3872 ewahyuni 301 asmm english

77
09/02/2014 1 Mekanika Teknik Terapan Mekanika Teknik Terapan RC09 1341 RC09 1341 Endah Wahyuni ST (ITS) M Sc (UMIST) Ph D (UM) Endah Wahyuni, S.T . (ITS), M.Sc. (UMIST), Ph.D (UM) [email protected] , [email protected] , @end222 1 Copyright: Dr Endah Wahyuni Syllabus Syllabus Review of Matrices Structural Analysis of Matrix Methods (ASMM) Balok Menerus Portal Transformasi Sumbu Koordinat Rangka Batang Rangka Batang Introduction of Finite Element Method Application using SAP2000 2 Copyright: Dr Endah Wahyuni

Upload: cok-nanda

Post on 10-Nov-2015

252 views

Category:

Documents


4 download

DESCRIPTION

silahkan download

TRANSCRIPT

  • 09/02/2014

    1

    Mekanika Teknik TerapanMekanika Teknik TerapanRC09 1341RC09 1341

    Endah Wahyuni S T (ITS) M Sc (UMIST) Ph D (UM)Endah Wahyuni, S.T. (ITS), M.Sc. (UMIST), Ph.D (UM)[email protected], [email protected], @end222

    1Copyright: Dr Endah Wahyuni

    SyllabusSyllabus Review of Matrices Structural Analysis of Matrix Methods y

    (ASMM) Balok Menerus Portal Transformasi Sumbu Koordinat Rangka Batang Rangka Batang

    Introduction of Finite Element Method Application using SAP2000

    2Copyright: Dr Endah Wahyuni

  • 09/02/2014

    2

    MaterialsMaterials

    Books Web personal dosen: Web personal dosen:

    http://personal.its.ac.id/material.php?userid=ewahyuni

    Online courses

    Copyright: Dr Endah Wahyuni 3

    Books:Books: Structural Analysis: Using Classical and Matrix

    Methods; Jack C McCormac; Wiley; 4 edition,London 2006

    The image part with relationship ID rId2 was not found in the file.

    Structural AnalysisRC Coates, MG Coutie, FK KongChapman & Hall, London, 1997

    Computer Analysis of Structuresp yS.M. HolzerElsevier Science Publishing Co. Inc, London, 1985

    SAP2000 Manual4Copyright: Dr Endah Wahyuni

  • 09/02/2014

    3

    EvaluationEvaluation

    HW = 10% ETS = 25% ETS = 25% EAS = 25% Project = 20% Quiz = 20%

    Note: Percentage can be changed according to the results of student assessments

    Copyright: Dr Endah Wahyuni 5

    Review of MatricesReview of Matrices

    Definition: A matrix is an array of ordered numbers. A general matrix consists of mn numbers arranged in m general matrix consists of mn numbers arranged in m rows and n columns, giving the following array:

    mnmm

    n

    n

    a...aa......

    a...aaa...aa

    A

    21

    22221

    11211

    It is usual to use a generic symbol for the element, the lower case letter corresponding to the capital used for the matrix

    6Copyright: Dr Endah Wahyuni

  • 09/02/2014

    4

    Matrix AdditionMatrix Addition

    Two matrices A and B can be added if they have the same number of rows (m) and have the same number of rows (m) and columns (n)

    It is possible to be able to write:Ax + Bx = (A+B) x

    If C = A+B, then crs= ars + brs

    Subtraction is treated as negative addition

    7Copyright: Dr Endah Wahyuni

    Multiplication by scalarMultiplication by scalar

    To multiply a matrix by a scalar quantity, each element of the matrix is to be multiplied by element of the matrix is to be multiplied by the scalar, that is

    k [ars] = [(k ars)]

    8Copyright: Dr Endah Wahyuni

  • 09/02/2014

    5

    Special matricesSpecial matrices Row Matrix

    If the matrix consists only of elements in a single row. For example, a 1 x n row matrix is written as:

    A=[a1 a2 ... an][ 1 2 n] Column Matrix

    A matrix with elements stacked in a single column. The m x 1 column matrix is

    aa

    A 21

    Square MatrixWhen the number of row equals the number of columns

    9

    ma

    .

    Copyright: Dr Endah Wahyuni

    Unit (or identity ) matrixIs a square matrix, where all elements are zero except on the principal diagonal and there they are units.It is readily verified that

    A I = A, and IA = AandI . I = I2 = IConsequently for n any positive integerConsequently, for n any positive integer

    In = I

    10Copyright: Dr Endah Wahyuni

  • 09/02/2014

    6

    Diagonal Matrix,of which unit matrices are particular cases, have important properties. For instance:

    bb00

    wkwhwgvfvevducubua

    khgfedcba

    wv

    u

    000000

    kwhvgufwevducwbvau

    wv

    u

    khgfedcba

    000000

    11Copyright: Dr Endah Wahyuni

    A transpose matrix A Matrix may be transposed by interchange its

    rows and columns. The transpose of the matrix A is written as ATA is written as AT

    nmmm

    n

    n

    T

    mnmm

    n

    n

    aaa

    aaaaaa

    A

    aaa

    aaaaaa

    A

    .........

    ...

    ...

    .........

    ...

    ...

    21

    22212

    12111

    21

    22221

    11211

    A symmetric matrix We can verify that AT = A

    12Copyright: Dr Endah Wahyuni

  • 09/02/2014

    7

    Inverse Matrix The inverse of matrix A is denoted by A-1. Assume that the inverse exists, then the elements of

    A-1 are such that A-1A=I and AA-1=I

    Determinant of a matrix A determinant is a square array of numbers

    enclosed within vertical bars

    naaa ... 11211

    nmnn

    n

    aaa

    aaaA

    .......

    21

    22221

    13Copyright: Dr Endah Wahyuni

    Find the determinant then the inverse matrices for the matrices below:

    53

    A

    121212321

    B

    21A

    14Copyright: Dr Endah Wahyuni

  • 09/02/2014

    8

    Structural Analysis of Matrix MethodsStructural Analysis of Matrix Methods

    Matrix Method of Structural Analysis is a method to analyze the structure with the help of the matrix, which consists of: tiff t i di l t t i d f t i b stiffness matrix, displacement matrix, and force matrix, by

    using the relationship:{ P } = [ K ] { U }

    dimana :{ P } = force matrix[ K ] = stiffness matriks{ U } = displacement matriks{ U } displacement matriks

    One of the ways used to solve the above equation, namely by using the stiffness method.

    15Copyright: Dr Endah Wahyuni

    On the stiffness method, the unknown variable is the amount of: deformation node of structure (rotations and deflection) is certain / sure. Thus the number of variables in the stiffness method similar to the degrees of uncertainty of kinematics of structure.

    The stiffness method is developed from the node point equilibrium equations written in: "Stiffness Coefficients" and "Displacement of nodes that are Coefficients and Displacement of nodes that are not known.

    16Copyright: Dr Endah Wahyuni

  • 09/02/2014

    9

    Types of ElementTypes of Element Spring elementsTruss elements (plane & 3D) Beam elements (2D &3D) Plane Frame Grid elements Plane Stress Plane StrainAxisymmetrics elementsAxisymmetrics elements Plate Shell

    17Copyright: Dr Endah Wahyuni

    Degrees of Freedom (DOF)Degrees of Freedom (DOF) Degrees of freedom which is owned by a

    structure. Each type of element will have a certain amount

    and kind of freedom. Commonly referred to as 'activity' of the joint

    18Copyright: Dr Endah Wahyuni

  • 09/02/2014

    10

    To be able to form a structure stiffness matrix, it is To be able to form a structure stiffness matrix, it is necessary to determine the 'active' ends of the elements.necessary to determine the 'active' ends of the elements.

    Note : 0 = not active; 1, 2, 3, ., =active

    Example

    3

    21

    2

    1

    0

    DOF : 2

    0

    00

    1

    0

    2

    19Copyright: Dr Endah Wahyuni

    20Copyright: Dr Endah Wahyuni

  • 09/02/2014

    11

    21Copyright: Dr Endah Wahyuni

    Metode Kekakuan Langsung Metode Kekakuan Langsung (Direct Stiffness Method)(Direct Stiffness Method)

    matriks kekakuan

    U1, P1 U3, P3

    { P } [ K ] { U } { P } = [ K ] { U }

    U2, P2 U4, P4 gaya perpindahan

    P1 K11 K12 K13 K14 U1

    P2 K21 K22 K23 K24 U2

    1 1 2

    =P3 K31 K32 K33 K34 U3

    P4 K41 K42 K43 K44 U4

    =

    22Copyright: Dr Endah Wahyuni

  • 09/02/2014

    12

    P1 = K11 . U1 + K12 . U2 + K13 . U3 + K14 . U4Kesetimbangan gaya di arah U1

    P2 = K21 . U1 + K22 . U2 + K23 . U3 + K24 . U4 Kesetimbangan gaya di arah U2

    P3 = K31 . U1 + K32 . U2 + K33 . U3 + K34 . U4 Kesetimbangan gaya di arah U3

    P4 = K41 . U1 + K42 . U2 + K43 . U3 + K44 . U4 Kesetimbangan gaya di arah U4

    23Copyright: Dr Endah Wahyuni

    Jika U1 = 1 dan U2 = U3 = U4 = 0 , maka :P1 = K11 ; P2 = K21 ; P3 = K31 ; P4 = K41 Lihat Gambar (a)

    Jika U2 = 1 dan U2 = U3 = U4 = 0 , maka :P1 = K12 ; P2 = K22 ; P3 = K32 ; P4 = K42

    Lihat Gambar (b)

    Jika U3 = 1 dan U2 = U3 = U4 = 0 , maka :P1 = K13 ; P2 = K23 ; P3 = K33 ; P4 = K43

    Lihat Gambar (c)

    Jika U4 = 1 dan U2 = U3 = U4 = 0 , maka :P1 = K14 ; P2 = K24 ; P3 = K34 ; P4 = K44

    Lihat Gambar (d)24Copyright: Dr Endah Wahyuni

  • 09/02/2014

    13

    U1 = 1 P1 = K11P2 = K21P3 = K31P4 = K41

    U 1 P1 K12U2 = 1 P1 = K12P2 = K22P3 = K32P4 = K42

    U3 = 1 P1 = K13P2 = K23P3 = K33P3 K33P4 = K43

    U4 = 1 P1 = K14P2 = K24P3 = K34P4 = K44

    25Copyright: Dr Endah Wahyuni

    Copyright: Dr Endah Wahyuni 26

  • 09/02/2014

    14

    Copyright: Dr Endah Wahyuni 27

    Matrix Matrix kekakuankekakuan::

    K11 K12 K13 K14

    K21 K22 K23 K24

    K31 K32 K33 K34

    K K K K

    K =

    K41 K42 K43 K44

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12

    LEI 2

    LEI 6-

    LEI 4

    LEI 6

    22 K =

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 -

    Matriks Kekakuan LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22

    Gambar (a) (b) (c) (d) 28Copyright: Dr Endah Wahyuni

  • 09/02/2014

    15

    Jika pada batang bekerja gaya aksial :

    L, EA

    U1,P1 U2,P2

    P1+A=0 P2-A=0 =E(u2 u1)/LP1+EA (u2-u1)/L=0

    P2-EA (u2-u1)/L=0

    K11 = LEA K21 = L

    EA

    U1= 1

    K12 = - LEA U2= 1

    K22 = L

    EA

    U2, P2 U5, P5

    U1, P1 U4, P4

    U3, P3 U6, P6

    1 1 2

    29Copyright: Dr Endah Wahyuni

    1111

    ////

    2

    1

    2

    1

    LEAK

    PP

    uu

    LEALEALEALEA

    For beam with 6 dofFor beam with 6 dof

    1 2

    2

    1

    3

    45

    6

    Copyright: Dr Endah Wahyuni 30

  • 09/02/2014

    16

    Stiffness Matrix with Axial LoadsStiffness Matrix with Axial LoadsMatriks kekakuan elemen dengan melibatkan gaya aksial :

    00EA-00EA

    6 x 6

    K =

    2323 LEI 6

    LEI 12- 0

    LEI 6

    LEI 12 0

    LEI 2

    LEI 6- 0

    LEI 4

    LEI 6 0 22

    0 0 L

    0 0 L

    0 0 L

    EA- 0 0 L

    EA

    2323 LEI 6 -

    LEI 12 0

    LEI 6

    LEI 12 0 -

    LEI 4

    LEI 6- 0

    LEI 2

    LEI 6 0 22

    LL

    31Copyright: Dr Endah Wahyuni

    Procedure to solve a problemProcedure to solve a problem

    Calculate Structure DOF Create the stiffness matrix of element [ki] Create the objective matrix Create the stiffness matrix of structure [Ks]

    Where [Ks]=[ki] Calculate the value of action received by the

    structure {Ps} Calculate {Us}=[Ks]-1 {Ps} For each element, specify {ui} Forces of element: {pi}=[ki]{ui}+{freaksi}

    32Copyright: Dr Endah Wahyuni

  • 09/02/2014

    17

    ExampleExample

    q

    Sebuah balok statis tak tentu seperti pada gambar

    1 1 2 2 3 L, EI L, EI

    Menentukan keaktifan ujung-ujung elemen

    Menentukan matriks tujuan DOF : 2 2 rotasi

    1 2 3

    0

    1 2

    0

    0

    0

    1 2

    0 0 00

    Matriks kekakuan struktur

    [ Ks ] 2 x 2

    Membuat matrik kekakuan elemen : [ Ks ] = [ K1 ] + [ K2 ]

    1 2 3

    0 0 0

    1 2 0 1 1 2

    0

    33Copyright: Dr Endah Wahyuni

    Membuat matrik kekakuan elemen :

    Elemen 1

    0 0 0 1

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12 0

    LEI 2

    LEI 6-

    LEI 4

    LEI 6

    22 0 LLLL

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 - 0

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22 1

    K1 =

    Matriks Tujuan { T1 } = { 0 0 0 1 }T

    [ K1 ] =

    0 LEI 4

    2 x 2 0 0

    34Copyright: Dr Endah Wahyuni

  • 09/02/2014

    18

    Elemen 2

    0 1 0 2

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12 0

    LEI 2

    LEI 6-

    LEI 4

    LEI 6

    22 1 K2 =

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 - 0

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22 2

    Matriks Tujuan { T2 } = { 0 1 0 2 }T

    K2

    2 x 2

    [ K2 ] =

    LEI 4

    LEI 2

    LEI 2

    LEI 4

    35Copyright: Dr Endah Wahyuni

    = + =

    Matriks Kekakuan Global Struktur

    [ Ks ] = [ K1 ] + [ K2 ]

    [ Ks ]LEI 2

    LEI 40

    LEI 4

    LEI 2

    LEI 8

    0 0

    [ Ks ] 2 x 2

    LEI 4

    LEI 2

    LEI 4

    LEI 2

    Untuk mendapatkan deformasi ujung-ujung aktif struktur, maka digunakan

    hubungan :

    { Ps } = [ Ks ] { Us } { Us } = [ Ks ]-1 { Ps }

    dimana :

    Us = deformasi ujung-ujung aktif

    Ks = kekakuan struktur

    Ps = gaya-gaya pada ujung aktif elemen akibat beban luar (aksi)

    36Copyright: Dr Endah Wahyuni

  • 09/02/2014

    19

    q

    0 0

    Untuk contoh di atas, maka :

    Ps =

    2L q 121 2L q

    121

    2L q 121

    2Lq1

    Menghitung invers matrik kekakuan global [ Ks ]-1

    [ Ks ] =

    [ K ] 12- 4 L1 2- 4 L

    LEI 4

    LEI 2

    LEI 2

    LEI 8

    L q 12

    [ Ks ]-1 = 8 2-

    EIL

    2 . 2 - 4 . 81

    =

    8 2-

    EI 28L

    Jadi : { Us } = [ Ks ]-1 { Ps }

    Us = 8 2-2- 4

    EI 28

    L

    2L q 121

    2L q 121

    37Copyright: Dr Endah Wahyuni

    Us = EI 28

    L

    Us =

    22 L q 61 - L q

    31

    22 L q 64 L q

    61

    EIL q

    1683 3 Rotasi di joint 2

    U11U12 U13 U14

    0 0 0

    Us

    Deformasi untuk masing-masing elemen

    Elemen 1 : U1 = =

    EIL q

    1685 3 Rotasi di joint 3

    EIL q

    1683 3

    U21 U22 U23 U24

    0 0

    Elemen 2 : U2 = =

    EIL q

    1683 3

    EIL q

    1685 3

    38Copyright: Dr Endah Wahyuni

  • 09/02/2014

    20

    q

    0 0

    Reaksi akibat beban luar :

    2L q

    1212L q

    121

    0 0 0

    PR2 = PR1 =

    1212

    2L q

    2L q

    2L q 121

    2L q

    2L q

    0

    2L q 1212

    39Copyright: Dr Endah Wahyuni

    0 0

    0

    0

    Gaya akhir elemen :

    Elemen 1 : { P1 } = [ K1 ] {U1}+ { PR1 }

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12

    EI2EI6EI4EI6 0 0

    0 0 0

    P1 = +

    LEI2

    LEI6-

    LEI 4

    LEI 6

    22

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 -

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22 EIL q

    1683 3

    L 6 3

    P1 = =

    2L q

    564

    2L q 562

    L q 56

    L q 56

    6

    2L q 282

    2L q 281

    L q 283

    L q 28

    3

    40Copyright: Dr Endah Wahyuni

  • 09/02/2014

    21

    0

    Elemen 2 : { P2 } = [ K2 ]{U2} + { PR2 }

    P2 = +

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12

    LEI 2

    LEI 6-

    LEI 4

    LEI 6

    22

    EI6EI12EI6EI12

    EIL q

    1683 3 2L q

    121

    2L q

    Lq0 P2 = +

    2323 LEI6 -

    LEI12

    LEI 6

    LEI 12 -

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22 EIL q

    1685 3

    2L q 564

    L q 56

    32

    2L q 282

    L q 28

    16

    2L q 121

    2Lq

    0 0

    P2 = =

    L q 56

    2428

    L q 28

    12

    41Copyright: Dr Endah Wahyuni

    q 0

    Free Body Diagram :

    2L q 2822L q

    281

    L q 283

    2L q 282

    L q 2816 L q

    283 L q

    2812

    - -+

    Menggambar gaya-gaya dalam :

    Bidang D :

    L q

    283 L q

    283

    L q 2816

    L q 2812

    -

    + +

    Bidang M :

    2L q 282

    2L q 281

    42Copyright: Dr Endah Wahyuni

  • 09/02/2014

    22

    Example 2Example 2

    43Copyright: Dr Endah Wahyuni

    44Copyright: Dr Endah Wahyuni

  • 09/02/2014

    23

    45Copyright: Dr Endah Wahyuni

    q 0

    Free Body Diagram :

    2L q 2822L q

    281

    L q 283

    2L q 282

    L q 2816 L q

    283 L q

    2812

    - -+

    Menggambar gaya-gaya dalam :

    Bidang D :

    L q

    283 L q

    283

    L q 2816

    L q 2812

    -

    + +

    Bidang M :

    2L q 282

    2L q 281

    46Copyright: Dr Endah Wahyuni

  • 09/02/2014

    24

    Contoh 2Contoh 2

    47Copyright: Dr Endah Wahyuni

    48Copyright: Dr Endah Wahyuni

  • 09/02/2014

    25

    49Copyright: Dr Endah Wahyuni

    50Copyright: Dr Endah Wahyuni

  • 09/02/2014

    26

    Example 4Example 4

    51Copyright: Dr Endah Wahyuni

    52Copyright: Dr Endah Wahyuni

  • 09/02/2014

    27

    53Copyright: Dr Endah Wahyuni

    54Copyright: Dr Endah Wahyuni

  • 09/02/2014

    28

    55Copyright: Dr Endah Wahyuni

    Portal 2DPortal 2D

    B C P

    EI

    B C

    2

    Sebuah portal statis tak tentu seperti pada gambar

    EI L

    L/2 L/2

    A A

    1 DOF = 2

    0

    1 1 2

    0

    Matriks kekakuan struktur

    [ Ks ] 2 x 2

    [ Ks ] = [ K1 ] + [ K2 ]

    Deformasi aksial diabaikan

    56Copyright: Dr Endah Wahyuni

  • 09/02/2014

    29

    Elemen 1

    0 1

    0

    2 x 2 1

    Matriks Tujuan { T1 } = { 0 1 }T

    K1 = LEI 2

    LEI 4

    LEI 4

    LEI 2

    [ K1 ] = 0 0

    0

    2 x 2

    Elemen 2

    1 2

    1

    2

    LEI 4

    K2 = LEI 2

    LEI 4

    EI 4EI 2 2 x 2 2

    Matriks Tujuan { T2 } = { 1 2 }T

    2 x 2

    [ K2 ] =

    LEI 4

    LEI 2

    LEI 2

    LEI 4

    L

    L

    57Copyright: Dr Endah Wahyuni

    = +

    0

    =

    Matriks Kekakuan Global Struktur

    [ Ks ] = [ K1 ] + [ K2 ]

    [ Ks ]LEI 2

    LEI 4

    LEI 2

    LEI 8

    LEI 4

    0 0

    [ Ks ] 2 x 2

    Untuk mendapatkan deformasi ujung-ujung aktif struktur, maka digunakan

    hubungan :

    { Ps } = [ Ks ] { Us } { Us } = [ Ks ]-1 { Ps }

    dimana :

    LEI 4

    LEI 2

    LEI 4

    LEI 2

    dimana :

    Us = deformasi ujung-ujung aktif

    Ks = kekakuan struktur

    Ps = gaya-gaya pada ujung aktif elemen akibat beban luar (aksi)

    58Copyright: Dr Endah Wahyuni

  • 09/02/2014

    30

    P

    Untuk contoh di atas, maka :

    0 LP1 LP1

    0

    LP8

    LP8

    Ps =

    L P 81

    L P 81

    59Copyright: Dr Endah Wahyuni

    Menghitung invers matrik kekakuan global [ Ks ]-1

    [ Ks ] =

    LEI4

    LEI2

    LEI2

    LEI8

    [ Ks ]-1 = 82-2-4

    EIL

    2.2-4.81

    = 82-2-4

    EI28L

    Jadi : { Us } = [ Ks ]-1 { Ps }

    LL

    Us = 82-2-4

    EI28L

    LP8

    1

    LP81

    60Copyright: Dr Endah Wahyuni

  • 09/02/2014

    31

    U11 U12

    0

    Deformasi untuk masing-masing elemen

    Elemen 1 : U1 = =

    L P32

    Jadi : { Us } = [ Ks ]-1 { Ps }

    Us = 8 2-2- 4

    EI 28

    L

    Us = EI 28

    L

    L P 81

    L P 81

    22 L q 61 - L q

    31

    22 L q 64 L q

    61

    LP3 2

    1

    U21 U22

    Elemen 2 : U2 = =

    EI

    112

    EIL P

    1123 2

    EIL P

    1125 2

    Us =

    EIL P

    1123

    EIL P

    1125 2

    Rotasi di joint B

    Rotasi di joint C

    61Copyright: Dr Endah Wahyuni

    P Reaksi akibat beban luar :

    0

    L P 81L P

    81

    0

    0

    0

    0

    P1 = +

    Gaya akhir elemen :

    Elemen 1 : { P1 } = [ K1 ] + { PR1 }

    EIL P

    1123 2

    LEI 2

    LEI 4

    LEI 4

    LEI 2

    P1 = Hasil perhitungan hanya momen saja

    L P

    566

    L P 563

    62Copyright: Dr Endah Wahyuni

  • 09/02/2014

    32

    P2 = +

    Elemen 2 : { P2 } = [ K2 ] + { PR2 }

    2 1

    L P 81

    EIL P

    1123 2

    LEI 2

    LEI 4

    P2

    Hasil perhitungan

    EILP

    1125 2 L P

    81

    LEI4

    LEI 2

    2L q 566 2L q

    283

    P2 = =

    0 0

    Hasil perhitungan hanya momen saja

    56 28

    63Copyright: Dr Endah Wahyuni

    P 0

    Dihitung lagi

    Free Body Diagram :

    P 569

    L P 566

    P 2817 P

    2811

    P 569

    P 569

    P 2817

    L P 566

    Dihitung lagi

    P 569

    P 2817

    L P 563

    Bidang M :

    -

    L P 566

    Bidang D :

    Bidang N :

    -

    + P 2817

    -

    P 569

    P 2811

    P

    - +

    L P 563

    L P 5611

    +

    P 2817

    -

    P 569-

    64Copyright: Dr Endah Wahyuni

  • 09/02/2014

    33

    Contoh 2Contoh 2

    B C P

    EI

    EI L

    B C

    1

    2

    DOF = 3

    4 1 2

    3

    L/2 L/2

    A A

    1 DOF = 3

    2

    1

    B C

    2 2 2 3

    1

    A

    1 DOF = 3

    0

    0

    Matriks kekakuan struktur[ Ks ] 3 x 3[ Ks ] = [ K1 ] + [ K2 ]

    65Copyright: Dr Endah Wahyuni

    Elemen 1

    0 0 1 2

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12 0

    LEI 2

    LEI 6-

    LEI 4

    LEI 6

    22 0 LLLL

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 - 1

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22 2

    Matriks Tujuan { T1 } = { 0 0 1 2 }T

    K1 =

    [ K1 ] =

    2 x 2

    23 LEI 6-

    LEI 12

    LEI 4

    LEI 6- 2

    66Copyright: Dr Endah Wahyuni

  • 09/02/2014

    34

    Elemen 2

    2 3

    2

    2 x 2 3 K2 =

    LEI 2

    LEI 4

    LEI 4

    LEI 2

    Matriks Tujuan { T2 } = { 2 3 }T

    [ K2 ] = EI 4EI 2LEI 2

    LEI 4

    LL

    2 x 2

    Matriks Kekakuan Global Struktur

    [ Ks ] = [ K1 ] + [ K2 ]

    L

    L

    67Copyright: Dr Endah Wahyuni

    = + =

    1 2 2 3

    [ Ks ] 3 x 3

    LEI 4

    LEI 2

    LEI 2

    LEI 4

    LEI 2

    LEI 8

    LEI 62

    0 LEI 6-

    LEI 12

    2323 LEI 6-

    LEI 12

    LEI 4

    LEI 6- 2

    LEI 4

    LEI 2 0

    0

    Ps = L P 81

    L P 81

    68Copyright: Dr Endah Wahyuni

  • 09/02/2014

    35

    Menghitung invers matrik kekakuan global [ Ks ]-1

    [ Ks ]-1 =

    EIL 12 -

    EIL 24

    EIL 28 223

    EIL 24 -

    EIL 48

    EIL 24 2

    EI60L

    EIL 24-

    EIL 12 2

    Jadi : { Us } = [ Ks ]-1 { Ps }

    Us =

    L P 81

    L P 81

    EIEIEI

    EIL 12 -

    EIL 24

    EIL 28 223

    EIL 24 -

    EIL 48

    EIL 24 2

    60LL 24L 12 2

    0

    Us =

    8

    EIL P

    1283 3

    EIL P

    12810 2 Rotasi di joint B

    Rotasi di joint C

    EI

    EI-

    EI

    EIL P

    1287 2

    Dilatasi di joint B

    69Copyright: Dr Endah Wahyuni

    U11

    2

    0

    Deformasi untuk masing-masing elemen

    U12 U13 U14

    0

    Elemen 1 : U1 =

    EIL P

    1283 3

    EIL P

    1286 2

    U21 U22

    Elemen 2 : U2 = =

    EIL P

    1286 2

    EIL P

    1287 2

    70Copyright: Dr Endah Wahyuni

  • 09/02/2014

    36

    0 0

    0 0

    Gaya akhir elemen :

    Elemen 1 : { P1 } = [ K1 ] + { PR1 }

    2323 LEI 6

    LEI 12-

    LEI 6

    LEI 12

    EI2EI6EI4EI6 0

    +

    0 0 0

    0

    P1 = LEI2

    LEI6-

    LEI 4

    LEI 6

    22

    2323 LEI 6 -

    LEI 12

    LEI 6

    LEI 12 -

    LEI 4

    LEI 6-

    LEI 2

    LEI 6

    22

    EIL P

    1283 3

    EIL P

    1286 2

    0

    0

    P1 =

    L P 643

    L P 643

    71Copyright: Dr Endah Wahyuni

    Elemen 2 : { P2 } = [ K2 ] + { PR2 }

    L P 81

    EIL P

    1286 2

    LEI 2

    LEI 4

    P2 = +

    P2 = = Hasil perhitungan hanya momen saja

    EIL P

    1287 2 L P

    81

    LEI 4

    LEI 2

    L P 128

    6 2L q 643

    0 0

    72Copyright: Dr Endah Wahyuni

  • 09/02/2014

    37

    P 0

    Dihitung lagi

    Free Body Diagram :

    L P 643

    P35 P29

    P 6435

    L P 643

    Dihitung lagi

    P64

    P64

    L P 643

    -+

    Bidang M :

    L P 643

    L P 12829

    P

    6435

    -

    128

    L P 643

    73Copyright: Dr Endah Wahyuni

    -

    + Bidang D :

    P 6435

    P 6429

    P

    Bidang N :

    -

    P 6435

    74Copyright: Dr Endah Wahyuni

  • 09/02/2014

    38

    Deformasi aksial diabaikan

    75Copyright: Dr Endah Wahyuni

    76Copyright: Dr Endah Wahyuni

  • 09/02/2014

    39

    77Copyright: Dr Endah Wahyuni

    78Copyright: Dr Endah Wahyuni

  • 09/02/2014

    40

    The image part with relationship ID rId2 was not found in the file.

    79Copyright: Dr Endah Wahyuni

    80Copyright: Dr Endah Wahyuni

  • 09/02/2014

    41

    81Copyright: Dr Endah Wahyuni

    Transformation of CoordinatesTransformation of Coordinates2

    2

    1

    1

    U3, P3

    u3, p3 U1, P1

    U2, P2

    u1, p1 u2, p2

    Koordinat Lokal dan Global

    3 3

    u1 u2 u3

    =

    C S 0 -S C 0 0 0 1

    U1 U2 U3

    C = cos S = sin

    82Copyright: Dr Endah Wahyuni

  • 09/02/2014

    42

    C S 0 -S C 0

    C = cos S = sin

    Atau dapat ditulis : u = U Dimana :

    = 0 0 1

    u1 u2 u3

    0 U1 U2 U3 [ ] [ R ] [ U ]

    Untuk transformasi sumbu sebuah titik dengan 6 dof dapat ditulis :

    3 u4 u5 u6

    = 0

    3U4 U5 U6

    [ u ] = [ R ] [ U ] R = matriks rotasi

    83Copyright: Dr Endah Wahyuni

    P1 p1

    Transformasi sumbu juga berlaku untuk gaya :

    p = P P = -1 p -1 = T P = T p

    P2 P3 P4 P5 P6

    =

    0 0

    p2 p3 p4 p5 p6

    [ P ] = [ R ]T [ p ] R = matriks rotasi

    p = k u ; u = R U

    P = RT p P = K U

    K

    P = R p P = K U

    = RT k u K = RT k R

    = RT k R U

    84Copyright: Dr Endah Wahyuni

  • 09/02/2014

    43

    Matriks kekakuan elemen untuk 6 dof :

    2323 LEI 6

    LEI 12- 0

    LEI 6

    LEI 12 0

    0 0 L

    EA- 0 0 L

    EA

    6 x 6

    k = LEI 2

    LEI 6- 0

    LEI 4

    LEI 6 0 22

    2323 LEI 6 -

    LEI 12 0

    LEI 6

    LEI 12 0 -

    4626

    0 0 L

    EA- 0 0 L

    EA

    LEI 4

    LEI6- 0

    LEI2

    LEI6 0 22

    85Copyright: Dr Endah Wahyuni

    0 0 - 0 0 0 12 6L 0 -12 6L 0 6L 4L2 0 -6L 2L2

    - 0 0 0 0 0 -12 -6L 0 12 -6L 0 6L 2L2 0 -6L 4L2

    Dimana :

    k =

    Dimana :

    = =

    [ K ] = [ R ]T [ k ] [ R ]

    LEI 3 I

    LA 2

    86Copyright: Dr Endah Wahyuni

  • 09/02/2014

    44

    C -S 0 S C 0 0

    0 0 - 0 0 0 12 6L 0 -12 6L

    C S 0 S C 0 0

    [K]=[R]T [k][R]

    0 0 1

    C -S 0

    S C 0

    0 0 1

    0

    0 6L 4L2 0 -6L 2L2 - 0 0 0 0 0 -12 -6L 0 12 -6L 0 6L 2L2 0 -6L 4L2

    K = -S C 0 0 0 1

    C S 0

    -S C 0

    0 0 1

    0

    0

    87Copyright: Dr Endah Wahyuni

    g1 g2 g4 -g1 -g2 g4

    g3 g5 -g2 -g3 g5

    g6 -g4 -g5 g7

    g6 g4 g5 g7

    g1 g2 -g4

    g3 -g5 g6

    Dimana :

    K =

    Dimana :

    g1 = ( C2 + 12 S2 ) g5 = 6 L C g2 = C S ( - 12 ) g6 = 4 L2 g3 = ( S2 + 12 C2 ) g7 = 2 L2 g4 = - 6 L S

    88Copyright: Dr Endah Wahyuni

  • 09/02/2014

    45

    Sebuah portal seperti gambar, dengan menggunakan transformasi sumbu Sebuah portal seperti gambar, dengan menggunakan transformasi sumbu hitunglah gayahitunglah gaya--gaya dalam yang bekerjagaya dalam yang bekerja

    L = 10 ft

    1

    1

    E = 30.000 ksi A = 5 in2 I = 50 in4 L = 10 ft

    q = 1,68 k/ft

    L = 10 ft

    M = 14 kft = 168 kin

    2 3 2

    1 0

    0

    0 Sumbu Global

    1 2

    1 3 Sumbu Lokal

    1

    2

    2 3 0

    3

    1 0

    0

    2

    DOF [ Ks ] 3 x 3

    1

    2 2 3

    4

    5 4

    5

    6 6

    1

    3

    2

    2

    89Copyright: Dr Endah Wahyuni

    1 x

    = 270o

    =

    C S 0 -S C 0 =

    0 -1 0 1 0 0

    Matriks transformasi batang :

    Batang 1 : = 270o cos 270o = 0 sin 270o = -1

    2 x

    1 0 0 1 0 0 1

    Batang 2 : = 0o cos 0o = 1 sin 0o = 0

    2 3 x

    x

    = 0o =

    C S 0 -S C 0 0 0 1

    =

    1 0 0 0 1 0 0 0 1

    90Copyright: Dr Endah Wahyuni

  • 09/02/2014

    46

    C S 0 -S C 0 0 0 1

    C S 0

    0

    0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0

    R1 = =

    C S 0

    -S C 0

    0 0 1

    0 0 0 0 1 0 0 0 0 0 0 0 1

    C S 0 -S C 0 0

    1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

    0 0 1

    C S 0

    -S C 0

    0 0 1

    0

    0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

    R2 = =

    91Copyright: Dr Endah Wahyuni

    Matriks kekakuan system struktur

    Elemen 1 :

    1 = 331 12) . 10(

    50 . 30.000 LEI = 0,87

    1 = 5012) . (10 . 5

    ILA 221 = 1.440

    g1 g2 g4 -g1 -g2 g4

    g3 g5 -g2 -g3 g5

    g6 -g4 -g5 g7

    0 0 0

    C = 0 ; S = -1

    { T } = { 0 0 0 1 0 2 }T

    0 0 0 1 0 2

    K1 =

    g1 g2 -g4

    g3 -g5 -g4 g6

    1 0 2

    K1

    92Copyright: Dr Endah Wahyuni

  • 09/02/2014

    47

    g1 -g4 0 -g4 g6 0 0 0 0

    1 2 3

    1 2 3

    K1 =

    10 44 626 4 0

    g1 = ( C2 + 12 S2 ) = 0,87 [ 0 + 12 (-1)2 ] = 10,44 g4 = - 6 L S = -0,87 . 6 . 120 (-1) = 626,4 g6 = 4 L2 = 0,87 . 4 . 1202 = 50.112 Sehingga :

    10,44 -626,4 0 -626,4 50.112 0 0 0 0

    K1 =

    93Copyright: Dr Endah Wahyuni

    Elemen 2 :

    2 = 331 12) . 10(

    50 . 30.000 LEI = 0,87

    2 = 5012) . (10 . 5

    ILA 221 = 1.440

    C = 1 ; S = 0

    { T } = { 1 0 2 0 0 3 }T

    g1 g2 g4 -g1 -g2 g4

    g3 g5 -g2 -g3 g5

    g4 g6 -g4 -g5 g7

    g1 g2 -g4

    g3 -g5

    1 0 2 0 0

    1 0 2 0 0 3

    K2 =

    g4 g7 g6

    3

    g1 g4 g4 g4 g6 g7 g4 g7 g6

    1 2 3

    1 2 3

    K2 =

    94Copyright: Dr Endah Wahyuni

  • 09/02/2014

    48

    g1 = ( C2 + 12 S2 ) = 0,87 [ 1.440 . 12 + 12 (0)2 ] = 1.252,8 g4 = - 6 L S = -0,87 . 6 . 120 (0) = 0 g6 = 4 L2 = 0,87 . 4 . 1202 = 50.112 g7 = 2 L2 = 0,87 . 2 . 1202 = 25.056

    1.252,8 0 0 0 50.112 25.056 0 25.056 50.112

    Sehingga :

    K2 =

    1.263,24 -626,4 0 -626,4 100.224 25.056 0 25.056 50.112

    KS =

    95Copyright: Dr Endah Wahyuni

    q = 0,14 k/in

    168 kin 168 kin 168 kin 0 0

    0

    Matriks beban :

    8,4 8,4

    0 168 0

    1.263,24 -626,4 0 -626 4 100 224 25 056

    - 1 0 168

    PS =

    { Ps } = [ Ks ] { Us } { Us } = [ Ks ]-1 { Ps }

    US = -626,4 100.224 25.056

    0 25.056 50.112

    168 0

    0,00095 0,00192 -0,00096

    Defleksi horizontal di 2 Rotasi di 2 Rotasi di 3

    US

    US =

    96Copyright: Dr Endah Wahyuni

  • 09/02/2014

    49

    u11

    u12 u13

    u14

    0 0 0 0,00095

    =

    0 0 0 0

    Displacement masing-masing batang (koordinat lokal)

    u1 = =

    0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0

    u15

    u16

    0 0,00192

    0,00095 0,00192

    u21

    u22

    0,00095 0

    0,00095

    0

    0 0 0 1 0 0 0 0 0 0 0 1

    1 0 0 0 0 0 0 1 0 0 0 02

    u23

    u24

    u25

    u26

    0,00192 0 0 -0,0096

    =

    0 0,00192 0 0 -0,0096

    u2 = =

    0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

    97Copyright: Dr Endah Wahyuni

    0 1,193 k 47,512 kin

    0 1,193 k 3,959 kft

    Gaya akhir batang :

    Elemen 1 :

    { P1 } = [ k1 ] { u1 } + { 0 }

    0 -1,193 k 95,620 kin

    0 -1,193 k 7,968 kft

    P1 = =

    1,19 k 1,19 k

    Elemen 2 :

    { P2 } = [ k2 ] { u2 } + { Faksi }

    -7,8 k -95,84 kin -1,19 k -9 k 168 kin

    -7,8 k -7,99 kft -1,19 k -9 k 14 kft

    P2 = =

    98Copyright: Dr Endah Wahyuni

  • 09/02/2014

    50

    1

    1,193 k

    0

    3,959

    7,968 kft

    Free body diagram :

    +

    +

    1,193

    9

    q = 1,68 k/ft 14 kft

    7,8 k 9 k

    2 1,19 k 1,19 k

    7,99 kft 1,193 k

    7,968 kft

    3,959

    +

    -1,193

    7,8

    -

    7,9914

    + +

    -- 1,191,19

    99Copyright: Dr Endah Wahyuni

    TRANSFORMASI SUMBU TRANSFORMASI SUMBU PADA BIDANG MIRINGPADA BIDANG MIRINGMEKANIKA TERAPAN

  • 09/02/2014

    51

    CONTOH SOALCONTOH SOAL

    A = 50 cm2

    E = 2,1 . 106 kg/cm2, g I = 2100 cm4

    DOF : 4 [Ks] 4 x 4

    MATRIX TRANSFORMASI MATRIX TRANSFORMASI BATANGBATANG

    = 45C 0 707 Cos = 0.707

    Sin = 0.707

    1 = C S 0-S C 00 0 1

    0.707 0.707 0

    -0.707 0.707 0

    0 0 1

    =

  • 09/02/2014

    52

    MATRIX TRANSFORMASI MATRIX TRANSFORMASI BATANGBATANG

    = 0C 1 Cos = 1

    Sin = 0

    2 = C S 0-S C 00 0 1

    1 0 0

    0 1 0

    0 0 1

    =

    Matrix kekakuan sistem strukturMatrix kekakuan sistem struktur

    Batang 1 0 0 0 1 2 3g1 g2 g4 -g1 -g2 g4 0g1 g2 g4 g1 g2 g4

    g3 g5 -g2 -g3 g5 0

    g6 -g4 -g5 g7 0

    g1 g2 -g4 1

    g2 g3 -g5 2

    -g4 -g5 g6 3

    [K1] =

    [k1] =g1 g2 -g4 0

    g2 g3 -g5 0

    -g4 -g5 g6 0

    0 0 0 0

    = EI/L3 = 5,773 = AL2/I = 4286,44

  • 09/02/2014

    53

    Matrix kekakuan sistem strukturMatrix kekakuan sistem struktur

    g1 = ( C2 + 12 S2 ) C S ( 12 ) [k ] =

    g1 g2 -g4 0

    g2 g3 -g5 0 g2 = C S ( - 12 ) g3 = ( S2 + 12 C2) g4 = - 6 L S g5 = 6 L C g6 = 4 L2

    [k1] = g2 g3 g5-g4 -g5 g6 0

    0 0 0 0

    g6 g7 = 2 L2

    Matrix kekakuan sistem strukturMatrix kekakuan sistem struktur

    Batang 2 1 2 3 0 0 4g1 g2 g4 -g1 -g2 g4 1g1 g2 g4 g1 g2 g4g2 g3 g5 -g2 -g3 g5 2

    g4 g5 g6 -g4 -g5 g7 3

    g1 g2 -g4 0

    g2 g3 -g5 0

    g4 g5 g7 -g4 -g5 g6 4

    [K2] =

    [k2] =g1 g2 g4 g4g2 g3 g5 g5g4 g5 g6 g7g4 g5 g7 g6

    = EI/L3 = 3,528 = AL2/I = 5952,381

  • 09/02/2014

    54

    Matrix kekakuan sistem strukturMatrix kekakuan sistem struktur

    g1 = ( C2 + 12 S2) [k ] =

    g1 g2 g4 g4g2 g3 g5 g5

    g2 = C S ( - 12 ) g3 = ( S2 + 12 C2 g4 = - 6 L S g5 = 6 L C g6 = 4 L2

    [k2] = g2 g3 g5 g5g4 g5 g6 g7g4 g5 g7 g6

    g7 = 2 L2

    Persamaan kesetimbangan Persamaan kesetimbangan {Ps} = [Ks] {Us}{Ps} = [Ks] {Us}

    [ks] = [k1] + [k2] =33403,7 12334,4 103,907 0

    12334,445 12446,036 1,933 105,84

    103 907 1 933 768 526 176 4103,907 1,933 768,526 176,4

    0 105,84 176,4 352,8

    [Ps] 0

    -11,25=

    -5,208

    5,208

  • 09/02/2014

    55

    Jika {Ps} = [Ks] {Us} ; maka {Us} Jika {Ps} = [Ks] {Us} ; maka {Us}

    =33403,7 12334,4 103,907 0

    12334,445 12446,036 1,933 105,84

    103,907 1,933 768,526 176,4

    0

    -11,25

    5 208

    {Us} 103,907 1,933 768,526 176,4

    0 105,84 176,4 352,8

    {Us} =0.00073

    -0.0018

    -5,208

    5,208

    -0.0118

    0.0211

    Displacement tiap batang pada Displacement tiap batang pada sistem koordinat sistem koordinat GLOBALGLOBAL

    U11 0 0

    U12 0 01{U1

    }= U13 = 0 = 0

    U14 Us1 0,00073

    U15 Us2 -0,0018

    U16 Us3 0,0118U21 Us1 0,00073

    U 2 U 2 0 0018U22 Us2 -0,0018

    {U2}

    = U23 = Us3 = 0,0118

    U24 0 0

    U25 0 0

    U26 Us4 0,0211

  • 09/02/2014

    56

    Displacement tiap batang pada Displacement tiap batang pada sistem koordinat sistem koordinat LOKALLOKAL

    {U1} =1 0

    {U1}0 1

    U11

    =

    0.707 0.707 0

    00

    =

    0

    U12 -0.707 0.707 0 0 0

    U13 0 0 1 0 0

    U14 0.707 0.707 00,00073 -

    0 00076U1

    00.707 0.707 0

    0.00076

    U15 -0.707 0.707 0 -0,0018 -0.0018

    U16 0 0 1 0,0118 -0.0118

    Displacement tiap batang pada Displacement tiap batang pada sistem koordinat sistem koordinat LOKALLOKAL

    {U2} =2 0

    {U2}0 2

    U21

    =

    1 0 0

    00,00073

    =

    0,00073

    U22 0 1 0 -0,0018 -0,0018

    U23 0 0 1 0,0118 0,0118

    U24

    01 0 0 0 0

    0U25 0 1 0 0 0U26 0 0 1 0,0211 0,0211

  • 09/02/2014

    57

    Gaya BatangGaya Batang{p1} = [k1] {U1} + {f1}{p1} = [k1] {U1} + {f1}

    4286,44 0 0 -4286,44 0 0 0 18.8

    0 12 25,46 0 -12 25,46 0 -1.58

    0 25,46 72,01 0 -25,46 36 0 -2.19{p1} = 5,773 =

    -4286,44 0 0 4286,44 0 0

    -0.00076 -18.8

    0 -12 -25,46 0 12 -25,46 -0.0018 1.58

    0 -5,46 36 0 -25,46 72,01 -0.0118 -4.64

    Gaya BatangGaya Batang{p2} = [k2] {U2} + {f2}{p2} = [k2] {U2} + {f2}

    5952,381 0 0

    -5952,38

    10 0

    0,000730 15,33

    0 12 30 0 -12 30-0,0018

    6.25 7,16

    0 30 100 0 30 500,0118

    5 208 4 58{p1

    } =3,52

    8 + =0 30 100 0 -30 50 5,208 4,58

    -5952,38

    10 0 5952,381 0 0

    00 -15,33

    0 -12 30 0 12 300

    6.25 5,34

    0 -30 50 0 30 1000,0211

    -5.208 0

  • 09/02/2014

    58

    Gambar Bidang M, N, DGambar Bidang M, N, D

    RANGKA BATANGRANGKA BATANG In the Truss Construction (KRB), the calculation of

    element stiffness matrix [K] is based on two dimensions f th t F th t k j t t i d of the truss case. Forces that works just tension and

    compression axial only, is the moment and latitude force is not available.

    Note the picture: a bar elements with area of A and modulus of elasticity of E is constant. The calculation of stiffness elements containing only element of A, E and f i t di t l i j i d jfour-point coordinates, namely: xi, xj, yi and yj.

    116Copyright: Dr Endah Wahyuni

  • 09/02/2014

    59

    117Copyright: Dr Endah Wahyuni

    118Copyright: Dr Endah Wahyuni

  • 09/02/2014

    60

    119Copyright: Dr Endah Wahyuni

    120Copyright: Dr Endah Wahyuni

  • 09/02/2014

    61

    Example:Example: A truss structurewith arrangement as shown in the

    figure as follows:3

    4

    10t

    2t

    12

    600

    With area of A = 20 cm2 Modulus of elasticity : 2 x 106 kg/cm2 Question: Calculate the internal forces and deformation shape

    4m

    121Copyright: Dr Endah Wahyuni

    122Copyright: Dr Endah Wahyuni

  • 09/02/2014

    62

    123Copyright: Dr Endah Wahyuni

    124Copyright: Dr Endah Wahyuni

  • 09/02/2014

    63

    125Copyright: Dr Endah Wahyuni

    126Copyright: Dr Endah Wahyuni

  • 09/02/2014

    64

    127Copyright: Dr Endah Wahyuni

    128Copyright: Dr Endah Wahyuni

  • 09/02/2014

    65

    129Copyright: Dr Endah Wahyuni

    130Copyright: Dr Endah Wahyuni

  • 09/02/2014

    66

    131Copyright: Dr Endah Wahyuni

    132Copyright: Dr Endah Wahyuni

  • 09/02/2014

    67

    133Copyright: Dr Endah Wahyuni

    134Copyright: Dr Endah Wahyuni

  • 09/02/2014

    68

    135Copyright: Dr Endah Wahyuni

    136Copyright: Dr Endah Wahyuni

  • 09/02/2014

    69

    137Copyright: Dr Endah Wahyuni

    138Copyright: Dr Endah Wahyuni

  • 09/02/2014

    70

    139Copyright: Dr Endah Wahyuni

    140Copyright: Dr Endah Wahyuni

  • 09/02/2014

    71

    141Copyright: Dr Endah Wahyuni

    y,v

    L j

    j

    pj

    c = cos

    x,u

    L

    i

    j

    di

    cui

    ui qi pi

    qjj

    Elemen Rangka Batang, dengan sudut Elemen Rangka Batang setelah g g, g g g

    pada bidang xy perpindahan titik ui > 0, titik lain tetap

    142Copyright: Dr Endah Wahyuni

  • 09/02/2014

    72

    Pertama, harus menghitung :

    L = 2ij2ij y - y x- x C = cos =

    L x- x ij

    S = sin = L

    y - y ij

    Perpendekan aksial cui menghasilkan gaya tekan aksial

    F = icu LAE

    Dimana : x dan y merupakan komponen dari ;

    pi = - pj = Fc

    qi = - qj = Fs

    Komponen ini menghasilkan kesetimbangan statis, sehingga diperoleh :

    C2 CS -C2 -CS

    ui =

    pi qi pj qj

    L

    AE

    143Copyright: Dr Endah Wahyuni

    Hasil yang sama juga akan diperoleh dengan cara memberikan perpindahan pada vi,

    uj, dan vj, dimana gaya bekerja sendiri-sendiri. Dan jika 4 dof dengan nilai tidak nol

    bekerja bersama-sama, dan dengan superposisi masing-masing elemen matriks

    kekakuan, dapat dihitung sebagai berikut :

    K =

    C2 CS -C2 -CS CS S2 -CS -S2 -C2 -CS C2 CS -CS -S2 CS S2

    L

    AE

    144Copyright: Dr Endah Wahyuni

  • 09/02/2014

    73

    C2 CS -C2 -CS CS S2 -CS -S2 -C2 -CS C2 CS

    ui vi uj

    pi qi pj

    Hubungan matriks kekakuan dengan gaya dapat ditulis sebagai berikut :

    [ K ] { D } = { F }

    =

    L

    AE

    -CS -S2 CS S2 vj qj

    Untuk kasus khusus :

    1. Jika nilai = 0, sebagai batang horizontal, matriks kekakuan elemen [ K ] 4 x 4Hanya berisi 4 komponen yang tidak bernilai nol, yaitu :

    k11 = k33 = -k13 = -k31 =

    L

    AE

    K =

    1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0

    L

    AE

    145Copyright: Dr Endah Wahyuni

    1. Jika nilai = 90, sebagai batang vertikal, matriks kekakuan elemen [ K ] 4 x 4 Hanya berisi 4 komponen yang tidak bernilai nol, yaitu :

    k22 = k44 = -k24 = -k42 =

    L

    AE

    K =

    0 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1

    L

    AE

    146Copyright: Dr Endah Wahyuni

  • 09/02/2014

    74

    Sebuah Konstruksi Rangka Batang dengan luas A Sebuah Konstruksi Rangka Batang dengan luas A dan Modulus Elastisitas E yang sama, seperti dan Modulus Elastisitas E yang sama, seperti pada Gambarpada Gambar

    L

    L

    L

    L

    1

    4

    3

    7 6 5

    2 3

    4

    2

    5

    1

    v

    u

    L L

    Hitunglah matriks kekakuaan masing-masing elemen

    147Copyright: Dr Endah Wahyuni

    K =

    C2 CS -C2 -CS CS S2 -CS -S2 -C2 -CS C2 CS

    Perumusan untuk mencari nilai matriks kekakuan elemen dengan sudut :

    LAE

    -CS -S2 CS S2

    1 0 -1 0

    Batang 1, 2 dan 3 merupakan batang horizontal, sehingga = 0o Maka : [ K1 ] = [ K2 ] = [ K3 ]

    K1 =

    0 0 0 0 -1 0 1 0 0 0 0 0

    L

    AE

    148Copyright: Dr Endah Wahyuni

  • 09/02/2014

    75

    K4 =

    0,250 0,433 -0,250 -0,433 0,433 0,750 -0,433 -0,750 0 250 0 433 0 250 0 433

    Batang 4 dan 6 merupakan batang diagonal dengan sudut = 60o Dimana : C = cos 60o = 0,5

    S = sin 60o = 0,866

    Maka : [ K4 ] = [ K6 ]

    LAE

    -0,250 0,433 0,250 -0,433 -0,433 -0,750 0,433 0,750

    Batang 5 dan 7 merupakan batang diagonal dengan sudut = 300o Dimana : C = cos 300o = 0,5

    S = sin 300o = -0,866

    Maka : [ K5 ] = [ K7 ]

    L

    K5 =

    0,250 -0,433 -0,250 0,433 -0,433 0,750 0,433 -0,750 -0,250 0,433 0,250 -0,433 0,433 -0,750 -0,433 0,750

    L

    AE

    149Copyright: Dr Endah Wahyuni

    0.335 0.128 -0.250 0.000 0.000 0.000 -0.085 -0.128 0.000 0.0000.128 0.192 0.000 0.000 0.000 0.000 -0.128 -0.192 0.000 0.000-0.250 0.000 0.671 0.000 -0.250 0.000 -0.085 0.128 -0.085 -0.1280.000 0.000 0.000 0.384 0.000 0.000 0.128 -0.192 -0.128 -0.192

    [K]10X10 = A.E 0.000 0.000 -0.250 0.000 0.335 -0.128 0.000 0.000 -0.085 0.1280.000 0.000 0.000 0.000 -0.128 0.192 0.000 0.000 0.128 -0.192-0.085 -0.128 -0.085 0.128 0.000 0.000 0.421 0.256 0.000 0.000-0.128 -0.192 0.128 -0.192 0.000 0.000 0.256 0.384 0.000 0.0000 000 0 000 -0 085 -0 128 -0 085 0 128 0 000 0 000 0 421 0 0000.000 0.000 0.085 0.128 0.085 0.128 0.000 0.000 0.421 0.0000.000 0.000 -0.128 -0.192 0.128 -0.192 0.000 0.000 0.000 0.384

    3.35E-01 1.28E-01 -2.50E-01 0.00E+00 0.00E+00 0.00E+00 -8.53E-02 -1.28E-01 0.00E+00 0.00E+001.28E-01 1.92E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.28E-01 -1.92E-01 0.00E+00 0.00E+00-2.50E-01 0.00E+00 6.71E-01 0.00E+00 -2.50E-01 0.00E+00 -8.53E-02 1.28E-01 -8.53E-02 -1.28E-010.00E+00 0.00E+00 0.00E+00 3.84E-01 0.00E+00 0.00E+00 1.28E-01 -1.92E-01 -1.28E-01 -1.92E-01

    [K]10X10 = 0.00E+00 0.00E+00 -2.50E-01 0.00E+00 3.35E-01 -1.28E-01 0.00E+00 0.00E+00 -8.53E-02 1.28E-010.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.28E-01 1.92E-01 0.00E+00 0.00E+00 1.28E-01 -1.92E-01-8.53E-02 -1.28E-01 -8.53E-02 1.28E-01 0.00E+00 0.00E+00 4.21E-01 2.56E-01 0.00E+00 0.00E+00-1.28E-01 -1.92E-01 1.28E-01 -1.92E-01 0.00E+00 0.00E+00 2.56E-01 3.84E-01 0.00E+00 0.00E+000.00E+00 0.00E+00 -8.53E-02 -1.28E-01 -8.53E-02 1.28E-01 0.00E+00 0.00E+00 4.21E-01 0.00E+000.00E+00 0.00E+00 -1.28E-01 -1.92E-01 1.28E-01 -1.92E-01 0.00E+00 0.00E+00 0.00E+00 3.84E-01

    150Copyright: Dr Endah Wahyuni

  • 09/02/2014

    76

    6.71E-01 0.00E+00 -2.50E-01 -8.53E-02 1.28E-01 -8.53E-02 -1.28E-010.00E+00 3.84E-01 0.00E+00 1.28E-01 -1.92E-01 -1.28E-01 -1.92E-01-2.50E-01 0.00E+00 3.35E-01 0.00E+00 0.00E+00 -8.53E-02 1.28E-01

    [K]7X7 = -8.53E-02 1.28E-01 0.00E+00 4.21E-01 2.56E-01 0.00E+00 0.00E+001.28E-01 -1.92E-01 0.00E+00 2.56E-01 3.84E-01 0.00E+00 0.00E+00-8.53E-02 -1.28E-01 -8.53E-02 0.00E+00 0.00E+00 4.21E-01 0.00E+00-1.28E-01 -1.92E-01 1.28E-01 0.00E+00 0.00E+00 0.00E+00 3.84E-01

    1.81E+00 2.85E+00 1.09E+00 -1.68E+00 1.94E+00 1.46E+00 1.67E+002.85E+00 -4.26E+00 2.92E+00 6.31E+00 -7.28E+00 -1.25E-01 -2.15E+001.09E+00 2.92E+00 4.12E+00 -2.24E+00 2.59E+00 1.94E+00 4.48E-01

    [K]-1 = 1 68E+00 6 31E+00 2 24E+00 3 61E+00 6 12E+00 1 12E+00 3 34E+00[K] 7X7 = -1.68E+00 6.31E+00 -2.24E+00 -3.61E+00 6.12E+00 1.12E+00 3.34E+001.94E+00 -7.28E+00 2.59E+00 6.12E+00 -5.77E+00 -1.30E+00 -3.86E+001.46E+00 -1.25E-01 1.94E+00 1.12E+00 -1.30E+00 3.03E+00 -2.24E-011.67E+00 -2.15E+00 4.48E-01 3.34E+00 -3.86E+00 -2.24E-01 1.94E+00

    151Copyright: Dr Endah Wahyuni

    Matriks Beban { R } {D} = [K]-1 {R}

    0 -1.43E+04-5000 2.13E+04

    0 -1.46E+04{R}7X1 = 0 {D}7X1 = -3.15E+04

    0 3.64E+04

    0 6.23E+020 1.07E+04

    152Copyright: Dr Endah Wahyuni

  • 09/02/2014

    77

    Matriks {D} Global

    0.00E+000.00E+00-1.43E+04

    Matriks Gaya Dalam

    F1H -0.02F1V 2500.00F2H 0.001.43E 04

    2.13E+04[D]10X1 = -1.46E+04

    0.00E+00-3.15E+043.64E+046.23E+021 07E+04

    F2V -5000.00F3H 0.00F3V 2500.00

    [F]12X1 = F4H = 0.00F4V 0.00F5H 0.00F5V 0.00

    1.07E+04

    153Copyright: Dr Endah Wahyuni