3. data source.pdf

Upload: edwin-pradana

Post on 14-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 3. DATA SOURCE.pdf

    1/41

    Data source

    Section 3

  • 7/27/2019 3. DATA SOURCE.pdf

    2/41

    Outline

    1. Pressure data source

    2. Fluid gradient

    3. Vertical stress/overburden stress4. Minimum horizontal stress (fracture pressure)

  • 7/27/2019 3. DATA SOURCE.pdf

    3/41

    1. Pressure data source

    Data source Hierarchy

    Repeat formation tester (RFT, FMT, MDT)

    Formation interval test (FIT)

    Drill stem test (DST)Well or pressure kick

    Connection gas

    Measurement whilst drilling (MWD/LWD)

    Mudweight

    Drilling exponent

    Swarbrick, 1999

  • 7/27/2019 3. DATA SOURCE.pdf

    4/41

    MDT tool

  • 7/27/2019 3. DATA SOURCE.pdf

    5/41

    RFT/MDT

  • 7/27/2019 3. DATA SOURCE.pdf

    6/41

    RFT data chart

  • 7/27/2019 3. DATA SOURCE.pdf

    7/41

    Analog recording

    Pressure build-up: formation permeability/mobility

  • 7/27/2019 3. DATA SOURCE.pdf

    8/41

    Accuracy of MDT/RFT

    Quartz gauge:

    error about 15 psi (Ireland et al., 1992)

    New generation of quartz gauge

    (combinable quartz gauge/CQG)

    error about 2.5 psi

  • 7/27/2019 3. DATA SOURCE.pdf

    9/41

    Remarks on pressure data

    TVDSS

    (ft)TOOL GAUGE

    FP

    (psi)

    EMW

    (gr/cm3)

    MOB

    (mD/cp)FA

    FLUID

    LOGMARKER REMARK DATE

    7449.37 RFT QG 3292 1.01 HC G 1a-a GOOD 6/2/1991

    7449.37 RFT QG 3293 1.01 61 N/A G 1a-a GOOD 6/2/1991

    8003.04 RFT QG 3610 1.04 14 N/A G 1d GOOD 6/2/1991

    8608.20 RFT QG 3906 1.04 4.3 N/A G 1g GOOD 6/2/19918646.74 RFT QG 3854 1.02 876 N/A G 1h GOOD 6/2/1991

    8670.52 RFT QG 3853 1.02 273 N/A G 1h GOOD 6/2/1991

    8682.00 RFT QG 3854 1.02 974 N/A G 1h GOOD 6/2/1991

    8695.12 RFT QG 3855 1.02 938 N/A G 1h GOOD 6/2/1991

    8708.24 RFT QG 3856 1.02 45 N/A G 1h GOOD 6/2/1991

    9898.81 RFT QG 4430 1.03 N/A G 2g N.S 6/2/199110907.74 RFT QG 5291 1.12 N/A G 4a S.C 6/2/1991

    10950.05 RFT QG 5384 1.13 1.4 N/A G 4b GOOD 6/2/1991

  • 7/27/2019 3. DATA SOURCE.pdf

    10/41

    Remarks

    Good: reliable pressure data

    NS: not stabilised (not enough time to

    directly determine pressure value)

    SC: supercharged unreliable pressure

    data due to mud invasion

    Tight: unreliable pressure data due to tightreservoir

  • 7/27/2019 3. DATA SOURCE.pdf

    11/41

    3000 4000 5000 6000 7000

    7000

    8000

    9000

    10000

    11000

    12000

    13000

    Pressure (psi)

    Depth(ft)

    Supercharged

  • 7/27/2019 3. DATA SOURCE.pdf

    12/41

    2. Fluid gradients

    g

    dz

    dPw

  • 7/27/2019 3. DATA SOURCE.pdf

    13/41

    Specific

    gravity

    API gravity Normal

    hydrostatic

    grad. (psi/ft)

    Total

    Dissolved

    solids (ppm)

    1.14 (brines) -7.50 0.494 210,000

    1.12 -5.20 0.485 175,800

    1.10 -2.70 0.476 143,500

    1.05 30 0.455 69,500

    1.00

    (fresh water)

    100 0.433 zero

    0.95 170 0.411

    0.9 250 0.390

    0.85 (light oil) 350 0.3680.8 450 0.346

    0.7 600 0.303

    0.4 (gas) 0.130

    Simplified from Dahlberg, 1982

  • 7/27/2019 3. DATA SOURCE.pdf

    14/41

    Water grad. : salinity measurement

    HC grad. : API measurement

    Water & HC: could be inferred from

    pressure

    depth plot, if the pressuremeasurement close enough

    Fluid gradients

  • 7/27/2019 3. DATA SOURCE.pdf

    15/41

    0 2000 4000 6000 8000 10000

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    Example: Kutai BasinPressure (psi)

    Depth

    (ft)

    0.433 psi/ft

  • 7/27/2019 3. DATA SOURCE.pdf

    16/41

    Some examples of hydrostatic gradient

    Region Hydrostatic gradient

    (psi/ft)Anadarko 0.433

    California 0.439

    Gulf of Mexico 0.465

    Mackenzie Delta 0.442

    Malaysia 0.422

    North Sea 0.452

    Rocky Mountains 0.436

    Santa Barbara Channel 0.452

    West Africa 0.442

    West Texas 0.433

    Kutai Basin 0.433

  • 7/27/2019 3. DATA SOURCE.pdf

    17/41

    HC gradientPressure (psi)

    Depth(ft)

    Water: 0.433 psi/ft

    HC: 0.1 psi/ft

    HC RFT point

    Water RFT point

  • 7/27/2019 3. DATA SOURCE.pdf

    18/41

    HC gradientPressure (psi)

    Depth(ft)

    HC RFT point

    Water RFT point

    Variable HC-water contact?

  • 7/27/2019 3. DATA SOURCE.pdf

    19/41

    Indication of hydrodynamic trap:

    will be discussed later

  • 7/27/2019 3. DATA SOURCE.pdf

    20/41

    3. Vertical stress/overburden stress

  • 7/27/2019 3. DATA SOURCE.pdf

    21/41

    Fluid

    Overburden

    ()

    Rock matrix

    =p

    (pore pressure)

    + (effective stress)

    b

    gzb g

    dz

    db

  • 7/27/2019 3. DATA SOURCE.pdf

    22/41

    Average density down to 3 4 km:

    2.3 g/cm3

    g

    dz

    db

    pa/m23000smkg23000102300 22

    dz

    d

    psi/ft1KPa/m23 dz

    d

  • 7/27/2019 3. DATA SOURCE.pdf

    23/41

    1 psi/ft

    Vertical stress/overburden stress

  • 7/27/2019 3. DATA SOURCE.pdf

    24/41

    Example: Shelf, Kutai Basin

    1 psi/ft only at depth

    Ramdhan & Goulty, 2010

  • 7/27/2019 3. DATA SOURCE.pdf

    25/41

    Example:

    Baram Delta

    Variation of

    vertical stress

    due to uplift and

    undercompaction

    Tingay et al., 2003

    W ld id l

  • 7/27/2019 3. DATA SOURCE.pdf

    26/41

    World wide example

    Mouchet and Mitchel l , 1989

  • 7/27/2019 3. DATA SOURCE.pdf

    27/41

    Vertical stress from wireline logs

    The most reliable: density log

    Sonic, resistivity, etc.

    Density (g/cm3)

  • 7/27/2019 3. DATA SOURCE.pdf

    28/41

    Example of reasonably

    good density log

    - Oil-based mud

    - Measurement every 0.5 ft- No density data in the

    shallow section

    Density (g/cm3)

    Depth(ft)

    Trend 1

    Trend 2

    Caving?

    D it ( / 3) D th (ft)

  • 7/27/2019 3. DATA SOURCE.pdf

    29/41

    1.50

    1.87

    2.02

    2.13

    2.22

    2.29

    2.35

    2.40

    2.44

    2.49

    2.52

    2.56

    2.60

    2.62

    Density (g/cm3) Depth (ft)

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    11000

    12000

    13000

    14000

    0

    n

    ib

    zg1

    Exercise

  • 7/27/2019 3. DATA SOURCE.pdf

    30/41

    1.50

    1.87

    2.02

    Density (g/cm3) Depth (ft)

    1000

    2000

    3000

    0 1

    2

    3

    @2000@3000

    @1000 = 1

    @2000 = 1 + 2

    @3000 = 1 + 2 + 3

  • 7/27/2019 3. DATA SOURCE.pdf

    31/41

    1.50

    1.87

    2.02

    Density (g/cm3) Depth (ft)

    1000

    2000

    3000

    0

    Depth (ft) n = bgz (Pa) n (Pa) n (psi)

    1000 1500 x 9.8 x 1000 x 0.3048

    = 44805604480560

    650

    2000 1870 x 9.8 x 1000 x 0.3048= 5376672

    9857232

    1429

    3000 2020 x 9.8 x 1000 x 0.3048

    = 603382115891053

    2304

  • 7/27/2019 3. DATA SOURCE.pdf

    32/41

    0 2000 4000 6000 8000 10000 12000 14000

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    Pressure (psi)

    Depth

    (ft)

    1 psi /ft

    The realoverburden gradient

    1 psi/ft is only

    at depth

  • 7/27/2019 3. DATA SOURCE.pdf

    33/41

    0 2000 4000 6000 8000 10000 12000 14000

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    Pressure (psi)

    Depth(ft)

    1 psi /ft

    Shelf overburden

    Deep water overburden

    Mud line

    Deep water overburden profile

  • 7/27/2019 3. DATA SOURCE.pdf

    34/41

    4. Minimum horizontal stress (fracture pressure)

  • 7/27/2019 3. DATA SOURCE.pdf

    35/41

    Leak-off test

    White et al., 2002

    E l K t i B i

  • 7/27/2019 3. DATA SOURCE.pdf

    36/41

    Example: Kutai Basin

  • 7/27/2019 3. DATA SOURCE.pdf

    37/41

    Example: world-wide

    Breckels and Eekelen, 1982

    Power law: bH

    az

  • 7/27/2019 3. DATA SOURCE.pdf

    38/41

    Some notes on minimum horizontal stress

    (fracture pressure)

    The deeper, the greater the gradient

    following power law

    Couple pore pressure fracture pressure

    Overpressure-induced

    increase fracture pressure Production-induced

    reduce fracture pressure

  • 7/27/2019 3. DATA SOURCE.pdf

    39/41

    Review

    1. Pressure data source

    Direct: RFT/MDT, FIT, DST

    Indirect: drilling parameters

    2. Hydrostatic fluid and hydrocarbon

    gradients

    Fluid density Pressure data

  • 7/27/2019 3. DATA SOURCE.pdf

    40/41

    Review

    Vertical stress gradient: density

    Minimum horizontal stress/fracturegradient: LOT

  • 7/27/2019 3. DATA SOURCE.pdf

    41/41

    Question?