO

-J - J

X

X

J J

X

-J ~ Cf)

2 _ J ~

X X

J_ X X X X

d

03 J

CV M O

~

O CO

C') M

co O N-

C")

V O co

M

CV

CA O rn r rn

~ N CO O CT) r

co co N O an r

424

97

3227300

42

49

73

25

320

0

42

49

73

25

34

00

AP

I n

um

be

r

42

49

70165600

Tab

let (c

on

t.)

3 .E = a) co o E12

>,

~~

a) >. -5 Q) >

cs)o

> .? in ~

E ~

Ç

~'

-a -o~ U) > C ~~ > ~

~ v) ~ •~ > - O Û>„ ~

-> ~ 5 U~ _

-0Q) C O >>~ N >

C

~ O

,-- O ? >,C' 0 7.7) N Q) a O _ `. o S p cn ~ ~`.~ 0 _d ç

_

U -o >,~ ~ ü (t a ~> ~ U §~ 7 c — C) N mEE O ~~' Û C Q)

17

Q) C E

~_O

_ c:

°UQ0 0 o ~ O E C 2 V • CM L O 0 0~C V l

~ `` °' °~ ~ ° ai ts mmrLc Q Q) a c ti 0 c~ Q cc o .c o .0 cti U

0 ~ n J J c/) Cn J

J(n (~ U m d o2 U 2

II II II II II II II II II II II II II II II II II II

c a~J =

O L J~I

UJ J

CO L J7 Z ZQ~~~ 2 WW Q UP CE CC U) J _J U) (n J J (n C3 Z Œn_ 02 U 2

16

Table

3. B

oo

nsv

ille

pu

bli

c da

ta s

et lo

g d

ep

ths

(in

fee

t) o

f in

terp

rete

d g

en

eti

c se

qu

en

ce b

oun

da

r ies

.

Dep

th

MF

S53

53

93

.01

53

80

.01

1 5

27

6.0

1

0 4 67

LC)

0 N O4 CO LC)

0 CY)

N LC) 5

294. 0

1 5

315.0

1

53

16

. 01

526

9. 0

1

~

0 co Ln N Ln 5

300.0

1 01

5299.0

1

51 2

9.0

1

52

19

.0

0 ri in N Ln

0 N CV CO Ln

0 O II) CO Ln

0 6i O CO Ln 5

35

1. 0

1

5393.0

1

518

4. 0

1

517

5.0

1

50

88.0

1 5

11

0.0

1

De

pth

E

S55

53

34

.0

53

10

.1

519

7. 0

o 6 CO

Ln

O CD N

LC) 516

0.0

52

41. 9

O O CO

~~

O CX) 4

O 6 O

L N

f)

51 8

8.0

o

Ln

LN 52

70

.0

O in co C.Nn

1

50

61

.0

O Ln 4 LC)

O N co

Ln

1

52

50.0

1

52

88

.0

52

49

.0

O CO O

LMn 5317.0

1

O CD CD O~

O M CO

Ln 5105.0

1

co CO LC) OIn 5

04

4. 0

1

De

pth

M

FS

55

O

CO—

Ln 529

3.0

519

1. 0

51

11

. 0

51

99.0

O LC)

~ ,- Ln

O CO

N Ln

O CO co N Ln 5

244

. 0

r 51 9

5.0

r 51

7 8.0

Or

N N Ln

1

O CO

N Ln

O O

Ln 504

7.0

1 O CO CO

Ln

O 6)

Ln

O N

N Ln 5

27

0.0

O

O V OM Ln 5

056.0

O N

Ln 50

92.0

1

5005.0

~ 5031.0

1

De

pth

E

S60

O cd co N Ln 5

276.0

5159

.0

O I\ f` O Ln 5

17

9.0

511 8

.0

51

79

.0

5209.0

O Ln

N Ln 5

16

9.0

O N Ln

Ln

1-5

19

9.0

O CT N

Ln

O cd 6)

Ln N ,-00,-

O old 1-

LC)

O CO 6)

Ln

O 6) N

Ln 52

16

.0

52

30. 0

5

19

6.0

O CO CO N Ln

1 5

26

9.0

O CD O O Ln 5

064.0

1

50

41

. 0

49

70

.0

4993.0

1

FS

61

. 5

51

32. 0

504

2. 0

O O 6) O 1.

O Ln co r LO

O co 6) r Ln

O r O NLn 5

154

. 0

51 3

9.0

O CX) co

Ln 52

17

. 0

O V Cb

Ln

O CD CD O Ln

O CD Cr) O Ln 5

197. 0

1 O CO N Ln 5

188.

0 O N r N LC)

O N.: Ln N Ln

O cd Cr) 6) 7I-

r 5

035.

01

Dep

th

MF

S60

5259

.0

5245

.0 0

Cb N LC) 50

36.

0

514

5.0

50

87.0

5

150

.0

517

5.0

5

184.

0

514

0.0

51 2

3.0

517

1.0

O O N Ln 5

167.

0 49

85.0

O Cr:; CD O Ln

O CO Cr) O Ln 5

184

. 0

O CO Cr) ) Ln

O I< CD Ln 52

02.

0

5236

.0

4 981

.0

5029

.0 O

,-,-- O Ln

O COCO 6) Cr 49

58.0

1

Dep

th

ES

61

52

64. 0

52

60.0

51

46.0

50

54. 0

O CO Ln LC)

O r O Ln 5

165.

0

O N 6) Ln

O CV 6) Ln 5

150.

0

N 4 co Ln

O O coT LC)

O N r N Ln 51

77. 0

50

02. 0

50

77. 0

O — 1 LC)

O csi T Ln 52

07. 0

O co T Ln 52

11. 0

52

52. 0

O I< CX) CT .71-

O 6) V O Ln 50

18.

7 O O CD 6) V~

O N co Cr)

Dep

th

FS

61

O Q) LC) N Ln 52

45.0

O OJ N Ln 50

36.0

O Ln ~ Ln 50

87.0

O O 1.0 Ln

O Ln I,- Ln

O ~ CO Ln 5

1 40.

0

51 2

3.0

O N- r Ln

O O N Ln 5

167.

0

4985

.0

O O CD O Ln 50

93.0

5

184.

0

1

O CO 6) Ln 5

167.

0

5 202

. 0

O CD CO N LC)

O r CO 6) v 50

29.0

50

11.

0

4 938

.01 O

CIO LC) Cr) v

Dep

th

M F

S70

O O Ln LC) 5

140.

0

O CO N O Ln

O N N 6) "It

O N1-.: CO O LC)

O 1"-- 6) <Y 50

41. 0

50

70.0

O CO CO O LC)

L 5

030.

0

O N O LC)

1 50

48.

01

0 Ln CO O Ln

0 Ln ln O Ln

1 4 8

53.0

1 49

40.0

O 6 CD O) ~

I 50

80.0

O CD CO O Ln 50

48.

0

5084

.0

O Ln O LC)

1 48

56.

0

4910

.0

4885

.0

O CD O CO '7 48

30.0

1

Dep

th

MF

S80

~ 49

41. 0

~

4 926

.0

~ 48

05.0

47

04. 0

~ 47

96.0

~

4744

. 0

~ 48

25.0

~

4850

.0

~ 48

65.0

~

48

02.0

] ~

4785

.0

4817

. 01

~ 4 8

73.0

1 O O co co '71'

1 46

41. 0

1 47

05.0

1 47

34. 0

1

48

43.0

1

1 4 8

43.0

1 48

20.0

1

O CD CXo co 'zr

1 4 9

22. 0

O 6 co CD rt

O CD 6) CD rr

I 4 9

03.0

1

1 47

62.0

1

1 47

00.0

O N N. •:r 46

88.0

1 O O co co V

O cd co co ..zr

Dep

th

ES

88 O

CO co CD rt

O CD Ln r V

~ 4 7

09.0

1 4 7

76.0

~

4 806

.0

1 47

37. 0

1 47

40. 0

1 4 7

52.0

~

4802

.0 O

CD CO N. 4 4565

.0

4 670

.0

4693

.8

O CO CJ) r ~ 477

9.0

O O) Ln ~ 4

1 4 8

21.0

O ~ CO 4

~ 45

90.0

1 O CD CD 4 46

26.0

48

33.0

4 6

59.0

4 6

34.0

co 6) CS) CD 4 48

20.0

46

27. 0

O 6) CD 4 46

26.0

1 46

47. 0

1 46

30.0

1 f45

37. 0

1 45

58.0

Dep

th

ES

90

~ 49

02. 0

1 O CD co OD V 47

5 9.0

~

4 638

.0+

O Q) CO CO 4

~ 4 7

13.0

~

4 681

.0

~ 47

79.0

~

4761

. 0

4794

. 3

~ 47

12.

0 O •zi N. 4 47

25. 0

47

71. 0

47

3 6. 0

45

24. 0

4 6

29.0

4 6

37.0

47

92. 0

~

4747

. 0

L 47

27. 0

O CT CD ~ V

1 47

96.0

1 45

65.0

~

4554

. 0

4567

. 0

~ 47

81.

5 45

97. 0

L

45

80. 0

1 46

37.

0

1 47

68.0

46

08.0

45

97. 0

45

72. 0

46

07. 0

1 45

66.0

1 44

81. 0

45

45.0

Dep

th

MF

S90

48

33.0

4 8

20.0

4 6

97.0

45

88.0

45

96.0

O O) CO 4

co co CD 4 47

24. 0

47

57. 0

47

77. 0

47

09.0

47

01. 0

47

23.0

O O N. N. 4 47

35.0

45

21. 0

45

84. 0

O CO CD 4 47

65.0

47

42.

0 47

24. 0

O CD CD N. ~ 47

85.0

O N CO Ln 4

1 45

51.

0 O Ln CD Ln 4

1 47

81. 0

4

595.

0 45

78.0

~

4636

.0 O

CD CO N. 4

~ 45

71. 0

45

51.

0 45

65.0

46

02.

0 45

63.0

44

79. 0

O N U') 4

Wel

l na

me

lAsh

e B

2 lA

she

B3

1

U a) _C Cn Q lA

she

C2

lAsh

e C

3 lA

she

C4

lAs h

e C

5 lA

she

C6

B Y

a tes

2

B Y

a tes

3

B Y

ates

7

1B Y

ates

11

B Y

a tes

13

IB Y

ates

15

1 IB

Yat

es 1

8D

Cra

ft W

B 1

2-1

Cra

ft W

B 21

-1

Cra

ft W

B 21

-2

1C Y

ates

9

F Y

a tes

7

F Y

a tes

10

I I. G

. Y

ates

3

I. G.

Yat

es 4

1

I. G.

Yat

es 9

I. G

. Y

ates

13

II.G

Yat

es 1

4 I.G

. Y

ates

18

I. G.

Yat

es 1

9 I.G

. Y

ates

21

I.G.

Yat

es 3

1 I. G

. Y

ates

32

L.O

. F

anc

her 1

L.

O.

Fanc

her 2

L.

O.

Fa

nche

r 3 4

Cll L U C co LL p J L.

O.

Fa

nche

r 5

W D

ewbr

e 1

W D

ewbr

e 2

Dep

th

ES

34

5665.0

1 0 Ln coo ln

0 N l~f) in

1

54

75.0

1

cd in in

1 55

10.0

1

ô o co Ln

I

55

96.0

1 5607.0

1 5

51

7. 0

1 5

50

1.0

1 5

55

2.0

1 f

56

26.0

1 ô Lf) LoC') in 5

41

8.0

1 ~ 5501

. 51

553

7.0

1

ô 4 in in

1 5

63

2. 0

1

ô (D co Ln

1 5638.0

1 56

58

.01

54

80

.01

53

71

. 51

54

23

.01

Dept

h

FS34

5659.0

565

7. 0

o

,:r in in 5

473.0

N f~ r-. in in 5

51 0

.7

557

8.0

558

6.0

O O co Ln Ln

1

550

6.0

5

50

0.0

5

54

8.0

560

5.0

5

56

8.0

54

17. 0

55

35

.0

O co I---- Lf) Ln

O — Co CO in 5

57

6.0

O I< co CD in

1

565

7. 0

O Cn 771- Ln

1 548

0.01

01

5401.0

De

pth

E

S36

56

25

.0

56

26

.0

55

11.

0 o 4- Lf) 7:t- Lf)

~ 5

53

0.21

5

46

7.5,

--;t r Ln Ln Lf)

I 55

51

. 0

O C7) N Lf) in

1 5

46

2.0

5

45

2.0

5

50

5.0

5

560.0

5

52

8.0

5

40

8.5

5

500.2

55

04.0

55

36.0

55

77. 0

co N N in Ln 5

580.0

5

619.0

O Lf) CD co Ln

O C) I-- V Ln

co N in co Ln

o o Ln co Ln

Dept

h

MF

S36

56

20

.0

561

8.0

549

2.0

54

41

. 0

55

16

.6

1 55

41.0

553

2. 0

O Ln Ln •zr in

O Ln 4 71 II) 5

496.0

O O Ln in in 5

37

9.3

54

69

.7

54

93.0

O

co in in

11

5570.0

5

51 6

.0

556

6.0

56

10

.0

5349.0

5447. 0

1

co CD N co Ln 5

34

2. 0

1

Depth

E

S3

8

O 4 (D Ln 5

610.0

54

85

.0

542

4. 0

N 1--: O in Ln

O Ln CM 7:1- Ln

O C) N Ln Ln

O C) N Ln Ln

1 5

52

3.0

5448.0

5

440.0

5

48

3.0

5

544. 0

O O N Ln Ln

O Ln CD CO Ln 5

455.0

5477. 0

5

52

1. 0

5

55

7. 0

5

50

4.0

5

55

7.0

5593.0

5337. 0

54

23.0

1

529

8. 0

1

o V N CO Ln

Dep

th

FS

39

O Ln co L~C) 55

7 6.0

54

50.0

5

37

3.0

O r`-:(p L~C') 5

408.0

5

49

2. 0

O Ln O Ln 5

49

6.0

1

5437. 0

5

42

6.0

54

77.4

'

O

N Ln 5

48

9.0

O ~ N co 54

09.0

O N v L4n

O r o L~ 5

547. 0

1

549

2. 0

5

544. 0

O o I--.. L~C)

O CV N IÎ 5

384. 0

528

4.01

Dept

h

MF

S3

9

55

57

. 0

5549.0

5431.0

535

6.0

54

60

.0

53

90

.0

5465

546

2.0

54

64

. 0

5405

.0

5398.0

54

40.0

54

89.0

54

51.0

1

O N C7) N in 53

80

.0

5407.0

1 54

66.0

1

550

6.0

54

50.0

r 5

511. 0

5541. 0

~

5290

.0

5 35

3.0

1

5248

.0

5269

.01

Dep

th

ES

45

5279

.01

1 53

82.7

co (D I-- co Ln

O N CO co Ln

1 53

29.0

53

88.7

~ 54

15.0

O CO N- Co in 53

76.7

O cd 4 4 in

1 53

94.0

O Ln 4 Ln 54

92. 0

52

27. 0

5281

. 01

L o â ,J.

Ô W

Ln

5526

.0

5516

.01

0 V Q) CO

o O N CO in 54

23.0

1

O N Ln CO Ln

O N CO Ln V'71'

O CO Ln 54

31. 0

1 53

86.0

I< h CO in

CD 'Cr Ln

1 54

62.0

1 O N N 4 Ln

5

260.

01

I 53

47. 0

1 53

78.0

54

38. 0

1 54

75.0

54

26.0

1 5

4 83.

0 'O Ln r Ln Ln

O cc> Ln N Ln 53

15.0

1 O CD N N Ln 52

40. 0

1

Dep

th

FS

40

5502

. 0

1 54

91. 0

,

O 4 co co in 53

07. 0

1

5 407

. 0 1

5341

.01

5406

.0

1 54

24. 0

54

30.0

53

73. 0

53

66. 0

54

04. 0

54

51. 0

5 4

13.0

52

49.0

53

34.0

53

66.0

1 54

32. 0

1 54

68.0

54

17. 0

54

72. 0

55

05.0

1 ~

5252

. 01 O

O co Ln

Ln CO O N Ln

o O co N u)

Dep

th

MFS

40

I 5 4

59.0

I

545

1.0 O

f~ co CO Ln

I 52

77. 0

1 O C) O CO in

O N I~ CO Ln

O N co CO Ln

O in r---. CO Ln

O C) N CO Ln

O Cb NCO Ln

~ 53

72. 0

1_

5411

. 0

1 53

72. 0

o N N Ln

5

299.

0 o 7) N CO Ln

53

75. 0

5 4

39.0

o o 00C) CO •,:t in Ln 54

64. 0

1

5214

. 0

r4

5267

. 01 O

(D CO in 51

93.0_

1

Dep

th

ES

50

5 449

.0

I54

43

. 0 0

r CO Ln

0 co N Ln

1 53

68.0

1 0 CO N Lf7

1 53

71.0

1 0 Lf) CO Ln

1 5 3

69.0

o

CO Ln 531 6

.0

5340

.0

5388

.0

co N C) Ln

O CO CO Ln

1

5 286

.0

5 313

.0

5 365

.6

5404

. 0

5345

. 0

5394

. 0

5429

.0

518

2.0

5 249

.0 1

0 Lf) N Ln

0 Cp Ln Ln

Dep

th

ES

53

54

00.0

54

1 8.0

O CO C7) N Ln

O CO O N Ln 53

29.0

52

60. 0

53

17. 0

53

17. 0

53

17. 0

o C7) N. N Ln 52

56.0

53

02. 0

53

53.0

53

32. 0

O C7) Co Ln

1 52

27. 0

52

61. 0

o CO N Cn Ln

1 53

58.0

53

12. 0

53

69.0

54

00.0

O CO ct Ln 52

07. 0

1 CT) (D Cn LC) 5

103.

01

Wel

l na

me

lAsh

e B

2

Ash

e B

3 IA

she

C1

lAsh

e C2

lAs h

e C

3

IAsh

e C

4 IA

s he C

5

lAs h

e C

6 IB

Yat

es 2

B

Yat

es 3

B Yat

es 7

IB Y

ates

11

IB Y

a tes

13

IB Y

a tes

15

IB Y

a tes

18D

ICra

ft W

B 1

2-1

Cra

ft W

B 21

-1

ICra

ft W

B 21

-2

IC Yat

es 9

IF Y

a tes

7

F Y

ate

s 10

I. G

. Yat

es 3

II.G

. Yat

es 4

II.

G. Y

ates

9

I. G. Y

ates

13

II G

. Yat

es 1

4 I. G

. Yat

es 1

8 IIG

Yat

es 19

I. G. Y

ates

21

I. G. Y

ates

31

I. G. Y

ates

32

L.O

. Fan

cher

1

L.O

. Fan

cher

2

L.O

. Fan

cher

3

IL.O

. Fa

nche

r 4

L.O

. Fa

nche

r 5

W D

ewbr

e 1

W D

ewbr

e 2

18

Tab

le 3

(co

nt.)

De

pth

M

FS

10

0 V ~ co

o Ô in co 57

58.0

I 57

03.0

1

I 5

778.

01

O xi ,-

1

5807

.51

1 01

56

94. 0

57

43.0

58

05.0

1 91

5741

. 8

01

,:i in N.

5828

.0

01 01

o cD ~ ~

co Ô co

~ 5704

. 01

5603

.0

56

25

.71

L N

ÿr fn

C) LU

1

5861

.0

0 CV ~ Ln

0 CD

CON- Ln

1 5

702.

0 57

77. 0

5683

.0

5668

.0

0 ~t ~ Ln 57

80.0

57

36.0

56

20.0

57

07.0

1

0 ~~

Ln

0 CO

Ln 580

1. 0

5748

. 0

0 Ô CO Lf) 58

45 Cil

0 N LOf) Ln

0 Ô CD in 55

73.0

1 55

89

.0

4-

Ô W

O

co L~

O

CNI L~f) 5

713

.0

1 56

54. 0

1

G

5755

.0

5692

.0

O

in N. 57

45.0

O

CO CO 56

46.0

O

O 5762

. 0

5702

. 0

O

0 ~

O

00 lÎ

O

CO lrI)

1 57

16.0

5713

.0

0

CD

~

r 58

24. 0

5583.

01

5646

.01 11

55

77

. 0

Dep

th

ES

14

5819

.0

5804

.5

V

COO L0

Cn

COO LC) 57

41. 0

56

73.0

57

42.7

O N:

n in

I 56

48.0

1 O Q)

cMD Ln 56

91

.0

1 o r

n Lf)

O co

COD U7 55

73.

6

567

0.0

5

705.0

56

93

.0

5779.0

57

04

.0

o V

n in

o V

CO Ln

N CV

L.On Ln 56

30. 5

1

O h

Ln in 55

49

.91

De

pth

ES15

O CO CO N. Lf)

1 5

77

4. 3

56

65.7

CO

CD in 56

83.0

O CO co CO in 5

71

7. 0

O h CO CD in 56

92. 0

O CO ,- cD if)

O N O (D Lf)

1 56

72

. 0 r

CO r (~ LC)

0Tr CO r~ CD LC)

N CV if) in 5629

.0

5659

.0 O

CD CD CD LC) 5736

.0 O

cri CO CO U) 5737

.71

5779

.0

5528

.41

5593

. 3 1

5487

. 91 CV

cD Ln Ln

Dep

th

FS

20

57

58.0

57

57. 0

56

49.0

55

98.0

5673

.0

561

9.0

5694

. 0

O (D CO (D in 56

88.0

0

CO in 5599

.0

5647

. 0

571

2.0

O CO CD (D in 55

25.0

56

26.0

N (D Ln CO Lf) 56

64.0

O if) CO N- Lf) 56

60.0

O (D CO N- Ln 57

80.0

(D CV Ln in 5591

. 01

5485

.01 0

M Lf) Ln

Dep

th

ES

20

5870

. 0

1 58

43.7

57

44. 0

O (D CO co Lf) 57

57. 0

57

03.0

O O CO N. LI) 57

10.0

56

78.0

57

25.0

57

90.4

5626

.5

5722

. 9

in N Ln r Lf) 57

48. 0

o O O CO Ln

0 o co r\ LI) 58

16.0

58

58.0

56

08.8

O CO ~ CO Lf) 55

79.0

56

01.6

Dep

th

MF

S2

0

5737

. 0

5735

.0

O N. CV l~n 55

76.0

5648

.0

O ~ CO I~

1 56

72. 0

56

71.0

O •co co CO

O r CO LÎ~ 55

77. 0

5 6

23.0

O CO co CO 56

47. 0

55

02.0

1 5

599

.0 O

T1 co ~ 56

42. 0

57

10.0

O ~ l~f) 57

07.0

1 57

50.0

1 54

98.0

l

O Ln co ~ 54

58.0

54

89.0

Dep

th

ES

30

5694

.0 O

N.: CO CO Lf)

O 4 r CO Lf)

O N co in Ln 56

17.

0

O CO N- Lf) Ln 56

54. 0

56

58.0

O if) co LO

O r CO LI) Lfl

O N. ~ Lf) if) 55

98.0

co CV Ln CD Lf)

O C') r CD if)

L 5

466.

0

1 55

78.0

56

18.

0

~ 5

618.

0 O cd h- (D LI)

O Lf) r~ CD Lf)

O cri (D Lf) 5717

.0

1 54

64. 0

L 55

24. 0

O C'') CV ~ 117

O C`') Ll) 3

Dep

th

FS

32

I

5689

.0 j O

CO CO CD in

O r CO Ln in

~ 55

15.01

5604

.0 1

5549

.0

5618

.0 O

CO CO Ln 56

19.0

O CD Cn LC) Ln 55

24. 0

55

79.0

1

1

5638

.0

5599

.0

5448

.0

5547

.0

5574

. 0

I 56

04.0

56

58.0

f55

96.0

1 56

64.0

O 03 CO CO Ln

CV I-: 'cr .71- Lf)

O CV Ln Ln 54

03.0

1 ~

5436

.01

Wel

l na

me

Ash

e B

2

lAsh

e B

3

U Cv L cn Q A

she

C2

lAsh

e C

3 lA

she

C4

lAsh

e C

5 lA

she

C6

I B

Ya t

es 2

B

Yat

es 3

1 B

Ya t

es 7

B

Yat

es 1

1 B

Ya t

es 1

3 B

Yat

es 1

5 B

Yat

es 1

8D

Cra

ft W

B 1

2-1

Cra

ft W

B 2

1-1

Cra

ft W

B 21

-2

IC Y

ates

9

IF Y

ates

7

IF Y

ates

10

11.G

. Yat

es 3

I.G

. Yat

es 4

11

. G. Y

ates

9

1 11

.G. Y

ates

13

I.G. Y

ates

14

I. G. Y

ates

18

I. G. Y

ates

19

1 I. G

. Yat

es 2

1 1

I. G. Y

ates

31

1 11

.G. Y

ates

32

L.O

. Fan

cher

1

L.

O. F

anc

her 2

1

L.O

. Fan

cher

3 I

1 L

.O. F

anch

er 4

1

1 L.O

. Fa

nche

r 5

1 W D

ewbr

e 1

W D

ewbr

e 2

19

Tab

le 4

. Perf

ora

tion

, p

rodu

cti

on

, p

ress

ure

, an

d p

etr

op

hys

ica

l d

ata

. (S

ee a

ppen

dix

for

expla

nat i

on

of

colu

mn

headin

gs.

)

C.1 ~

BB

CG

I

BV ( C

addo

Con

gl N

I

BB

CG

BB

CG

BV (C

addo

Con

gl N)

BV (C

addo

Con

gl N

I

C9 1.3

BV (C

addo

Con

gl N)

I

BV

(Cad

do C

ongl N)

I

CO

BB

CG

I

BB

CG

BB

CG

BB

CG

f

C9 CJ CO

CD Li

CD C.3

BB

CG

I

O IO

M

000 acc

0000000 cccccc 6 3 ô 3

0.11- 0- z

00000

CN m aa

C C w

N Nov-9

31

m

V)

w

N é 2

é

Xa

2 w

M gr.... M Ô

M N

o 00 000

~ N

W m M.4: ~ ~

00 O m C PP

tn W

3553

36

20

L

2631

I

733

N

~

431

mm O~ 4 --

m Iÿ9 M

M "9

6 ~

Apr-5

8IAp

r-511

Apr

•5

Oct

-81

Mar

-83

M

ar- 8

3

Jan-

83

Oct-8

1

'

M.- œœ Ô

N m

Ô

A

pr-8

3

109•A

ON

O in

2 Nov-

50

Apr-5

1

Apr- 5

1 Se

p-56

Se

p-56

No

v-50 N N N

19 In a4 CA W Ln =won -3-31=c1=-2

Typ

e

IOhI

!Gas

?)

— 0 Ga

s ON

Gas

Oil

Gas

m z— C.7 O Ô O m?

m m

Ô rn O

1 _

p0

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Initi

al

Reco

mpl

ete

Rec

ompl

ete

Rec

ompl

ete

m Ç

m ~Ç

.0

Ç

.0

~Ç Initi

al

Reco

mpl

ete

Reco

mplet

e R

ecom

ple

te

Rec

ompl

ete

Initi

al

Initi

al

Reco

mpl

ete

Re

com

plet

e

Reco

mpl

ete

Cadd

o 1

Bend

Cadd

o lBe

nd

O 9 ! O ' V C = F Br

idge

port

L Ca

ddo

Ca

ddo

Bend

C C

m

m C.l L C

addo

1

DA

I

O C m C7 J L

Jasp

er C

r

L Jas

per C

r St

rew

n

Stre

wn

St

rew

n Vi

neya

rd

L Ru

naw

ay

Be

nd

M J

aspe

r Cr

L J

aspe

r Cr

4

Jasp

er C

r

Trin

ity

L

Runa

way

Bend

N N CO CO CV N MM MW

..

CD Oi IH a tn

N ehme O Io Vi

N O In

O In

N {p Q

N

~ N ~

N I~ {p aD Ii) tn

m n a CO O N N a a a

m N N O n n n M M IO ü9 In

IC9 aD CO aO O M N Cn ao m In N M .....

m M m

O©f II~C

m m

Ii7 V

O CO M W ~

aD O O CO (Op m I~ O W

M 11~ O CO ~

m O W

Ca {CnD Q

q ~ t I~

M M O m O) ~ ~ ~

M O O m ~0j m IÂ In LL!

n a LL9 CO a m N O C7 IOn tÔ tlO LL7 Ill

CO O II7

S t[ ZS In ln

CO Ô Ô II ~ ~

Ô Ô Ô Ô Iü Iü LL7

Ô IIü

IOt) INn

Ô (Wp O m

IIl7 I~ m~ m ~ ~ 10 LL I! tlCl

LL09 ~~ 000000 4n l2 IO 1D LL I!

IInform

atio

n on

Wel

ls in

SGR

3D

Seis

mic A

rea

'Info

rma t

ion P

rovi

ded

for P

ublic

Dat

a Se

t

L 0

Fan

cher

1

I

L 0 Fa

nche

r 1

L 0 Fa

nche

r 1

L 0 Fa

nche

r 2

L 0 Fa

nche

r 2

L 0 Fa

nche

r 2

L 0 Fa

nche

r 2

L 0 Fa

nche

r 2

L 0

Fanc

her 2

L 0

Fanc

her 2

L 0 Fa

nche

r 3 —

1

L 0

Fanc

her 4

L 0

Fanc

her 5

Billi

e Yat

es 2

Billi

e Ya t

es 2

N '

m m

m

.07102E671

N E 72

m i

!Y>..>-!>.

N 61

m =

N

0

m —

N

â0

m — m

N E O

m — m Bi

llie Y

ates

3

Billie

Yat

es 3

Bi

llie Y

ates

3

Billie

Yat

es 3

Bi

llie Y

ates

3

M

E Vm Y m _ m

IBoo

nsvil

le F

ield

I

Wis

e and

Jack

Coun

ties,

TX

Ô .= CA

..-

O O a L m m L L

—m— O O Ly Ly m m C L

O O O L Lg Lm m C ` L L L

O Lffi

C L

O Ly m L

O Lg N L

o L

m L

m O a m ...

C 9 O O L L

m ` L i

C O L

m C

S O

..

9 O

C O

m t

m O fLg ` L

9 O L

` i

---m-- O o o O O ===== ` CA CD CA 0

` CO ~ m L L L L L

O L

E L

42497121

4248

7021

42

4248

7021

42

4248

7322

24

4248

7322

24

4249

7322

24

4248

7322

24

4249

7322

24

4249732224

~ 4249732224]

I 42

4973

2384

I 42

4973

2532

I

424

0732534

4223

7015

56

4223

7015

56

I 4223701556

S H9

O n M

~

I 42

2370

1556

] I

4223

7015

58

4223

7015

56

I

4223

7015

56

4223

7015

5 7

4223

7015

57

4223

7015

57

422 3

7015

57

4223

7015

57

I 422

3701

557

20

Tab

le 4

(c

on

t.)

!Due

l com

plet

ion

with

Cad

do in

itial

ly.

J

Adde

d L

Cadd

o p e

rfs, c

omm i

ngled

wI U

Cad

d~

Prod

uced

com

min

gled

wIL

JC o

n ly u

ntil 2

.92.

1

Prod

uced

com

min

gled

wIM

JC o

nly u

ntil

2.92

. 1

(Com

min

gled

with

Ben

d 12

.91.

Com

min

gled

with

Ben

d 12

.91.

All z

ones

now

com

min

gled

.

Wel

l con

verte

d to

wat

er in

j. 12.

92. J

Wel

l dril

led a

nd a

ban d

oned

, 3.8

3. 1

W

ell c

onve

rted

to w

ater

inj.

12. 9

2.

Com

min

gled

pro

duct

ion -

all z

ones

. T

~ntlia

l zon

e com

plet

ed.

Perts

squ

eeze

d 4.

51. 1

Adde

d pe

rfs 1

2.92

. J

Adde

d pe

rfs 1

2.92

.

CO h

p mIV

lm. h h

!'V 000

1n

4., 1n

Ô h m

Ô < ~

2

' ~

m

ca

.

CO h M

W h

~ N a N l...11...

.- Ô L7 N

Ô

m M

MW

~ ^

h

m M

Wh

Ô M N M

1n

Cl

W

W.

f~ <

2

m M

go-

LV N

.

ne.

M

m .-

Pf LV

MI-

N

m

m N

h

M

<

ci m h m!V

m N ~

m 1~

m ci

< m

2

r m l7

.

m m

m m

m LV

m m 1[1

N m

m 6

m 0 Na6

49

t.

NID C4 _

H7 K! ^

m

2

m ^

m

N

.

h m ~ ^ m m MM

~~

Cro

ss

i

hic k

(tt) X W ~

^ m -m.4

-

^ m

2

tn

m m

.

m~ _ ~

O

ô c =-i

O

C

Vine

yard

Cadd

o Be

nd

Cad

dolB

end

O

6 =l-

c

Brid

gepo

rt

O

6 J Ca

ddo

C ô 020

C O m

â >

L Ca

ddo

G

O

c J L

Jasp

er C

r

L Ja

sper

Cr

Stre

wn

;

V) ~ ~

31

N Vine

yard

L Ru

naw

ay

Bend

M J

aspe

r Cr

L Ja

sper

Cr

4 Ja

sper

Cr

:G

~...

H L Ru

naw

ay

Bend

h O

44

N N

m N

1mn

N m N N

4 1mn

m N

ImC/

O m

~ in

N O

1n

a L-

4 < N 1- O

4 Ln

N O

1n

< N ~

m N ~

O N 1c[

m ~ ~ 1mO ~~~

h CO

1O 0

m N N m h h

Ihn 1~ 1L7

1n O

~~~

m —mm M N

L1~

-mm

m

CO

~

GO CO IA ~

h

O

~

~

CO Ln

GON m m

~ m

m m 1n ~

~

1n W

M 00 LO

m CO

W

O

~

00.- m MW tf9 O ~ LL~

O

1A <

m O

~

m m 1n V

m

m M

M m

LOW

M m CO

< V

---comm

M O O m m CO

m LL7 LL!

h < ^ m N b m Id 1n M 1n

m O N üY

W. m M 1n

tO O N ID

a h 10

a h MM

a h 57

84

5784

57~

I

5208

52

0*

Ô N b

5208

1

Ô O N N LOW

Ô N 1n

1~ h <

h W.

COi CD R

rn La LO

rn m cO La LO Ln

Omi

(O LO

W' (O LO

ID 1[mf Ifmf h h h

. MM 1n

O O h h MM

Info

rmat

ion o

n W

ells

in S

GR

3D S

eismi

c Are

a I

Info

rmat

ion

Prov

ided

for P

ublic

Dat

a Se

t

L 0

Fanc

her 1

m

L,d C O

LL

O J L 0

Fanc

her 1

L 0 Fa

nche

r 1

L 0 Fa

nche

r 1

L 0 Fa

nche

r 1

~

L 0 Fa

nche

r 2

N

m

Û C O

1L

O J L 0

Fanc

her 2

[L 0 Fa

nche

r 2 J

L 0

Fanc

her 2

L 0

Fanc

her 2

L 0

Fanc

her 2

11 0 F

anch

er 3

1

L 0 Fa

nche

r 4

—1

L 0 Fa

nche

r 5

N

Ti ' r

_ m

N

CO r ' c d m

N N

~ W I Y , el ' ro ~ m

N

N r ai _ m

N _ i

N

m

N Ô~

~I To- Y N _ m

N

t~a r _ __ _

N

.-. Ÿ

m

M 61 Ii Y m

ell

M

~R Y Oi _

m !Billi

e Yat

es 3

I

IBoo

nsvi

lle F

ield

j_

! W

ise

and

Jack

Cou

ntie

s, T

X

LL

g

L Ô

L

====== L

Ô

L

o o

L LL

Ô y

LG

O

0

L

C

O ~

C

O yy

C

O 2~

s

O

C C O O

~p

C O

yy LC m L

C

L L

C

L C I C O O L L

dd

H H

O L

N

H

o L

d

r

======

O L

d

H

o L

m

H L

0 L

m

H m

o L

H

O L

m

H

===== 0 0 L L

mm

H H

O LL

y

H

0

yy

r

C 0 L

d

H

4249

7021

42

4249

7021

42

4249

7021

42

4249

7021

42

4249

7021

42

4249

7021

421

4249

7322

24

4249

7322

24

4249

7322

241

4249

7322

241

4249

7322

24

4249

7322

24

4249

7322

24

~

424

9732

394]

F42

4973

2532J

I 4

249

7325

34

I42

2370

1556

42

2370

1556

4223

7015

56

I 4

22

370

1556

1 I

4223

7015

56

I 4

22

3701

5561

42

2370

1556

I 4

22

370

1557

42

2370

1557

' 42

2370

1557

1

I

4223

7015

57

4223

7015

57

I

4223

7015

57

21

Tab

le 4

(c

on

t.)

I AP

I Num

be

r O

pera

tor

We

ll N

am

e T

otal

Top

B

ott

om

Z

on

e

Init

ial o

r T

ype

Dat

e o

f F

irst

Cum

Ga

s C

um O

il

Cum

Wa

ter C

um

C

urre

nt In

it. P

res.

Field

D

ep

th (ft)

Po

ils Iftl

Per

fs (ft

) .:

9

J...

.::

Re c

om

ple

te

( OilI

Gas

?)

Pt0

4fltt

ien

IMM

scf)

IM

ST

B)

(Mbbl)

As

of D

ate

S

tatu

s (p

s ial

C7 U m CO 1B

BCG

I

C7 C1 CO m

C7 C) m m

~

1BBC

G I

BB

CG

C1 C7 m O)

CD C1 CO CO

CD C3 CO CO

CD C1 CO CO 1B

BCG

I

C7 Ci CO O3

0 C2 CO m

Cf C. m iD

Cf C1 CO m

C7 C. CO CO

CD U CO CO

C7 C3 CO CO

C7 C1 m CO

CD C. m O]

0 C3 m CO B

BCG

Dees

(Ato

ka)

I

Iii Y O Q ~ mO B

BC

G

BBCG

BBCG

BBCG

BBCG

BB

CG

 N CO

CO 1 ~ Q

N 07

m m el

~ ^

07

N

O m

n

^ in n

< CJ d {1}

d O. C7 C.3 Cl C1 C. ~ C7 Cl C. Ci U C1 C. G Ci C. C. C1 C1 6 D_ d C. C/ Cl C1

~

X C

X C 6.

X C

O C

7 Jan-

94,

X C

"I

X C

7

Ô

•C

r Se

p-95

11

~ C

m C '

m C ' De

c-78

1

m 6 0 Z Oc

t-92

Ja

n-94

a

C 01 ~

a C O 7

N ID

N 10

I17 O9

ID m

O O CA n

Of n

N G

N p

n O p

1~ p

co nj

a.02 ri ri

O O O O CI rr G

Ô ~Ô

O O I, af

r 24;

O O Ci

O ci

n m

5722

1\ ~

W ~ CO CO

INi) 01

IND O ~

N ^ ^ N Nn.

2230

_1

Ô O N

Cl) N

V 122

n 1D g O

fA Sep-

57

Sep-

71

L

Jul-7

1

1 Ja

n-84

1

C O ~ M

ay-8

5 M

ay-8

5 M

ay-8

5

m > tel _.

m j q 2

Ô C p > Ap

r-951

Ap

r-95

Ap

r-95

W C r0 >

n C = ~

m O. O

CO

1` C J ~

CO

C O ~

n H O O De

c-78

1

CO

6 Q

Co

6 6 Ja

n-58

1

Sep-5

71

Oct-

92

{Û G

CO Feb-

581

CO

~ Feb-

58]

Feb-

58

N m 0 G

as

Gas N

o C7

os m

C7 cc m

CD 1Ges

Gas

Gas

boas

oc O

CD

a O

CD 1Gas

N m CD Ga

s

fA o i:!

Ao a CD

co o

CD

N 01

CD Gas 7

~Gas

I

q

Cf 0 ~

CD m 0

cc C7

m C7 Ga

s

Gas

N m CD

w m Cf

Cl m C7 Ga

s

Gas

Reco

mple

te

m -

To ~Ç

To ~Ç

m ~Ç

m ~Ç

m ~Ç

â ~Ç

_ ce

O I")

É O Y ¢

O m

É O H ¢ *c

ompl

ete

J

_ Ie C ~~

O m g. O u ¢

_ o G Ç Re

com

plet

e

Reco

mpl

ete

Reco

mpl

ete

Reco

mplet

e

Initi

al

Reco

mplet

e

m

~Ç m ~Ç

ô

L Ja

sper

Cr

Vine

y ard

Bend

Vine

yard

C = O7 Vi

neya

rd

C = O7

> - 'C I- M

Jas

per C

r

1L Ja

sper

Cr

[vi

neya

rd

1

C m

CO U Ru

nawa

y 4

Jasp

er C

r LM

Jasp

er C

r

L Ja

sper

Cr

Bend

1

i ~= 'L I- Vi

neya

rd

Bend

Ç

m d C' ~I}

Z O

agi _> ç ~C c

CO H

Ô

r? = ¢

U

N w . CO

C O 07 Vi

neya

rd

L Ja

sper

Cr

C o CO Vi

neya

rd

1

_> C

Iç Brid

gepo

rt _]

Bend

m

10/7

O

100

In ~

~

N ~~

07

N ~ f0 ( fpp IO

N LL7

~~

O m~

M

In

LL7 n In

â n IO

~ M in

Lif O

W ^ ln IO m O

CO m I/7

O N 47

n IO

n O

I, n Iif

I n ~ N ln

I m N lC,

m ~ P~9 il,

l~7 ~ LO

1 1~ Â 1D

CO 1~ O^

ID 10 ID

Oi n ici

N

n 117

(7

N 1.0

N

P07 ID

N

n ID

10 CM ~ N ImD 100

CO

407

m

u07

O CO 100

O CO LL09

m N

LLN7

CO

u07 a u09

~ 17 n

n N

n

10if 0

O~ n ü7

N^ o D b

co o If l

co m

LLm7

07 o IÔ

m ID 10

t7 CO LLN9

hi N IN

C23 co M!

O A 0

N N b

N n CO

ID {OD 07 {OD

N ID

110

O N Of 1Ô 4N7

N

 n 10

 A 1.0 57

731

100 1~ ID

IOO 1, sa

Ô CO O

Ô CO 0

m 07 ID

m m ID

m m O

122 m 1I7

m 07 1O

IOO A 10 57

50

{Oif n O

100 n b

~ n H9 57

83

m n ID

m n O 1/7 ~~~~ 1I7 112 ID 59

451

a in

m m LO 1.0 5907

O m~§

O O m O

Billie

Yat

es 1

Billie

Yat

es 7

1Bili

e Yat

es 7

Billie

Yat

es 11

Billie

Yat

es 1

1

Billie

Yat

es 13

Billie

Yat

es 13

Billie

Yat

es 15

Billie

Yat

es 1

5 1

^

61 m Y ca Di Bi

llie Y

ates

15

Billie

Yat

es 1

5

Billie

Yat

es 1

8D

Cl

Billie

Yat

es 1

8D

Bi

llie Y

ates

180

O Co

Clÿ N Y

_ m

O m

e }

_ m

N

~

Ô Ci

~ ÿ 7

m C.

co ÿ 7

m C.9

r ,

te Y

Ni

r~

A Y

Ô .....

r~

tC Y

Ni

r~ N d (D Y

m

h VI O O Y

Ni

laye

tte Y

ates

1

Faye

tte Y

ates

10

Faye

tte Y

ates

10

rFay

ette

Yat

es 1

0

I G Ya

tes

3 _ _

~

I G Ya

tes

3 IG

Yate

s 3

i7 co m m a-CD -

C O L

` L

V O .= Ô L

L O a m L

C O a m L 1--

C O .= Ô L 1-

1=1 O L CO L 1-

O

m L I-

6L p1

C O a O t H

C O Lgq O L 1-

O a m L I-

0:1 O a O L I-

O a m L I-

1=1 O a m L I-

O a O L I-

0:1 O a ~ .= I-

C O LN ` .= I-

C O Ly 61 L I-

C O a O

~

C O a ` L I-

C O a m L I-

C O a O a I-

C O Lyy m a I-

C O a O a I-

C O Ly ` a H

C O a m L I-

C O a m a I-

C C O O a a m Ô a L I- F-

C O L

m L I-

C O L

m L 1-

C C O O L L m m L L I- I-

C O L Cl

L r

4223

7028

121

4223

7028

121

4223

7028

121

I

4223

7303

151

4223

7303

151

I

4223

7358

631

4223

7356

831

4223

7387

111

4223

7387

111

4223

7367

111

4223

7367

111

4223

7387

111

4223

7381

301

4223

7381

301

I

4223

7381

301

4223

7381

301

4223

7381

301

4223

7302

801

4223

7302

801

I

4223

7302

80

4223

7025

98

r 422

3702

599 1

I

4223

7025

991

4223

7025

99

4223

7025

991

4223

7025

891

I 4223

7025

96

4223

7025

96

422370259

3

4223

702 5

93

4223

7025

93

4223

7025

93

22

Tab

le 4

(c

on

t.)

AU

3 JC

zone

s com

min

gled

, cur

rent

ly 4

00

Msc

f!D.

All 3

JC

zone

s com

min

gled

, cur

rent

ly 4

00 M

scf!D

. I

Cr.

m

Adde

d pe

rfs 1

2-78

; cla

ssifi

ed o

il in

itial

ly?

I

(Com

min

gled

pro

duct

ion -

all

zone

s.

All 3

JC

zone

s com

min

gled

, cur

rent

ly To

tal w

ell p

rodu

ctio

n, a

ll zo

nes.

I

Zone

st il

l pro

duci

ng w

!Vin

eyar

d.

I

Adde

d pe

rfs 1

2-78

; cla

ssifi

ed oil initi

Tota

l pro

duct

ion -

all

zone

s.

I

Tota

l pro

duct

ion -

all

zone

s.

!

Brid

gepo

rt be

st o

n in

itial

test

. !

i I

IPer

fs a

dded

5-9

4.

IZon

e aba

ndon

ed 5-

94.

Zone

aba

ndon

ed, 4

-95.

IPer

fs a

dded

9-89

. I

Zone

aba

ndon

ed 12

.78.

1

Adde

d pe

rfs 4

.81.

Ad

ded

perfs

4-8

1.

Zone

aba

ndon

ed 10

.92.1

Ad

ded

perfs

10-

92.

^

I 4.

22

rG Ô

~mÔÔ

ÔÔ ~ ~

MO

80

'0

I 0.

04

Ô m r lV

I 2.

47

Ô O ô ~ O

If) 0.38

!

fV .- O .-

(No.. N N m N N V~~

r M

{MIl~l m

N4c-46 .-m 4m n

mm N

m N

4 N

a N M N

r N a N

N N .....1: N N

LL9

^ m M C

N Ô

r4 m m 4M

lV Ill r N m

10 m Q ~

mm Or

m ^

Ill If) m Ifl m V

.- ^ m m

M 666

m m

^ M m

Ill m

If) ~

m If) ~ m

Ill fV

LLl ~ m N ID

.- ^ m

N Ii) m

N

Ill O 4 O m mn IO

m.-.-M If) ID

m N

O N

r m r IL) m N N

M M ~ N M li)

MCA ~

m r m m m N Q m r ~ ~

cow m

Vine

yard

Be

nd

Vine

yard

I

m m Tr

inity

M

Jas

p er C

r L Ja

sper

Cr

Vine

yard

m m L

Runa

way

I

[4 Ja

sper

Cr

IM Ja

sper

Cr

IL Jas

per C

r

m m ^ 'Ç Iz

>.0 E > a. C y Be

nd

Vine

y ard

Brid

g epo

rt

> ~

•C e=_,

m 3 m C S

Bean

s Cr

I

Bend

1

Vine

yard

L Ja

sper

Cr

Bend

Vine

yard

Brid

gep o

rt Be

nd

L 55

18

mm PIN WW Nl Ill

m WW If) m

LLl

~ M ~ N ~ lV m If) If) IA

M) ~ r In

Ip ~ r Ill

M M ILf

If) IO

œœœ r IO In S m Ill O m LLl

O

M

.-00 C.41...1,

W M

r r r m r lV IO Ill

m N N IO

m m M~ m

M r r r r Ill

CO Or M

r CO WO I[) r MM

N r r In

M M N IO

N O M m

N r r m

cow WW DLL

O O mm mm MM

1...0

NW N iM

r ~

bO r m

N N m

r

M b O

m O m

a

r M

~ f M N

0 r N Lol

000 m N

l

m M

)m r N mm

N

N N O

M m

O

Opp~Ol

MM N O

r N N

N r IO

COMM m m

IlO m P.

m NN m 8 N N lD

N l

~ O 11[ r r MM

pO

mm MM

....pt

mmm If) K) If)

m IO m IO

~r m

~ r IO rr r IO Ill Ill

m r LL)

M O r LL)

m r ü')

Sa MM

~ M

m M

rn M

rn M If)

000 If) IL)

W If/ LLl

m m m ül If)

' MM .-

_

w

W

.- â

> m

M

m

m

m

.-.--...• W

â)

m

m

M

m

> m

m Billi

e Yat

es 15

» >>

Billi

e Yat

es 1

5

Billi

e Yat

es 1

8D

I

0 œ .- m

m

m

00 œ œ .-,-

_=

m v >>

m m

mm

0 œ .- d

m

m I

>

rn m

O C.)

m m

a O fi

CD

T -

rn â)

o m

C.3

I

r r

m m a

L i IL

~~

m m

r

m n

>>>>>> I L

r

â m a am

Om

r '

y ma

r d m a m

m L

O

m a> ~

>Ii COMM

WO

m

a

a >> LL LL

m

M ffi

— I G Y

ates

3

I G Ya

tes 3

I G Ya

tes 3

Thre

shol

d ]

mm O LL ym L r

e

d L I-

C

L d L I-

co C

L N ~ H

I C C o co L L d 6yl ~ L f= H

C

Lq m L H

C 0L Ô

1-

C 0L Ô

I— -CLL.....

C , C 9 000 LL L d 6) W

` I-

•= = O O

(Lp L m ~

L~ L I- I-

= O L

L H

I C O . L m = r

m C C C C O O 0 O O L L L L L d d d d d L IA ` ` L H t- H H H-

•= = =

_ O ~

d 6) Gi ` ` ` H 1- H

my 0 N H

0 . N ~ I-

C 0 .0 Ô L H

C 0 L d r H

4223

7358

83

I

4223

7356

631

I

4223736711

]

I 42

2373

8711

1

4223

7367

11

I 42

2373

6711

] r4

22

3736

711

4223

7381

30

4223

7381

30

4223

7381

30]

I 42

2373

8130

I

4223

7381

361

4223

7302

80

4223

7302

80

4223

7302

80

m O ul N

M CNI i .1.

000,0100

m l m O O O O 119 If) In NNN

MMMNNN I

O 0 u) N

MICSIQ .11.

m O If) N

M N

Co O Ic) N N. MN .11..Ir

cD O u) N

^ MN

<D MMMM O O) O) O O) IA) In Ic) LLl In N NNNN O

r 00=0

• MMMM N N •N < C C0. R

23

Tab

le 4

(co

nt.

)

API N

umbe

r O

p era

tor

We l

l Nam

e T

otal

Top

B

otto

m

lone

Init

ial o

r T

ype

Dat

e o

f Firs

t C

um G

as

Cum

Oil

Cum

Wa

ter C

um

C

urre

nt In

it. P

res.

F

ield

Dep

th ( H

) P

arts

(ttf P

orts

(It)

IBfiij

!,

Re c

omp

lete

(O

iI!G

as?)

P

rod

uct ion

' !(1M

Nic

1)

IMS

TB

) ( M

bbl)

As

of D

ate

S

tatu

s (p

s io

)

CD m CO BB

CG

I

CD CO CO

CD m CD BY

(Cad

do C

ongl

N)

I

C7 CO m BV

(Cad

do C

ongl N

)

BV (C

addo

Con

g l N

)

18B

CG

CD m m BV

(Cad

do C

ongl N)

I

CD m m BY

(Cad

do C

ongl N)

I

BV (C

addo

Con

gl N)

I

BV (C

addo

Con

gl N

) I

Z Ô e U O p p

Cmi i BY

(Cad

do C

ongl N)

I

BV (C

addo

Con

gl N)

I

BY (C

addo

Con

gl N)

I

c

CO Cap

Yate

s (Co

ngl)

I Ca

p Ya

tes (

Cong

l)

â p o 0 N m

Y

: C.) Cap

Yate

s (Go

ng!)

I

O O N O — O

m

c a c a O. c O. CO) CO.) CO.) Û CO.) CO.) CO.) d CL L L 3 d 3 c._ 2 la.. Z CO) CO~) CO) CO.) CO)

~ ~ Ci

W 6

VJ

m C ~

âo G V)

a~o •Ô 6

I Au

g-93

â) 6

N ~

~ C

L8-d es 1

m G V)

ô) p

N

âo p

V)

m 6

N

m 6 ÿ

m C

~

m s ~

O) C7

r 3.

3 C9 ri

O O O O O O O P. .11,

I m ri

I

IC) ..- ^ C9 CO

N Co) m co P) CO CO {O

V IA ~

O N LL) m

CO Yi

O O O O O CA ^

CO ii- N

r

CO ^

CO CsiN

CO N

r... C9

m COP

CO CO e O

~ 5 LL) O

O N

O O O O

Jan-

581

Mar

-791

M

ar-7

91

+

Mar

-791

CO C

> Jan-

581 CO

1C) C

> Feb-

82I

Feb-

82

Mar

-931

C.) CO W r2

N CO G ~

I M

ar-9

3 Fe

b-82

I N CD C. Cc) Oc

t-82I

N CO ! 2

CO CD C

~

CO CD L Ii

It) CO C r

N CO ~! e

CD II) 7 ~

CD b 7 ~

CO 07 7 ~

CO 1I) 7 ~ No

v-60

1 O CO ~ Z

CO IO 7 ~

CO I[f 7 -)

~ 7 ~

Gas

Gas

Gas

Gas

ô Gas

m 0 c~ ~ ô ô ~ Ga

s Ga

s

ô Gas

a 0 C~ ô ô ô ô ô

3 3 ô

3 3 ~ ô ç é ô

I I I_

~,In

~ Ç Reco

mpl

ete

I R

ecom

plet

e m m

E e u ¢ Re

com

ple t

e

ô ~Ç

ô ~Ç R

ecom

p let

e Re

com

plet

e I

ô •C

ô •Ç

ô ~Ç

m ~Ç

m ~C

ô ~Ç

ô •~

m •~

m ~~

Te .Ç

Te ~Ç

ô :E.

ô :Ç

ô •Ç

!Vin

eyar

d

•~ O L7 Tr

inity

M

Jas

per C

r

m

Ô U J Be

nd

Caddo lBend I

p p o

C.) r

C

W U J M

Jas

per C

r L

Jasp

er C

r Ca

ddo

Bend

pC m

LD Ô C o C.)

C m C] J

C Ô C) J L

Cadd

o C Ô C) J

C ~ U J IL C

addo

1

C pm C.) J Vi

ney a

rd

!Vin

eyar

d 4

Jasp

er C

r de

ans C

r

Brid

g epo

rt

Trin

ity

U Ca

ddo

Bend

p C o m Ô ~ W C)

1C) m~

Ii) CO O

m O ~

N CON LC) aND LC) 1~ V ~ V uV,

m~ ~ IO V

â LL)

I~C!

LL)

Ô N W

X 4 1C

Opd

â CC~Opf

V {mp R

pNp Q co

IA 0 LC)

CO 0

LC) C~~) LL) IA

CO

ua ego â

C~') LC)

M IC)

Ô

b m ii- O

R LC) O CO N

~ m IC)

N V

1VC) ~

n V

~ ~ ~ ~

~ 1.0 V V

an ~ V

m ~

W W

N W

N ~

N W

nLC) n 4

N ~

CO

IC

CO

O Ô I1~7

CO 0^ 1OA I~A 1[N)

p np V

CO LO

CD V

n CD 1Û

L 5

987 n

m 1~

n CO 10A

is CO ~

n CO tOA

n CD IOA

IA IL

1A IO

^ IA LL) ~ LC) IA 1[

I

~I ^Î^~

Ln

LL) LL) LL) V

1A V

CA

~ ~

O 0 O 48

501 lA

~

O O ~ O 3 CO m 3 m â ILOf ~ if 1D

O CD LLm) 5

88

O CO I~A

O CO CO

IG Ya

tes 4

IGY

ates4

CL m T O

CO m

Y O

~

CO m

! O

CA m

Y C7

C2) d

T O

CT

a U'

CO m

T O

~ m

T O I

G Ya

tes 1

4

IG Y

ates

1

8

0

2 Y O IG

Yate

s2l 1

!IG Y

ates

3l

~

CON ~

T O As

he B

2

AsheB

2

Ashe

B 2

Ashe

B 2

Ashe

B 2

AsheB

2

AsheB

2

Ashe

B 2

Ashe

B 2

Thre

shold

Lg Lyy m m L a I-r-

C ~ C

v

Lyy • L

lo

Lyy m L r•r-rr~~ I-

lo

Lyy m i

lo

Lpp • L

lo

Lyy m C

p

a m C

v

a m L I-

S t Ô L I-

S L E C I-

? LWq O L I- CO

? L P i I-

S a F a I-

3

O G Y

tqq Y Y T Y T T T T Y X X X X X X >C X X 000000000

I4223702592

4223

7025

92

I 42

4973

2318

1 I 4

2497

3231

6

I 42

4973

2316

I 42

4973

2316

I 4

2497

3231

6

I 42

4973

2316

I 4

249

7323

18

I 42

4973

2433

1

6 N C9 n 4 N V

I 42

2373

4873

1

es N C7 n 4 N V

I 42

4973

2514

I 42

2373

6702

I 42

2373

8006

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

4249

7013

78

24

Tab

le 4

(co

nt.)

Tota

l To

p B

o tto

m Z

one

C

ross

N

et

Po

ros i

ty

Wat

er N

et

ttem

ar k

s

D p

th(M

Po

rts

Ittl

Perl

a (M

18

FG)

Thi

ck ( I

t) P

ay ( t

t l

W.)

Sat (

%1

Hyd

ro till

Thre

e Be

nd re

com

plet

ion z

ones

mad

e 10

MM

scf t

otal

. Th

ree

Bend

reco

mpl

etio

n zon

es a

ban d

oned

1-8

1.

I

1No

Low

er C

addo

pro

d., c

onve

rted

to w

ater

inj.

1.93

. I

Tota

l web

pro

duct

ion,

all

zone

s no

w c

omm

ing l

ed.

Adde

d pe

rfs 2

. 93,

now

com

min

gled

*Ca

ddo.

Adde

d pe

r fs 2

.93,

now

com

min

gled

wl C

addo

.

Tes t

ed v

ery

smal

l gas

sho

w, n

ot (r

aced

. 1

Porte

d 7-

58, n

o t p

rodu

ced

until 11-8

0.

Perfe

d 7-

56, n

ot p

rodu

ced

until

11-

80.

Duel

com

plet

ion

with

Ben

d in

11-

60.

Now

com

min

gled

with

low

er zo

nes.

No

w c

omm

ingl

ed w

ith lo

wer

zone

s.

Wel

l con

verte

d to

wat

er in

j. 12

.92.

1

No re

cove

ry a

fter s

mal

l fra

c.

Test

ed g

as, b

ut n

o t p

rodu

ced.

Te

sted

gas

, but

not

pro

duce

d.

0 0 ~

Ô

ID O '-

co in Ô.--

ri O ^

Ô O O O O

O co .

O O

~ Ô

co N ID O

Ô O ~

ni CO ID Ô

CD ID O

et .- •••:

M O O

V ce fV

O .M-'

in

!O•) pNp ~T

49 e? 1~

M w Q •f s

Kf Z

{O CD

m 4 p

Op R

O ~

1~

M N • ~

N W

N CO

N m

N CO

N

CO et

CO CO

It) CD

a n CO P7 1s: ai

N .— M W

N Of

1, IV m m

O Ô

O ID

n ri

CO m

W m

O ai

O O It) ~

O O

L- ~ 1O Il) et

^ ~ O ^

L

ID ~

ID ~

ID ~ 1■ ~ Cl N CO ~ LL) ^ ID

~ ~ O 1, ~ N ^

LL) •

M O O^ CO M CI M et CO N {O ~ M O O N N O 1~ LL7

N O O W

CO N CO O N CO

N ID

O CO

O W 'G

Trin

ity

M J

asp e

r Cr

L

Cadd

o

C C co

co

v c C O 9 C m C) U

Ca d

do

L

Cadd

o

M J

aspe

r Cr

L J

aspe

r Cr

Ca

ddo

[B

end

Cadd

o lBe

nd

L Ca

ddo

1

L Ca

ddo

1

e 1:1

C V J

e 'CI O V J

e .17

O V J

o C m V J L

Cadd

o 1

Vine

yard

[Vin

eyar

d 4

Jasp

er C

r

Bean

s Cr

Brid

gep o

rt

.0 C •= I—

0 Ç f0 U = Be

nd

Cadd

o lBe

nd ~

n O~

m LL I~

N ~

N Ln

N IÔ

m Ô~ gg ~ CO et et

V CO

~ N

~ g

~ O

~ ~ ~

CO

v N °~

~ IOD

W In

N IOD

N IIL

M IMn

COO

in

m etv

M IMD

M IL~

0 ~ O

ID ~ 11~

N 10

4

m 11f

N 4

I~ ~

n ~ IQ Op ~~ {D~

4 S {L1 W M O m ~

~ Q

N w

N

f N w

n w

N Ii■

w Ô

CO

in ü O ~ Ln IIÔ

O ^ LL/ in

n CO

CO

IND

n CO

n O O 4)

n n CO CD O O ID ID

n 04 O

1 59

87

n CO O ID

O 1~ H) 5 7

51

5751

57

51

5751

1D I~ LO

O 1~ ID 47

00

IO ~ 1~ ~

O

4 4730

1 O O 0 R

1

O LL) CO v 48

751 0 0

CO CO ID ID

0 CO In

0 CO ID

œœœœœœœœ 0 CO IO

0 CO LO

0 CO ID

0 CO lo

0 CO In

et

g m > CO IG

Yate

s 4

IG Y

ates

4

IG Ya

tes 4

IG Y

ates

4

IG Y

ates

4

IG Ya

tes

9 IG

Yat

es 9

IG

Yat

es 9

IG

Yate

s 9

IG Y

ates

9

IG Y

ates

9

IG Ya

tes 9

I G Ya

tes

13

IG Ya

tes 1

4

IG Ya

tes 1

8

I G Ya

tes 19

IG Ya

tes

2l

1 I G

Yat

es 31

I G Y

ates

3

2

Ashe

B 2

Ashe

B 2

Ashe

B 2

~

Ashe

B 2

I

Ashe

B 2

Ashe

B 2

1

N O i COn

N O L N C

N O L in 6

O

1-

OCCISE O O O O O

►- gggg

O s ~O ~O ~O ~O COXCO:C g H g FL•• H H

~O

F

.. ;

a

- m a

-...

a

....O g

~

O ..., O

g

a

~ O g

a

...,C g

a 0 0 0 Ô Ô Ô Ô Ô Ô

I

4223

7025

921

4223

7025

92

4223

7025

92

4223

7025

92

4223

7025

92

4223

7025

92

4249

7323

16

4249

7323

18

4249

7323

16

4249

7323

16

4248

7323

16

4249

7323

16

I 4

249

7323

16

I 42

49

7324

331

I 4

249

7324

341

I 42

2373

4873

1

I 42

4973

2478

1

I 42

49

7325

141

I 422

3736

7021

I 422

3738

0081

4249

7013

78

4249

7013

78

I 42

4970

1378

I

4249

7013

78

I

4248

7013

78

I 42

4970

1378

I

4249

7013

78

I 42

4970

1378

I 4

249

7013

78

25

Tab

le 4

(co

nt.)

API N

umbe

r Op

eraW

r W

e11

Na

me

Tota

l To

p Bo

ttom

Zo

ne

Initi

al o

r Ty

pe

Date

of F

irst

Cum

Gas

C

unt O

il

Cum

Wat

er C

um

Cu

rren

t In

it. P

res.

Fie

ld

Dept

h(ft

) Pa

r ts (f

t) P

erk

(It)

(BEG

) Re

com

p le t

e .

!IOi l1

Gas ?

) Pr

oduc

tion

IMM

sct)

{MST

B)

(Mbb

ll As

of D

a te

Stat

us

(ps i

s)

Cap

Yate

s (C

ong l)

Cep

Yate

s (C

ongl

)

Cap

Yate

s (C

addo

)

Cap

Yate

s ( C

oup!)

Cap

Yate

s (C

addo

)

Cap

Yate

s (C

addo)

B

BC

G

6 m Ln Ca

p Ya

tes

(Gon

g!)

Cap

Yate

s (C

addo

)

C9 m

C7 m

C7 m

CD m BB

CG

I

Cap

Yate

s (C

addo

) I

mmmO m Ca

p Ya

tes

(Con

gl)

I

Cap

Yate

s (C

ongl

)

Cap

Yate

s (C

ongl

)

Cap

Yate

s (C

ong o

Ca

p Ya

tes

(Con

g l)

CD

m Cap

Yate

s (C

addo

) I

a.-.

E

Cl C.) .....

C) C1 C7

Q ~ N

Q ~ N

6 ~ N

6 ~ f%)

6 ~ fA

6 ~ CO

Q ~ N CO C1 6

........ U C~ V C) LL

d Z

o C)

D Ci

o CO

0 tl

0 C) V C1 C1 ........

CO Ci 6 6 C)

m

~ Ô 4. m ~

m

> >

n

>

m m

> Oct

-771

N n

O CD LL]

C. Ill

n t7

O CO CD

O O

^ .-

.- O

O ~

V O N

N N

O CO O n

^ te)

CO Cr) 02

0.I 4 n 1 V CD

N O 27

81

n co

O CO

m CO

Ô 000=1

O~ m

CO LL7 6 De

c-58

CO LL')

6 G

CO LD 6 < De

c-58

CO Ln m O De

c-50

De

c-58

Ap

r-58

Aug-

58

CD ID tT Q

CO ID m Q

CO LP Ca Q

CO tD O Q

CD LD 0 C

CO LD 0 C

CD b a LL

O m Y O

CO a LL

CO a LL

CO a W

O a LL

1tg -qei

m

O

tD '16 O

m Zi O 0c

1-611

t4

O Oct-611

Oct-6

1

Oct-8

1

— O

.T. O

ro O !i O

— Ô — i5 — El

~ C.D ~ Ô

~ CD ~ Ô — S

~ ~ CD ~ Ô

CD

5 = O Ga

s Ga

s

Ô CD Ga

s 1

g C9

ô

M. CD

O — Ô

— Ô

— a

— 3

— 0

— a

â CD

g CD

m CD

0 CD Ga

s

0 —43

m CO a. CD Ô

m 0 ~C —

m .0 C —

m .0 C —

m .0 C —

m .0 C —

—m .0 C —

—m .0 C —

CO .0 C —

m .0 C —

m CO .0 .0 C C — —

o t C —

m .ç C —

—m Z C —

CO .0 C —

m .0 C —

m .0 C —

CO ~ — C ~C

m

m ._ C —

CO .0 C —

m .0 — C ~C

CO

Ls ~ ~C —

CO .= C —

U Ru

naw

ay

Brid

gepo

rt I

O

W V = Be

nd

C a, CO C

m t..)

O

â U >

O

W C~ >

.L

.0 H

.0

.0 H Vi

neya

rd

Bend

No

O

~ ô C)

m

W

â Ca = Tr

inity

Brid

gepo

rt L J

aspe

r Cr

Vine

yard

Be

nd

Cadd

o lBe

nd

C. > ç > 4 Ja

sper

Cr

M

U R

unaw

ay

Ô~ .

C •C CO H Be

nd >

Vine

y ard

L

Jasp

er C

r l

U Ja

sper

Cr

4 Ja

sper

Cr

Brid

gep o

rt

L Ca

ddo

Ben d

Cadd

o Be

nd

et

~ b

CO

O

CO

ID

W LO I.

V LOCnJ

V ~ LO

~ LD

m m in ID

m LD

~ 4

Ô M LD O

tOD O

m m tD LD

m LD

N 4 LO

n ~ ~ LO tD

N n~

LO LO IL-2 CO LD

t0D ID

O V 01 O O

~ LD {D ~ CD DI

COO LD

CO CD Le) O

CO CD N LC)

in n ~

CO LO O n N LD ~

tV t7 n V

~ n V

CO Cr) LC)

N co

LD

CO CO n t7 O LD in

Cl tr) n V

O

~

O ~

P) It) LD

CO N ID 11)

V C. O O tD

O

~

V

~

co CD O LO

co co

CO LD

3 ......., N.

N LL) ü) in

LO CO LLY

V CO LO LO

0 n LD CO N LD n of ~ LD in ~

LL) 0 ID

CD n 4

O CO {D

CO CO LC)

CO CO LO

CO CO CO CO ü) LC)

l7 LD co LD

O LD CD LD

tr) ~ ~ LO

tr)

LD

01 07 LD in CD CD LO LL)

01 O CD ID

CO 0 n LL)

O CO 0 0 n n LD LO

CO 0 n LD

O CO 0 0 n n LO W

CO 0 n LO

O

n V

CO O n LO

O CO n LD

CO CO n LD

CO O CO CO n n LD LO

Co Co n LL)

n N n LO

n N n LD

n n n n N N N N In n n n LO LO LO LD

n N n LO

n N n LD

Ashe

B 3

Ashe

B 3

As

he B

3

Ashe

B 3

Ashe

B 3

C) L ç

C. CO

c IAsh

eC

1 —

1

CO L c

CO 0 L L

c s Ashe

C 1

` Ashe

C 2

Ashe

C 2

Ashe

C 2

As

he C

2

N N C.1 CO co a â ~ 1 A

she C

2

t7 V L â As

he C

4

[Ash

. C 4

Ashe

C 4

Ashe

C

4

As

he C

4

AsheC

4

_1

Ashe

C 5

Ashe

C 5

I

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C

5

AsheC

5

Ashe

C 5

X arC 00000

X X X )rC 0 X 0 X 0 X 0 X X 00 X 0 X arC X 0000000

X X )rC arC X 0 X X X 000000

)r~C X X 0 X )rC

0

D.- X )rC )4 0D00

X 0

X 0

4249

7 013

771

4249

7013

771

4249

7013

771

4249

7013

771

4248

7013

77]

4249

7013

77

4249

7013

77

4249

7013

741

4249

7013

741

4249

7013

741

4249

7013

741

4249

7013

74

4249

7013

74

4249

7013

74]

4249

7013

731

4249

7013

73

4249

7013

73

4249

7013

731

4249

7013

73

424 8

7013

73

4249

7013

731

I

4249

7013

721

4249

7013

711

`

4249

7013

711 ._

0

n

4 N V 42

4870

1371

42

497 0

1371

42

4970

1371

1

4249

7013

701

` 424

9701

370

1 42

4970

1370

42

4970

1370

42

4970

1370

42

4970

1370

42

4970

1370

1

I42

4970

1370

26

Tab

le 4

(co

nt.)

'Tot

al w

ell p

rodu

ctio

n, a

ll zo

nes n

ow c

omm

ingl

ed.

1Com

min

gled

pro

d. fr

om all Be

nd z o

nes

thru

7.7

9.

Test

ed s

how

oil,

not

pro

duce

d af

ter b

reak

dow

n.

May

not

hav

e pro

duce

d un

til p

ost-

1972

.

'Par

ted

12.5

8, n

ot p

rodu

ced

until

12.

80.

1May

not

hav

e pr

oduc

ed u

ntil

post

-19 7

2.

Dual

com

plet

ion

with

Bend

in 1

2.80

.

— 10

i1 ini

tially

, rec

lass

ified

to g

as in

4.8

1.

Oil in

itial

ly, r

ecla

ssifi

ed to

gas

in 4

.81.

Prod

uctio

n fro

m B

ridge

port

thru

10.

77.

j

Uncl

ear i

f eve

r pro

duce

d.

1

'Don

't kn

ow C

addo

pro

duct

ion.

1

4

All z

ones

com

min

gled

10.7

7.

1

Don'

t kno

w C

addo

pro

duct

ion.

j

Only

par

tial c

um fo

r Be 1

l0 Ô

CO 10 N

CO l0 O

0 O O N

N CD O

0 0 •,-

Ni CO

0 n p

L_ _

0.4

N f\ CE

Cf ~ CA

N N CV

~~ ai

n

Ô

1L8'0 L

~ •-;

f\ 0 Ô

0 Cf

co G

Ce C! O

N CO O

co co ô

Ir ~

~ CJ N

CO IV N

n N

.- IV N

N CV Ni

• C) m N

Cp ai. N

Jr C) N

3- CD Cl

N Cf Ni

CO Ô N

IN

N 31. m N

0 x

Ni 4 Ni

CO C) Ni

CD m N

IN N

N ti Cf

Cf Cf el•

CA I~ ..—

CO m

N. m ce

a CD C)

sh I:

a IV

IO ai

CC f\

Cl eh n

C. CG

..- Ô'-'

O 0 CD

0 C)

Cl Ô

331. CD

V CV

CD m

CD IN N m

ie: ~

CJ ri

CO tri

N ai

N ri

ID CJ

CD r. N

O ^

Ln m CO Ni

• tn r.:

, O l'7 Ni

~ ~ ID 10 j ~j

CO Cl C~

10 ~ {0

CO ~ ~ IO N N

O ~ in r a

in ^ CO N .-

in CO Ni

CO N

CO C)

n co

0 0

N t0

Cf CO

, C)

O 10

10 n C) CO

n CO

n N ~ O ' ~ 0

O 0 O~

CO Ce O

Cl CD

C) Cl

CA CO CD

Ni CO

4 Ja

sper

Cr

~

U Ru

naw

ay

Brid

g epo

rt_

j

e

p V = Be

nd

Cadd

olBe

nd

e no ô Ce = U

Cadd

o

>

'C I— Tr

inity

1

Vine

yard

1

Bend

Cadd

o lBe

nd

~

e •Ic â V =

.0 C I- B

ridge

port

L Ja

sper

Cr

1 Vi

neya

rd

Bend

e

CO

ve Ô C> U C

addo

-

-ce

> al G > 4

Jasp

er C

r

U Ru

naw

ay I

Brid

gepo

rt 1

^ C

'C I— Be

nd

e

a

~, C s ~i L

Jasp

er C

r

U J

aspe

r Cr

4

Jasp

er C

r

Brid

gepo

rt

e ~ e V J

9C m ••

v

m

C Ct

ont

I00 u M! Ô~~~

e l0 I0

Ce ~

e I00

e ~ 10

I00

tD ~~ I00 I00

W I00

~ w

ID s

C)

Ln LL07

5 C09

b

~X s 1Ô

0N0 O

s

ID a

I00 Ô Ie0

N INO

n a

IO 1L) O 10

m 100

1MO

I ~M{ 10

10 bWM

m Ô Ô Il1

O O CO In

CO 0 C) In

CO CD Ni In

O n CD R

CO tn 0 N.

In v C) N. v

N 0

N ~ I~ ~

{0 C9 Iî,

N Itf

In

CD 1~ 0 LO

CO C1 în

N Ni f~ a

œ

~

E

IO Cf în

OD N {0 In

~ Ni CO IO

0

~ ~

W

m 0 CO In

CO ~

Cf 10 C! In

1N O Ni In

1~ In

I~ Iç,

IO 0 In

~ 10 10

O Iff of 10

I~ Ni O 10

in {D In

0 1~ 4

10 10 In

CO I~ 4

10 I0 534444

IL/ 5881

58

81

Ce tn IW

LO LO

~ ~

I~D 1~

I~0 Ln

I~0 Iü

1[) 100

~ 57

08]

CO

LL Ô in

~8019

O 10

~ {p 57

081 O

~

CO N.

CD

LL~

CO

10 5788

]

CO

in

CO

I~0 5727

N

l0 N I0

N 1~p

N ID 57

271

Ni IN

LL 5727

1

Ashe

B 3

Ashe

B

3

0

C c

Ce

L c As

he C

1

1

C3

i

s

Ce co

s

Ce

L c As

he C

1

1

Ashe

C

2

Ni Ce

L G As

he C

2

Ashe

C 2

Ashe

C 2

Ashe

C 2

Ashe

C 2

'

Cf 0

L c

43. C.

L c

44. U

L ç As

he C

4

Ashe

C 4

AsheC

4

AsheC

4

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C 5

Ashe

C 5

OX

Y

X X O O

X 0

X 0

X 0

eTC 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X!g 0 0

X 0

X 0

X CO

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

I42

4970

1377

42

4970

1377

4249

7013

741

4249

7013

74

4249

7013

74

4248

7013

74

4249

7013

74

4249

7013

74

4249

7013

74

4249

7013

7*

I

4249

7013

73

4248

7013

73

I

4249

7013

73

I

4249

7013

73

I

4249

7013

73

4249

7013

73

I- 42

4970

1372

1

4249

7013

711

4248

7013

71

I- 42

4870

1371

I 4

249

7013

71

4249

7013

71

I 42

4970

1371

I 42

4970

1370

1 42

4810

1370

F

4249

7013

70

4249

7013

70

4249

7013

70

4249

7013

70

4249

7013

70

4249

7013

701

27

Tab

le 4

(co

nt.)

Cap

Yate

s (Go

ng')

Cap

Yate

s (G

ong))

Cep

Yate

s(C

ong 0

Cap

Yate

s (Co

ngt)

Cap

Yate

s (G

ong')

Cap

Yate

s (C

ong I)

Cap

Yate

s (Go

ng»

7 C.3 LO BV

(Cad

do L

ime )

C7

m m BB

CG

I

BBCG

I

CD m CO

CD m CO

CD m CO 1B

V (Ca

ddo

Gong! N)

I

©

m m BB

CG

1BBC

G

(BBCG

C7

m CO BBCG

I

C7

m m Ca

p Ya

tes

(Con

s Co

ngl)

I

CD m m BB

CG

BBCG

Cap

Yate

s (C

ons

CongO

03 CN

CO LD L-

m ._

ô N

S ~

0 C7

0 C7

0 C.

0 V

0 C.

0 U

0 C.

0 V

CD V 0 C.) CD C. 0 C. O.

2 a 2 O

C7 O C7

O C7

d 2

o C.

O C~

o CD 0

C7 0 C.

0 C7

G = Cl) 2

Q fN

d==~~ 6 V)

Q

N

6 C. 2 d

~ <

CO

~

~

~

~

~ 2

OMD

O

Of ~

~

~ Feb-

70

~

C

CO

~

m2. 2

n LL)

18' 8t

4- Ô

0 CE

O N

O O

0.4 N Ci CD

d CD O O O O O O

Cs. N

N a L~

N ^

CD CG

O O ~ C1 Cf

CO Cf

CO coi C)

O CO ^

1~ O1 N

a Q 0 O

O1~

~ CO I CD

ID N 11.

CO

.tir m et-

~ ~

CO

COL n

O O

278 m ~

O CD O~

O N n CO C7

~ O n

N CO p N

N CO LS

N

N CD G

C/o)

GD G

C/~)

N ~

C

~

N CD 6

V)

N CO G

V)

CO Ln 6

CO CO Ln 6

N

C) CL

6

CO CD 6 ai

CD Ln 6

CO

N CO a N CO C

» May

-821

M

ay-8

21

May

-821

N N CO CO >

~~~

N CO !

Mar

-82

Mar

-58 CO

Uf ! ~

I Fe

b-7

J

Feb-

70

O n .G Li

I__

O n

Li Mar

-58

L

CO CO Ln LL7 elt O O Oc

t-59

Ln

CO Ln

C~ Oct-5

9

CO Ln LI 0

CO

CI 0 Oc

t-59

O O O O O = O

3 O

N O

C7 Gas

1

Gas

1

C CO Ga

s I

Gas N

CC C.7

H C

CO

N O~

CD O O

co N ~

H O 7 O

C9 C CD 1G

es

H W

CD W m

~ CD H C

CD W m CD

L9 O CD ~ O

C~ W I C7

CC C.7

N CO C7 . O

N W CD

O

O _ C

.ç W

C

W C C ,

C Reco

mpl

ete

I

6 ._C

m . , _C IR

ecom

plet

e I

O ç C

O _ C ,

~

p .0

O ç = ~O C =

O ~0 .0 = - C

m

•~ ~

A

Reco

mpl

ete

Reco

mpl

ete

Reco

mpl

ete

C ~ 1lnit i

al

O

_ C

O

_ =

O

_ C

U Ru

naw

ay

Brid

gepo

rt 1

> .= C

'C H IU

Cadd

o

V C C m

2 CO O V V W

C. Vine

y ard

1

L Ca

ddo

U Ja

sper

Cr

Bend

at m O V V C

C7 Vine

yard

9 CC Y CO Ç

M J

aspe

r Cr

M J

aspe

r Cr

1

> ._ C

•C I-

O a ÿ . a C •C •I- 7 Be

nd

ut m O V V C

C7

_ Ç CO 04 m C ! 1V

iney

ard

IU J

aspe

r Cr

L Ru

naw

ay

Trin

ity

! . 'C H Be

nd

Ô 3 d

Y p: d d

~r CO, C m CV ••C •C CL ~, I- m J =

U G LO

J >>

~

CO

d C

1 t eu > Cu C

~ = m

CO C) Ln

CV a N Ln

W A

Ln

N ce Ln

1~ n n a

CO C) Ln

CD C) LD

CO C) Ln Ln

a C) LD a

0 Ln C) LD

CO C) LD Ln

CO C) ID Ln

O n Ln LD

O Ctf O Ln

O N

~

O N O Ln

N CO ~ a

O N a Cn

O N ~

N C) CD Ln

O n Ln Ln

CO ID m m Ca

~ O LD ID Ln

p O O n O LO Ln Ln

O N CO ~

N Cn LD Ln

O O LD LD

m n ID ID

LL'/ CO Co ID

a O n ' ID

Ln CD CD in

C9 O C) Ln

O C7 CV Ln

P) n Ln

in Ln Ln

1~ n a

Ln la Ln

1~ n a

C) ID Ln

IL') LLY a

~

Ln a Cf Ln

LD

~

CO LO In LO

O ~ ~ C)

u~7 Ln

CO p Ln

N O in Ln

a N n C) CO ID a a

a 1, pp O

N C) ID a

C) CO CD Ln

O LO in Ln

N N~ co C9 g O ~ Ln In

a CO CO a v

~ in Ln •~ in CO CV Ln Ln Ln

CO CO Ln

CO Ln Ln

fff000 ~ Ln

CO CO CD Ln

— C- Ln

L_

5828, m N CO ID

~ 58

281 m

N CD ln

~58

28

5826

cc N CO Lt)

O ' Ln LD Li')

O ' an CO Ln

O ln CO Ln 58

501

CO in O ^ Ln O O Ls n^ Ln ID

O ID 57

01

O O n A Ln LO 57

011

5701

1

~ ^ in 57

341 ~~~~~

n n A Ln LD O

n n Ln Ln 58

11

5811

58

11

CO L[)

CO LA

CD LO

CO Ln

CO ID

O

C. C V) Q

m

C~ L C

co C7 L Q As

he C

6 co

(.) L en G

m

C. L C

co C. C Q W

. Dew

bre

1

W. D

ewbr

e 1

m â

m O â

m â

m Cl â W

. Dew

bre 1

IW. D

ewbr

e 2

W

. Dew

bre 2

W. D

ewbr

e 2

W

. Dew

bre 2

W

. Dew

bre 2

W

. Dew

bre 2

W

. Dew

bre 2

W

. Dew

bre 2

W

. Dew

bre 2

Craf

t WB-1

21

Cr

aft W

B-121

Cr

aft W

B-12 1

Cr

aft W

B-1

2 1

Cr

aft W

B-1

2 1

Cr

aft W

B-121

Craf

t WB-

121

Craf

t WB-

21 1

Cr

aft W

B-2

1 1

Cr

aft W

B•2

1 1

Cr

aft W

B-21

1

Cr

aft W

B-21

1

Cr

aft W

B-21

1

1

Craf

t WB-

21 1

Craf

t WB-

21 1

1

Y X O

Y X e

Y X O

Y X CO Y X O

Y X O

Y X O

L u H C W

a U

H C W

a Li

H C W

L L)

H C W

.= H

H C W

a Y

H C W

L a G CL

H â C C W W

L G

H C W

L .L) H C W

L a Cl L)

H w C C W W

a Cl

H C W

a Y N C W

L L)

H C W

L G

H C W

L L L L L Y Ct Li d

H H H d d C C C C C W W W W W

I L L L G.1 L) U H H d C C C W W W

L ti N

C W

L d d

W

C L.l Cu W

Y d

CL d

C W

I 42

4973

2417

I

4248

1324

1'1

I

4249

7324

171

I 42

4973

2417

1 I 4

2497

3241

71

r 42

4973

2417

1 I

42

4973

2417

1

I 42

4970

1858

r

4249

7018

58

I 42

4970

1658

1 I

4249

7018

581 CC

Ln CO O n 4 N a

I 42

487322731

4249

7322

73

4249

7322

73

I

4249

7322

731

I 4

249

7322

73]

4249

7322

731

4249

7322

73

I 4249

7322

731

I 42

4873

2273

4249

7018

421

4249

7018

4 42

4870

1842

42

4970

1842

42

4870

1842

p4449701632

2497

0183

2 I

4249

7016

321

I 4249

7016

32]

r 42

4970

1832

I

4249

7018

321

I

4249

7018

321

28

Tab

le 4

(c

on

t.)

Tota

l wel

l pro

duct

ion,

all

zone

s now

com

min

gled

. I

Smal

l gas

sho

w a

fter f

rac,

no n

et p

ay c

alcu

late

d he

re.

Bend

zone

s al

way

s co

mm

ing l

ed.

[Incl

udes

Cad

do p

rodu

ctio

n sin

ce 1

1.92

.

1 l I

Smal

l gas

sho

w a

fter a

cidl

frac,

dep

letio

n?

_ 1

[Sm

all g

as s

how

afte

r aci

dlfra

c, d

eplet

ion?

Now

com

min

gled

wl B

end

zone

s.

N ~ d O. 7 d NO C Q Pr

oduc

ed th

ru 5

. 68,

com

min

gle

n CO ' CV

N O N

1\ N Ô

n n Ô

N C) a-

C) N Ô

C) n

Ô

O ^

C! Ô

~ ~

Ô CO Ô

CO r Ô

O Ô

CO n .—

1~ Cf Ô

C) • ^

Ci

Q m

co

N

m ~

N co. • m

C)

• N ~

• m fV C)

co CD N

~ m N

0 :

C)

0 m N

• N 1~ C7

O Cl C)

n m N

co C)

C) 1\ C)

.-- m C)

C) IV

O Ô

n V

O .— N O ri

CO C)

LS m cal

a ID ci

a In

N Q;

O 1.4

W CD

m 1[f

m Ci

M1 Ô

N ' O

tQN ID n

^ • In CD

• O • CO O IO ~

10 C7 Q LO

^ • O

LÂ O ^

LO

N

O ~ ^

C) •

I 7a

in~ IInC M n n N m 4 4 W m  COO ~~~ â

'0 m

CO

9a

LD Ô O m m U Vi

ney a

rd

L Ca

ddo

IU Jas

per C

r

C

CO

amw m Ô C

V

'C

co 'C

Vine

yard

_

Vine

yard

M

Jas

per C

r LM

Jasp

er C

r 1

> l

1—

> I r [U

Cad

do

Bend

O g m Ô C Ô Gi Vine

yard

U Ja

sper

Cr

L Ru

naw

ay

Trin

ity

Trin

ity

C C

CO Brid

gep o

rt [

U Ja

sper

Ci7-1

L Ja

sper

Cr

Vine

y ard

Vi

ney a

rd

y ô m

O C) LO

_O O O

co C)

O O~

~ C) In

CO) In IC)

t07 In In

O 1[) O

1n In u7 ICI

N ~ O

N O LO

m~ ~~~~

O N N W^

CO O

Ln LL)

CO

~ m

O

CO

O H')

Ô~ O LL)

ILf ICJ

CO coN m — N

LC) u) Ln Ô ~ In I. 1' Ln ü')

O Ln

m~ n IO

m O IC)

LL) LL)

II) 1~r. ~

^ In {{O~

~ C X In

g In

^

~

O p~ In ~

IOn I1) IOn

COp Q O

N

{O Cl

v n ~

N f7 â

v r ~

N C) ~

C) CO

ILO)

O ID IOC

N

~ œ In

C) IOn N~~

~ 4

~~ u'i In .- ~ u'f CO In LLY LO

LA œ 1.0~

I ~ O LA

œ LC)

I O) v CO

ü')

O) ~ O) CO

œ Ln

~ ~ Ln

Ln

co

CD II)

co

O 10

COO IOO O CD ID H)

IOC) CD In

I00 O IC

IOC CC II)

0 0 0 f\ A 1~ In )O 4)

0 A Ln

E. ^ In

G. n In

E. A CO

0 n IO

0 A In

N Ln

n O

XXAXX n IC

n Ln

n II)

C) n In

n IC

~ œ IC)

œ Ln

œ LL)

œ LC)

CO C.)

t N Q

tO Cl

Z N Q W

. Dew

bre

1 ~

W. D

ewbr

e 1

1

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

W. D

ewbr

e 2

Craf

t WB-

12 1

1

,Cra

ft W

B•12 1

1 Cr

aft W

B•12 1

Craf

t WB-

12 1

1 Cr

aft W

B•12

1 1

Craf

t WB•

12 1

Cr

aft W

B•1

21

Craf

t WB•21 1

Cr

aft W

B•21

1

Craf

t WB•

21 1

Cr

aft W

B•21 1

Cr

aft W

B•21 1

Cr

aft W

B•21 1

N m ~• V ~ Ci Cr

aft W

B•21

1

1

Y X O

y C o

L ) m N C W

L H Ô N C L

L H ÔN C W

L L mN C W

a L m N C W

L a a L Y L mmm N N N CCC WWW

L Li m N C W

a ~ O

lY

L fi

m

W

a LJ Ô N C W

a H

Ô N C W

a L

Ô N C W

e O V C W

.0 Li m N C W

Y • N C W

d

C W

a

i d

w

H d

= Li d H C

L Ôi

C W

û d

C

.= d

C

L UÔ)

C

L Y Nm

I 4249732417

4249

7324

17

I

4249

7018

56

4249

7016

56

4249

7016

5)

4249

7016

58

4248

7016

58

4249

7322

73

4249

7322

73

4249

7322

73

I 4

249

7322

73

4249

7322

73

I 4

249

7322

73

I 4

249

7322

73

I 4

249

7322

73

4249

7322

73

I 4

249

7018

421

4249

7016

42

4249

7018

42

4249

7016

42

I 42

4970

1642

I 42

4970

1842

I

4249

7016

42

4249

7016

321

4249

7018

32

4249

7016

32

4249

7016

321

142

4970

1632

1

I 4

249

7016

32

29

Cap

Yate

s (C

ons

Cong

q

,Cap

Yat

es (C

ons C

ong l)

1Cap

Yat

es (C

ons C

ong o

O 0

O 0

O 0

O C7

g C 4 '

O

N Q/

88

N CO

m CO Se

p-82

Se

p-82

O CO G a

Oil

SEISES

m m â E 0 c) as

OC Reco

mpl

ete

Re

com

plet

e

7.. C 'c I— L R

unaw

ay

L Ja

sper

Cr

~ S m

BBCG

- Bo

onsv

ille B

end C

ong l

omer

ate

Gas

1

CD N .— ICI

N 1... .— .— Col CO LC! LO

co O n ID

N .— 117

g CO O ID 10 LL7

O .— LL7

( Fiel

d Ab

brev

iatio

ns

1

BV -

Boon

svill

e

Cons

• Co

nsol

ida t

ed

Cong

l - C

ong l

omer

ate

O O IOG 58

00

5800

O O LL7

U -

Uppe

r 1

L Z e 2

2

Craf

t W

B•21 2

Craf

t WB•

2 1 2

Cr

aft W

B•21 2

Craf

t WB-

21 2

CO

.One

of s

ever

al C

omm

ingl

ed zo

nes

Vis

C

INP

• Com

plet

ed, b

ut N

ever

Pro

duced

ISIIT

A • S

hut•i

n lTe

mpo

raril

y Aba

ndon

ed

INet

Hyd

ro •

Net H

yrdo

carb

on F

eet

ISSI - Sc

ient

ific

Softw

are•

Inte

rcom

p

1

.= t) m C G W

L L' i) Y as as cos W W

a Y E cos C W

(Cur

rent

Sta

tus A

bbre

viat

ions

)

WIW

- W

ater

Inje

ctio

n W

ell

IDA

- Dril

led

and

Aban

done

d

ICum

- Cu

mu l

ativ

e

(nit

Pres

• In

itial

Pre

ssur

e

I

42487018081

4249

7018

08

4248

7018

08

I 42

4870

1808

2 7 O

4 E O Z IA

- Ab

ando

ned

1

e. C j ' C

1L a- 'O

ther

s J

30

Tab

le 4

(c

on

t.)

API 'N

umbe

r O

per

ator

Well

Nam

e

Top

B

otto

m

zone

G

ross

N

et

Poro

sity

W

ater

;Net

Re

mar

ks

P

t !s

(ft! !N

ils(It

) T

hic k

Pay

l•)

~Ia

1 Hy

dro

IAll

zone

s now

com

min

gled

, may

be o

nly p

artia

l cum

. 1

'Add

ed p

erfs

9- 8

2.

Adde

d pe

r fs 9

.82.

Ad

ded

perfs

9- 8

2.

O

!V

n n O co Ô ni

O

X

~ A

N N

n CD

•Ct 1\ lV

O ON N

CO N

N ..- LL') CO

Auuul~ Vine

yard

Trin

ity

L Ru

naw

ay

L Ja

sper

Cr

Bend

BBCG

- B

oonv

ille B

end

Cong

lom

erat

e Ga

s

CO 0 1 ~

LL7 Ô n O

CO w- O

~ n C7 0 O in

Ô 1~ 10

IÂ ID

COD

LO N CD

~ OOD 111 1.0

O IO

Field

Abb

revi

atio

ns

BV - B

oons

v ige

Cons

• Co

nsol

idat

ed

Cong

l • C

ongl

omer

a te

I

5800

ô IOC/

ô ID 58

00

5800

ô IOt! G

O. =

=

C O 2

2

'Craft

WB•

21

2

Craf

t WB-

21

2

Cra f

t WB•

21

2

Craf

t WB-

21

2 Cr

aft W

B•21

2 Cr

aft W

B-21

2

CO. O

ne o

f sev

eral

Co m

min

gled

zone

s

INP

- Com

p let

ed, b

ut N

ever

Pro

duced

ISIIT

A • S

hut•i

n lTe

mpo

raril

y Aba

ndon

ed

Nat H

ydro

- Ne

t Hyr

doca

rbon

Fee

t

IBEG

• Bu

reau

of E

c ono

mic

Geo

logy

ISSI

• Sc

ient

ific S

oftw

are•

Inte

rcom

p

u

C

u

C

u

O

u u

CC

Y

C

'Cur

ren t

Sta

tus A

bbre

viat

ions

)

IWIW

• W

ater

Inje

ctio

n W

ell I

IDA

- Dril

le d a

nd Ab

ando

ned

Cum

- Cu

mu l

ativ

e

(nit

Pres

- In

itial Pres

sure

42497016061

I424

9701

808

CO O CO

n W N v 42

4970

1606

42

4970

1606

1 42

4970

1606

'Nom

enc l

atur

e I

IA -

Aban

doned

IP

• Pr

oduc

ing

'Oth

ers

I

31

1,050 900

1,040 8,000 8,000

ft ft ft ft/s ft/s

Table 5. Velocity checkshot data.

Vibroseis Velocity Survey in Billie Yates 18D Well

Billie Yates 18D

Well location: (crossline, inline) 152, 112 Well location: (X, Y) 1867147, 557108

Kelly bushing elevation above mean sea level (MSL) Seismic reference datum (SRD) elevation above MSL Ground level elevation above MSL Velocity of medium from source -> surface sensor Velocity of medium from source -> SRD

Source Position Table

Source distance from wellhead Source elevation above MSL Source azimuth from north

356 ft 1,051 ft

166 degrees

Velocity Survey Data

Depth level

Depth (KB, ft)

Vertical depth

from SRD (ft)

Measured one-way time (ms)

Vertical one-way time (ms)

from source

Vertical one-way time (ms) from SRD

1 1,000 850 123.0 115.9 97.0 2 2,000 1,850 212.8 209.5 190.6 3 2,500 2,350 258.2 255.6 236.7 4 3,000 2,850 300.9 298.8 279.9 5 3,500 3,350 342.5 340.7 321.9 6 4,000 3,850 385.3 383.8 364.9 7 4,500 4,350 426.2 424.9 406.0 8 5,000 4,850 467.9 466.7 447.8 9 5,500 5,350 509.3 508.2 489.4

10 5,700 5,550 524.7 523.7 504.8

Dynamite Velocity Survey in Billie Yates 18D Well

Source Position Table

Source distance from wellhead

435 ft Source elevation above MSL

1,040 ft

Source azimuth from north

240 degrees

Table 5 (cont.)

Dynamite Velocity Survey in Billie Yates 18D (cont.)

Velocity Survey Data

Depth level

Depth (KB, ft)

Vertical depth

from SRD (ft)

Measured one-way time (ms)

Vertical one-way time (ms)

from source

Vertical one-way time (ms) from SRD

1 1,000 850 117.4 107.3 91.1 2 2,000 1,850 205.2 200.4 184.2

3 2,500 2,350 250.3 246.6 230.3 4 3,000 2,850 291.5 288.5 272.2 5 3,500 3,350 332.7 330.1 313.8 6 4,000 3,850 374.4 372.2 356.0 7 4,500 4,350 414.8 412.9 396.7

8 5,000 4,850 456.2 454.5 438.2

9 5,500 5,350 485.4 493.8 477.6

10 5,723 5,573 514.3 512.8 496.5

Dynamite Checkshot Data

Number of traces

30 Time samples per trace

3,000

Time sample rate

1 ms Trace data format

32-bit IBM floating point, 4 bytes/sample

These are three-component checkshot data There are 10 records, 3 traces per record Trace 1 = horizontal X-component Trace 2 = horizontal Y-component Trace 3 = vertical component

Trace Header Key Values

Bytes 1-4: Reel sequence number Bytes 13-16: Component flag (1 = horizontal X, 2 = horizontal Y, 3 = vertical) Bytes 41-44: Receiver depth (relative to kelly bushing) Bytes 105-108: First break time (ms) (picked by contractor)

Start time (ms): 0

End time: 3,000 Start trace: 1

End trace: 30

Input file: Number samples: 3,000 Format code: Bytes/sample: Float format: Bytes/trace: Sample rate: Length (ms):

1 (4 byte float) 4 IBM floating point 12,000 1 3,000

NOTE: End of file after sequential trace no. 30

33

Acknowledgments This work was funded by the U.S. Department

of Energy (contract no. DE-FG21-88MC25031) and Gas Research Institute (contract no. GRI-5093-212-2630) as a part of the Secondary Gas Recovery project. Additional funding was pro-vided by the State of Texas through the budget of the Bureau of Economic Geology. We thank Arch Petroleum, Enserch, and OXY USA, Inc., for allowing access to the study area and for provid-ing financial and technical support for the data collection and analysis. The 3-D seismic interpretation was done with software provided

by Landmark Graphics Corporation and work-station hardware provided by IBM Corporation. The 3-D seismic data were processed by Trend Technology, Midland, Texas.

Technical editing was by Tucker F. Hentz. Daniel D. Schultz-Ela reviewed the final draft. Figures were drafted by Randy Hitt, Susan Krepps, Joel L. Lardon, and Jana S. Robinson under the direction of Richard L. Dillon. Editing was by Susann Doenges. Word processing was by Susan Lloyd. Typesetting and design were by Margaret L. Evans.

References

Bureau of Economic Geology, 1995, The use of small, directionally focused charges as a 3-D seismic energy source: The University of Texas at Austin, Bureau of Economic Geology, technical summary of research conducted for the Gas Research Institute, U.S. Department of Energy, and State of Texas, GRI-94/0448, 10 p.

Galloway, W. E., 1989, Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, v. 73, no. 2, p. 125-142.

Hardage, B. A., Carr, D. L., Finley, R. J., Lancaster, D. E., Elphick, R. Y., and Ballad, J. R., 1995, Secondary natural gas recovery: targeted applications for infield reserve growth in Midcontinent reservoirs, Boonsville field, Fort Worth Basin, Texas: The

University of Texas at Austin, Bureau of Economic Geology topical report prepared for the Gas Research Institute under contract no. 5093-212-2630 and the U.S. Department of Energy under contract no. DE-FG21-88MC25031, GRI-95 / 0454, two volumes variously paginated.

Lahti, V. R., and Huber, W. E, 1982, The Atoka Group (Pennsylvanian) of the Boonsville field area, North-Central Texas, in Martin, C. A., ed., Petroleum geology of the Fort Worth Basin and Bend Arch area: Dallas Geological Society, p. 377-399.

Thompson, D. M., 1982, Atoka Group (Lower to Middle Pennsylvanian), northern Fort Worth Basin, Texas: terrigenous depositional systems, diagenesis, and reservoir distribution and quality: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 125, 62 p.

34

Appendix

Loading the 3-D Seismic Data

The 3-D seismic data consist of 110 x 110 ft stacking bins. Trace (inline, X) values increase from west to east, and line (crossline, Y) values increase from south to north. The northeast corner of the survey is located at trace 206 and line 201, and the southwest corner is located at trace 74 and line 105. The longitude and latitude values for the four corners of the survey were translated to X and Y values for the North Central Texas Zone (4202) of the U.S. State Plane Coordinate System and the 1927 North American Datum. The following table describes the four corners of the 3-D public seismic data, starting in the southwest corner and going clockwise:

Trace Line Longitude Latitude X Location Y Location

74 105 -97.94162 33.17897 1864886 550461

74 201 -97.94132 33.20800 1865021 561020

206 201 -97.89384 33.20766 1879540 560838

206 105 -97.89416 33.17863 1879406 550279

Data on the Floppy Disks

Two 3.5-inch disks are included in this publication. Each disk contains a self-extracting archive that can be copied to a hard drive and run as an executable file. The executable file for disk 1 is named SGRPUB1.EXE. The executable file for disk 2 is SGRPUB2.EXE. Approximately 12 megabytes of disk space will be used by these two files after they are run. There are 39 *.LAS files, 3 *.SGY files, and 5 *.TXT files on the two disks. The *.LAS files are digitized well log curves in "log ASCII," version 2.0, format for the 38 wells within the seismic grid. These log curves have been digitized at a depth increment of 0.5 ft, or 0.15 m. The *.SGY files are a far-offset VSP image, a zero-offset VSP image, and dynamite checkshot wiggle trace data written in SEGY format. The *.TXT files are text files describing the far-offset VSP image, the zero-offset VSP image, the checkshot data, the well log data base, and the engineering data base and are in tab-delimited text format.

35

Completion, Production, and Petrophysical Information

Table 4 contains completion, production, and petrophysical information on the Boonsville wells provided as part of this public data set. The following descriptions explain the data contained in the various columns of the spreadsheet.

API Number

The API well identification number assigned to the well is recorded in this field.

Operator

The operator of each well is recorded in this field.

Well Name

The name and number of each well is recorded in this column.

Total Depth (ft)

The total depth (in feet) recorded by the driller for each well is listed in this field.

Top Perfs (ft), Bottom Perfs (ft)

The top and bottom of the perforated interval (in feet) for individual completion zones are recorded in these fields.

Zone (BEG)

The stratigraphic reservoir sequence in which a particular completion occurs is listed in this column. The sequence nomenclature for this project was developed by the Bureau of Economic Geology. Sequences that may be listed in this column include U Caddo (Upper Caddo), L Caddo (Lower Caddo), Davis, Trinity, Bridgeport, U Runaway (Upper Runaway), L Runaway (Lower Runaway), Beans Cr (Beans Creek), 4 Jasper Cr (4th Jasper Creek), U Jasper Cr (Upper Jasper Creek), M Jasper Cr (Middle Jasper Creek), L Jasper Cr (Lower Jasper Creek), and Vineyard.

The terms Caddo, Bend, Caddo/Bend, and Strawn may also appear in this column. If both Upper and Lower Caddo intervals are completed in a well, the Caddo designation is a combination of both completion intervals. This is because production from both Upper and Lower Caddo perforations is usually commingled and cannot be separated into Upper and Lower Caddo completions. Thus, the production information is reported

36

for the combined Caddo interval. Again, the Caddo designation does not indicate a unique or separate completion but rather a combination of Upper and Lower Caddo zones.

Likewise, the term Bend is used to refer to the combination of all completion intervals from the Wizard Wells through the Vineyard. The entire Bend Conglomerate section is considered a common source of supply, and production from multiple completion intervals is often commingled. Thus, the production information is often reported for the combined Bend interval. Again, the Bend designation does not indicate a unique or separate completion but rather a combination of Bend Conglomerate zones.

The term Caddo/Bend is used to summarize production information from all zones, from the Upper Caddo through the Vineyard, that may have completed in a particular well. Where possible, the combined production from all zones that have produced in a particular well is summarized here. In some wells, production from all zones from the Upper Caddo through the Vineyard may now be commingled.

The Strawn is the interval immediately above the Bend Conglomerate section, and information about the Strawn is not a part of this public data base. However, some Bend Conglomerate wells are later recompleted in the shallower Strawn. Whenever such a recompletion occurred for any of the 38 wells described in table 4, the production data from the Strawn appear in the table.

Initial or Recomplete

This field designates whether a particular perforation interval was part of the initial well completion or whether these perforations were added at some later date as part of a recompletion operation.

Type (Oil/Gas?)

This field designates whether a particular perforation interval was primarily oil or gas productive. The Caddo completion intervals are primarily oil productive throughout the project area. The Wizard Wells throughVineyard sequences are usually gas productive, although some of these intervals produce oil in the eastern portion of the project area, as seen in this data set.

Date of First Production

The date of first production on a sustained basis from a particular completion interval is recorded here. For zones that were tested, but never produced (NP), the date entered in this field is the date these intervals were perforated and tested.

Cum Gas (MMscf)

This is the cumulative gas production from a particular interval or group of commingled intervals in MMscf (million standard cubic feet).

37

Cum Oil (MSTB)

This is the cumulative oil production from a particular interval or group of commingled intervals in MSTB (thousand stock-tank barrels).

Cum Water (Mbbl)

This is the cumulative water production from a particular interval or group of commingled intervals in Mbbl (thousand barrels).

Cum As of Date

This is the date that corresponds to the cumulative gas, oil, and water production figures in the three previous fields. This date may vary from well to well and even among particular completion intervals within a given well. Often production from a completion zone that produced separately for several years will subsequently be commingled with production from zones added on recompletion. When possible, production attributed solely to this interval prior to commingling will be reflected in the three previous fields, and the last date of isolated production prior to commingling will be recorded here.

Current Status

This field designates the current status of a completion interval. It may be actively producing (P) isolated from other intervals, producing commingled (CO) with other intervals, shut in and temporarily abandoned (SI/TA), or abandoned (A) and no longer producing. Other designations include never produced (NP) for perforations that were tested but subsequently not produced, water injection well (WIW) for several Caddo wells that have been converted to water injection as part of a waterflood project, and drilled and abandoned (DA) for wells in the project area that were drilled and abandoned immediately as "dry" holes at the time of drilling, despite testing hydrocarbon potential in one or more of these wells.

Init. Pres. (psia)

This field designates the best estimate of initial reservoir pressure in psia (pounds per square inch, absolute), when available, for a particular completion interval. Initial pressure data are scarce throughout the project area and come from sources including drillstem tests, repeat formation tests, pressure buildup tests, and public data sources. When possible, initial pressure estimates are provided for individual completion intervals. Sometimes, initial pressure is measured only for a group of commingled intervals; in these cases, the initial pressure will be recorded in the Bend or Caddo summary fields.

38

Field

Most of the gas production from these wells is part of the Boonsville Bend Conglomerate Gas (BBCG) field. This was the primary field of interest in the project area. The oil production and some of the gas production are part of several different field designations, however, and these are recorded here.

Zone (BEG)

This column is repeated here for reference purposes and for ease in viewing the log analysis results presented in the columns to the right. Only the specific completion intervals are listed in this column; there are no summary designations like Caddo, Bend, or Caddo/Bend. The log analysis results in the next five columns to the right were generated by Scientific Software-Intercomp, Inc. (SSI), and reflect SSI's final summations.

Gross Thick (ft)

This is the gross thickness (in feet) of the particular genetic stratigraphic sequence designated by the Bureau of Economic Geology.

When a dash (-) appears in this column or any of the next four columns, it means that the values for that sequence are given in another line. For example, there may be two Trinity intervals completed, but the log analysis results for the Trinity sequence as a whole are summarized the first time a Trinity completion is indicated in a particular well.

Net Pay (ft)

This is the net pay thickness (in feet) computed from SSI's log analysis for the particular reservoir sequence. To compute net pay, a porosity cutoff of 4 percent, a water saturation cutoff of 60 percent, and a shale volume cutoff of 50 percent were used.

Porosity (%)

This is the porosity (in percent) computed from SSI's log analysis for the particular reservoir sequence.

Water Sat (%)

This is the water saturation (in percent) computed from SSI's log analysis for the particular reservoir sequence.

39

Net Hydro (ft)

This is the total net hydrocarbon feet computed from SSI's log analysis for the particular reservoir sequence. This value is calculated by multiplying net pay times porosity times (1 minus the water saturation), with both porosity and water saturation expressed as decimal fractions.

Remarks

This field includes any relevant comments about a particular completion interval or intervals.

40