3 cellular and network effects of transcranial direct ... › medicalbooks › tdcs animal... ·...

38
55 3 Cellular and Network Effects of Transcranial Direct Current Stimulation Insights from Animal Models and Brain Slice Marom Bikson, Davide Reato, and Asif Rahman CONTENTS 3.1 Meaningful Animal Studies of tDCS and the Quasi-Uniform Assumption .... 56 3.1.1 Classification of Animal Studies ........................................................ 56 3.1.2 tDCS Dose in Human and Animals, and the Quasi-Uniform Assumption ........................................................................ ................ 58 3.1.3 Stimulator and Electrode Techniques, and Nomenclature ................. 61 3.1.4 Dose Control and Meaningful Animal Studies .................................. 64 3.1.5 Outcome Measures ............................................................................. 65 3.2 Somatic Doctrine and Need for Amplification ............................................... 65 3.2.1 Neuronal Polarization ......................................................................... 66 3.2.2 Modulation of Excitability, Polarity-Specific Effects......................... 66 3.2.3 Quantifying Polarization with Coupling Constants ........................... 67 3.2.4 Amplification through Rate and Timing ............................................ 69 3.2.5 Seizure Threshold and Modulation .................................................... 71 3.2.6 Limitations of the Somatic Doctrine .................................................. 71 3.3 Plasticity, Synaptic Processing, and a “Terminal Doctrine” .......................... 73 3.3.1 Paradigms for DC Modulation of Synaptic Efficacy .......................... 73 3.3.2 Relation with Tetanic Stimulation Induced LTP/LTD........................ 75 3.3.3 Which Compartments are Influenced by DC Stimulation: Soma and Dendrites ...................................................................................... 77 3.3.4 Which Compartments Are Influenced by DC Stimulation: Synaptic Terminals ............................................................................. 78 K13512_C003.indd 55 7/30/2012 6:50:31 PM

Upload: others

Post on 09-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

55

3 Cellular and Network Effects of Transcranial Direct Current StimulationInsights from Animal Models and Brain Slice

Marom Bikson, Davide Reato, and Asif Rahman

Contents

3.1 MeaningfulAnimalStudiesoftDCSand theQuasi-UniformAssumption.... 563.1.1 ClassificationofAnimalStudies........................................................ 563.1.2 tDCSDoseinHumanandAnimals,andtheQuasi-Uniform

Assumption........................................................................................ 583.1.3 StimulatorandElectrodeTechniques,andNomenclature................. 613.1.4 DoseControlandMeaningfulAnimalStudies..................................643.1.5 OutcomeMeasures.............................................................................65

3.2 SomaticDoctrineandNeedforAmplification...............................................653.2.1 NeuronalPolarization.........................................................................663.2.2 ModulationofExcitability,Polarity-SpecificEffects.........................663.2.3 QuantifyingPolarizationwithCouplingConstants........................... 673.2.4 AmplificationthroughRateandTiming............................................693.2.5 SeizureThresholdandModulation.................................................... 713.2.6 LimitationsoftheSomaticDoctrine.................................................. 71

3.3 Plasticity,SynapticProcessing,anda“TerminalDoctrine”.......................... 733.3.1 ParadigmsforDCModulationofSynapticEfficacy.......................... 733.3.2 RelationwithTetanicStimulationInducedLTP/LTD........................ 753.3.3 WhichCompartmentsareInfluencedbyDCStimulation:Soma

andDendrites...................................................................................... 773.3.4 WhichCompartmentsAreInfluencedbyDCStimulation:

SynapticTerminals............................................................................. 78

K13512_C003.indd 55 7/30/2012 6:50:31 PM

Page 2: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

56 Transcranial Brain Stimulation

Thischapteraddressesthecontributionofanimalresearchondirectcurrent(DC)stimulation to current understanding of transcranial direct current stimulation(tDCS)mechanismsandprospects andpitfalls forongoing translational research.Thoughweattempttoputinperspectivekeyexperimentsinanimalsfromthe1960stothepresent,ourgoalisnotanexhaustivecatalogingofrelevantanimalstudies,butrathertoputtheminthecontextofongoingefforttoimprovetDCS.Similarly,thoughwepointoutessentialfeaturesofmeaningfulanimalstudies,wereferreaderstooriginalworkformethodologicaldetails.ThoughtDCSproducesspecificclinicalneurophysiologicalchangesandistherapeuticallypromising,fundamentalquestionsremainaboutthemechanismsoftDCSandontheoptimizationofdose.Asaresult,amajorityofclinicalstudiesusingtDCSemployasimplisticdosestrategywhere“excitability” is increasedordecreasedunder theanodeandcathoderespectively.Wediscusshowthisstrategy,itselfbasedonclassicanimalstudies,maynotaccountforthecomplexityofnormalandpathologicalbrainfunction,andhowrecentstudieshavealreadyindicatedmoresophisticatedapproaches.

3.1   Meaningful aniMal studies of tdCs and the Quasi-uniforM assuMption

ThemotivationforanimalresearchoftDCSisevidentandsimilartoothertransla-tionalmedicalresearchefforts:toallowrapidandrisk-freescreeningofstimulationprotocolsandtoaddressthemechanismsoftDCSwiththeultimategoalofinformingclinicaltDCSefficacyandsafety.TohaveameaningfulrelevancetoclinicaltDCS,animalstudiesmustbedesignedwithconsiderationof:(1)conductinganimalstudiesbycorrectlyemulatingthedeliveryofDCstimulationtothebrain;and(2)measuringresponsesthatcanbeusedtodrawclinicallyrelevantinferences.Beforereviewingthemain insightsdrawnfromanimal studies,weoutline thebasisandpitfallsoftranslationalanimalresearchontDCS.

3.1.1  ClassifiCation of animal studies

Thescopeofthisreviewincludesanyanimalstudyexploringthebehavioral,neu-rophysiological, or molecular response of the brain to DC currents; with a focusonmacro-electrodes,relativelylowintensitystimulation,andsustained(secondstominutes) rather than pulsed (millisecond or less) waveforms. Animal studies canbebroadlyclassifiedbythepreparationandrelatedmethodofstimulation,namely

3.4 NetworkEffects..............................................................................................803.4.1 FurtherAmplificationatthroughActiveNetworks............................803.4.2 Oscillations......................................................................................... 81

3.5 InterneuronsandNon-NeuronalEffects......................................................... 823.5.1 Interneurons........................................................................................ 823.5.2 Glia..................................................................................................... 833.5.3 EndothelialCells................................................................................. 83

3.6 Summaryanda3-TierApproach...................................................................84References................................................................................................................85

K13512_C003.indd 56 7/30/2012 6:50:31 PM

Page 3: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

57Cellular and Network Effects of Transcranial Direct Current Stimulation

wheretheelectrodesareplaced,as:(1)transcranialstimulationinanimals;(2)intra-cranialstimulationinvivoincludingwithoneelectrodeonthecortex(3)stimulationoftissueinvitro,includingbrainslices.

1.ModernanimalstudiesontDCSusetranscranialstimulationwithaskullscrew or skull mounted cup (Liebetanz et al. 2006; Cambiaghi et al.2010; Yoon et al. 2012)—advantages of transcranial stimulation includepreventing electrochemical products from the electrodes from reachingthe brain (which would confound any results). If the screw penetratescompletely through theskull,stimulation isno longer in the transcranialcategory(seenext).Rodentsaretypicallyused.Areturnelectrodeonthebody, mounted in a “jacket” is typically used for “unipolar stimulation”(whichisbroadlyanalogoustoahumantDCSextracephalicelectrode).Inarabbitstudyfoursilverballelectrodesformedasinglevirtualelectrodeoverthetarget(Marquez-Ruizetal.2012).Alternatively,twocranialelectrodesproduce bipolar stimulation (Ozen et al. 2010). Since the cranium is notpenetrated,theeffectsofDCstimulationareprobedthroughbehavior,non-invasive recording (electroencephalogram, EEG), non-invasive electricalinterrogation (e.g., transcranial magnetic stimulation, TMS; transcranialelectrical stimulation, TES), or histology after sacrifice. In some olderstudies, transcranial DC stimulation was also applied in larger animals(monkeys) (Toleikis et al. 1974) but should be interpreted with cautionwhen the skull was penetrated for recording electrodes (which distortscurrent flow) (Datta et al. 2010) or when recording between electrodeswithout control for cortical folding (leading to variation in current flowdirectionthroughcorticalgyrationsandinconsistenteffects).Replacementof removed skull with insulating filler (e.g., dental cement) may correctshuntingthroughthehole(Marquez-Ruizetal.2012).

2.Classicanimalstudiestypicallyusedanelectrodeonthebrain(Creutzfeldtetal.1962;Bindmanetal.1964),wheretheintracranialelectrodewascov-eredinsomethinglikeacottonwick(Redfearnetal.1964)tobufferelec-trochemicalchanges.Catsandmonkeysweretypicallyused.Notethattheprotectionoftheskinfromelectrochemicalproductattheelectrodeiswhysaline-soakedsponges(orgel)areusedintDCS(Minhasetal.2010)—andthoughimproperset-upcanresultinskinirritation,theseproductscannotreachthebrainandsoarenotpartoftDCSmechanisms.Whenanelectrodeisplacedinsidethecranium(ontheanimalbrain)thenpotentialinterfer-encefromelectrochemicalchangesattheelectrodesdiffusingintothebraincannotbeautomaticallyignored.Theseelectrochemicalproductscanevenbepolarityspecific(Merrilletal.2005)andproducereversiblechanges,butstillhavenorelevancetotDCS.Stepstoreduceinterferenceincludeusingsuitableelectrode(e.g.,Ag/AgCl)andwrappingtheelectrodeincottontobufferchemicalchanges;protocolsthatwhererationallyusedinmanystud-ies.PassageofprolongedDCcurrentthroughapoorlyselectedelectrodematerial (e.g., screw) is expected to produce significant electrochemicalchanges near the metal. It is generally assumed with cortical electrodes

AQ1

K13512_C003.indd 57 7/30/2012 6:50:32 PM

Page 4: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

58 Transcranial Brain Stimulation

thatcurrentflowthroughnearbycortexwillbeunidirectional(inwardforanode,outwardforcathode;seeconventionsbelow);however,thepresenceofCSF inconvolutedgyri (especially in largeranimals)willdistortcur-rentflowpatternsandcanproducelocaldirectioninversions(Creutzfeldtet al.1962).Despitetheseconcerns,therationaleforinvasivestimulationinclassicalanimalstudiesmaysimplybethatthecraniummustbeexposedregardlesstofacilitateinsertionofrecordingelectrodes,andamajorityofthesestudieswereinterestedinthegeneraleffectsofDCcurrentonbrainfunctionandnotnecessarilyclinicaltranscranialDCS.

3.TheuseofbrainslicestostudytheeffectsofweakDCstimulationdatestoworkbyJohnG.R.Jefferysin1981(Jefferys1981;NitscheandPaulus2000;Ardolinoetal.2005),withexperimentaltechniquesusedtothepresentdayestablishedbyBruceGluckmanandStevenSchiff(Gluckmanetal.1996)and adapted by Dominique Durand and our group (Durand and Bikson2001).Therationaleforusingabrainslice(usuallyrodentsandferrets)istheabilitytoprobebrainfunctionindetailusingarangeofelectrophysi-ological,pharmacological,molecular,andimagingtechniques.Inisolatedtissue,thedirectionofcurrentflowisalsoknownandpreciselycontrolled.Lopez-Quinteroetal.(2010)describedtechniquesforstimulatingculturedmonolayers.InaseminalseriesofpapersChanandNicholsonusedisolatedturtlecerebellum(ChanandNicholson1986;Chanetal.1988).ForinvitroDCstimulationstudies,electrodesareplacedinthebathatsomedistancefromthetissuetobufferelectrochemicalchanges.Asemphasizedbelow,tDCSdeliverselectricalcurrentnotchemicalstothebrain.

3.1.2   tdCs dose in Human and animals, and tHe Quasi-uniform assumption

Theclinical“dose”of tDCShasbeendefinedas thoseaspectsofstimulation thatareexternallycontrolledbytheoperator(Biksonetal.2008;Peterchevetal.2011),namelyelectrodemontage(shape,location,etc.)andthespecificsoftheDCwaveform(duration,intensityinmAapplied,ramp,etc.).Asexplainednext,itwouldbefunda-mentallymisguidedtosimplyreplicatethesedoseparametersinanimalstudies.tDCSproducesacomplexpatternofcurrentflowacrossthebrain,whichresultsindose-specificelectricfield(currentdensity)thatvariessignificantlyacrossbrainregions.Thisbrainelectric-fielddistributionrepresentsanddeterminestheelectricalactionsof tDCS. The brain electric field is not a simple function of any dose parameter,forexample thecurrentdensityat theelectrodes (totalcurrent/area)doesnotmapsimplytopeakbrainelectricfield(Mirandaetal.2007).Therearefortunatelywell-establishedmethods topredict theelectricfieldgenerated in thebrainusingcom-putationalmodels(Mirandaetal.2006;Dattaetal.2009);thoughmethodologicalapproaches across groups vary those modeling studies using realistic anatomyhaveconvergedthatthepeakelectricalfieldgeneratedduringtDCSis0.2–0.5V/m(0.05–0.14A/m2currentdensity)fora1mAintensity(Mirandaetal.2006;Dattaetal.2009;Sadleiretal.2010).The electricfieldwouldscalelinearlywithcurrentinten-sitysuchthat2mAwouldproduceupto0.4–1V/m(0.1–0.28A/m2currentdensity).

AQ2

K13512_C003.indd 58 7/30/2012 6:50:32 PM

Page 5: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

59Cellular and Network Effects of Transcranial Direct Current Stimulation

These peaksrepresentspecifichot-spots.UsingconventionaltDCSmontagesweakerelectricfields aregenerated acrossmuchof thebrain. In addition,due to subject-specific idiosyncratic cortical folding, the electric field is “clustered” (Datta et al.2009),withmanylocalmaxima(Figure3.1).Thereisthusnosingleelectricfieldgen-eratedinthebrainduringtDCSbutratherarangeofdistributedelectricfieldsacrossthebrain.Thequestionthereforeis:giventhiscomplexityofelectricfielddistributionacrossbrainstructures,whatshould(andcan)bemimickedinanimalmodels?ItisimportanttoemphasizethatsimplymimickingtDCSclinicaldoseinanimalmodels,oradjustingdoseguidelinesbyanarbitraryruleofthumb(e.g.,byheadvolume),maynotbeprudent.

One solution (whichwe termanaspectof the“quasi-uniform”assumption) is toconsideronlythepeakelectricfieldgeneratedinthebrain,oronlytheelectricfieldinonebrainregionofinterest,andthentoreplicatetheelectricfieldacrossanareaoftheanimalbrainortheentireanimalbrain/tissue.(ItisimpracticaltoreplicatetheelectricfieldinducedineachbrainregionduringtDCSinallcorrespondingbrainregioninananimalmodel.)Asitturnsout,becauseofpracticalconsideration,thequasi-uniformassumption is already adopted implicitly in most animal research of tDCS. ThisapproachispartlysupportedbyelectricfieldsgeneratedduringtDCSbeinglargelyuni-formacrossanyspecificcorticalcolumn(neuronaldendritictree)ofinterest(Figure3.1,inset)—henceonecanspeakofasingleelectricfieldinreferencetoaregionofinterest.

Finite-element model (FEM)Electric field magnitude

Quasi-uniformassumption

Mixeddirectionality

Tangential

0Pe

ak

Radial

figure 3.1  Thequasi-uniformassumptionisimplicitinthemajorityofmodelingandani-malstudiesoftDCS.Thefirstaspectofthequasi-uniformassumptionisbasedontheelectricfieldgeneratedinthebraintonotsignificantlychange(beuniform)onthescaleofasinglecorticalcolumnorneuronaldendritictree.Onlyinthiswayitismeaningfultorepresent,forafirstapproximation,neuromodulationbyregionalelectricfield.Thisassumptionunderpinstherationalbasisforreplicatinganelectricfieldofinterestinananimalmodelasdescribedinthetext.Shownisahigh-resolutionfiniteelementmodel(FEM)computationalmodelofcurrentflowthroughtheheadwithoverlaidneuronalmorphology.

K13512_C003.indd 59 7/30/2012 6:50:33 PM

Page 6: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

60 Transcranial Brain Stimulation

However, it isworthwhiletopointout thatconsideringthepeakof theelectricfield(eitheracrossthewholebrainorinasub-region)asbasisforthefieldampli-tudemaybemisleading.Thefieldamplitudecanchangebyordersofmagnitudesindifferentbrainareasanddramaticallyevenacrosslocalgyri(Dattaetal.2009).Theaverage (ormedian)valueof theelectricfieldcanbeup to10 times smallerthanthefieldpeak(dependingonlocalgeometryandconductivityproperties).Also,sinceusuallytheelectricfieldsusedinanimalexperimentsarebasedonestimationsfromhumans(usingfiniteelementmodels),itisalsonecessarytoconsiderhowthecouplingconstantbetweenneuronalpolarizationandelectricfieldappliedcanvaryacross species (see next). For that reason, while the average electric field can besmallerthanthepeakvalue,thepolarizationofneuronsinhumanscouldbehigher,assumingahighercouplingconstantinhumans(seenext).

Generally,onceaclinical(quasi-uniform)tDCSelectricfieldthatistoberepli-catedinananimalmodelisdecided,threeapproacheshavebeentakeninrationalexperimental design. These three approaches typically relate to: (1) Transcranialstimulation in animal; (2) Invasive stimulation of animals with intracranial elec-trodes;(3)Stimulationoftissue/brainsliceswithbathelectrodes.Ineachcase,thequasi-uniformassumptionisre-appliedinthegenerationandcontrolofa(quasi)uni-formelectricfieldinatargetedregionoftheanimalbrainoracrossisolatedtissue.

1. Inthefirstcaseoftranscranialstimulationofanimal,thesamemodelingapproaches that predict electric fields during clinical tDCS can be usedtomodelandguidestimulationdesign(Gascaetal.2010).Asthecaseinclinical tDCS, in DC transcranial stimulation in animals it is importanttoconsiderhowthepositionofthe“return/reference”electrodeinfluencescurrentflowevenunderthe“active”electrode(Biksonetal.2010;Brunonietal.2011).Asanatomicallypreciseanimalmodelsareunderdevelopment,concentricspheremodels(simplyscaledtosize)canbeusedtodetermineelectricfieldintensitygeneratedintheanimalbrain(Marquez-Ruizetal.2012);freetoolavailablethroughneuralengr.com/BONSAI).Intheabsenceofanspecificmodelingofcurrentflowinanimal,andincaseswheretheelectrodeisplaceddirectlyontheskull,onecan,toafirstapproximation,assume a maximum potential brain current density equal to the averageelectrodecurrentdensity(totalcurrent/electrodearea;(Biksonetal.2009).However, it is important to recognize that the direction (inward or out-ward)of the electricfieldsgenerated across thebrain, including indeepbrainstructures(particularlyinhigheranimalswithincreasingconvolutedcortex) may also vary (as it does in human tDCS). The electric field inaregionofinterestmayalsobemeasuredwithinvasiveelectrodes(Ozenet al.2010),recognizingitisnotuniformthroughouttheanimalbrain,andtheinsertionandpresenceofelectrodesmayitselfdistortcurrentflow.

2. Inthesecondcase,foranimalstudieswithanelectrodeplacedonthebrainsurface,onemightagainassumethatthe(quasi-uniform)currentdensityinthebraindirectlyundertheelectrodesequalsthataveragecurrentdensityat theelectrode(totalcurrent/electrodearea).Aswithscalpelectrodes intDCS,whenaspongeofcottonwrapperisused,itscontactareasshouldbe

K13512_C003.indd 60 7/30/2012 6:50:34 PM

Page 7: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

61Cellular and Network Effects of Transcranial Direct Current Stimulation

usedincalculations.Butdependingontheelectrodedesign,currentdensitymay in factbe (ordersofmagnitude)higheratelectrodeedges (Mirandaetal.2006;Minhasetal.2011)—anissueaggravatedforsmallelectrodeswhereelectricfieldnearamonopolarsourcecanbeveryhighleadingtofurtherpotentialcomplications(seediscussioninBindmanetal.1964).Aswithtranscranialstimulation,currentspreadthroughoutthebrainshouldbeassumedwithanyreturnoutsidethehead(Islametal.1995).

3. In the third approach, including in vitro brain slice studies, the task issimplified because using long parallel wires (or plates) placed in a bathacrosstheentire tissue—withpropercare, thisgeneratesauniformelec-tric field across the entire tissue (a truly uniform electric field) that canbereadilycalibratedtomatchtDCSlevels(Gluckmanetal.1996;Franciset al.2003;Biksonetal.2004).Typically,theplacementoftheelectrodesinthebath,awayfromthetissueofinterest,protectsfromelectrochemicalproducts.Thesimplicityandversatilityofthistechniques,makescontrolofDCparametersinslicestraightforwardandallowsanalysisoffunctionindetailnotpossiblewithothertechniques(seenext).Itisinterestingthatthe generation of uniform fields across an entire brain region can makethemost invasive invitroapproachesanalogous to regionalelectricfieldinducedbytDCS.

In each of the aforementioned cases the quasi-uniform assumption applies by(1)assumingauniformelectricfield ina regionof interestduring tDCSthat isafunctionofscalpelectrodepositionandappliedcurrent(Figure3.1)thoughrecog-nizingthattheelectricfieldvariesacrossthebrain;and(2)positioningelectrodesandselectingcurrent in translational research that replicate thiselectricfield inaspecificregionoftheanimalbrain(recognizingthatelectricfieldwillvaryacrosstheentireanimalbrain)oracrossabrainsliceinvitro(recognizingthattheentirebrainslicewillbeexposedtoasingleelectricfield;Figure3.2).

3.1.3  stimulator and eleCtrode teCHniQues, and nomenClature

Ona technicalnote,ouropinionis thatforreproducibilityandprecisioncurrent-controlledstimulationshouldbeusedinanimalstudies.Indeed,forthesamereasontDCSwith current-controlled stimulation is used in almost all translational stud-iesofDCstimulation.Theelectrode-solutioninterfacerepresentsanunknownandchanging impedance in serieswith the stimulator (Merrill et al. 2005). It iswellestablishedthatcurrent-controlguaranteesconsistentstimulationoftissuethroughthisinterface;theelectricfieldinthebraintrackstheappliedcurrentandcanbesim-plyscaledtomatchclinicalelectricfieldvalues.Usingvoltagecontrol,especiallyduringDCstimulation,may result inanunknownvariable, and indeedchanging(notDC)electricfield.Ifvoltagecontrolisused,theelectricfieldgeneratedinthetissueduring theentirecourseof stimulationshouldbemonitored.Simplyusingcurrentcontroldoesnotcanceltheimportanceofconsidering(1)electrodesizeandposition,whichdeterminesbraincurrentflowpattern;and(2)electrodematerialanduseofanybufferwhichdetermineelectrochemicalchanges.Moreover,thetwocan

K13512_C003.indd 61 7/30/2012 6:50:34 PM

Page 8: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

62 Transcranial Brain Stimulation

Met

hods

det

ails

for b

rain

slic

e st

imul

atio

n

Fiel

d ta

ble

Stan

dard

bra

in sl

ice

cham

bers

are

out

�tte

dw

ith p

aral

lel w

ires f

orge

nera

tion

of u

nifo

rmel

ectr

ic �

elds

.

Hum

idi�

ed O

2/C

O2 Cur

rent

gen

erat

or

Am

pli�

catio

n

Rec C

HI

CA1

Ag-A

gCl w

ire el

ec.

Flow

E-�e

ld

+

18Sp

atia

lly u

nifo

rmel

ectr

ic �

eld

14 10 6 2 V/m

AC

SF �

ow+–

Mea

ning

ful a

nim

al st

udie

s–M

atch

ing

elec

tric

�el

ds

Incr

emen

tal r

e�ne

men

t

Clin

ical

opt

imiz

atio

n

Com

puta

tiona

l FEM

mod

els f

acili

tate

mat

chin

g el

ectr

ic �

elds

Tran

slatio

nal a

nim

alre

sear

ch (a

nim

al, b

rain

slic

e)

Empi

rical

Beha

vior

al o

utco

mes

E (V

/m)

Rapi

d sc

reen

ing

Mec

hani

stic

Elec

trop

hysio

logi

cal/m

olec

ular

/ch

emic

al o

utco

mes

fig

ur

e 3.

2 A

nim

als

tudi

eso

ntD

CS

mec

hani

sma

llow

rap

ids

cree

ning

of

stim

ulat

ion

para

met

ers

and

anal

ysis

of

neur

ophy

siol

ogic

ala

ndm

olec

ular

ch

ange

sin

way

sno

tpos

sibl

ecl

inic

ally

.Mea

ning

fult

rans

latio

nre

sear

chi

nan

imal

sre

quir

edr

epli

catio

nof

ele

ctri

cfie

lds

gene

rate

dcl

inic

ally

in

anim

al

brai

n/ti

ssue

.The

ele

ctri

cfie

ldg

ener

ated

in

the

brai

ndu

ring

tD

CS

isd

epen

dent

on

the

stim

ulat

ion

dose

(cur

rent

int

ensi

ty,e

lect

rode

mon

tage

)an

dhe

ad

anat

omy.

Iti

sno

ttri

vial

tor

elat

eex

tern

ally

con

trol

led

dose

with

inte

rnal

lyg

ener

ated

ele

ctri

cfie

lds

(i.e

.,th

ecu

rren

tden

sity

int

heb

rain

isn

ott

hes

ame

asa

tthe

ele

ctro

des)

,but

FE

Mc

ompu

tatio

nalm

odel

spr

ovid

ea

met

hod

tod

oso

.In

the

expe

rim

enta

ldes

ign

ofa

nim

als

tudi

es,t

hee

lect

ric

field

gen

erat

ed

shou

ldc

orre

spon

din

inte

nsity

toth

atg

ener

ated

cli

nica

lly;o

ther

wis

ere

sults

sho

uld

bea

ppli

edto

the

clin

ical

cas

ew

ithc

autio

n.In

the

case

ofi

nvi

tro

brai

nsl

ice

stud

ies,

the

rep

lica

tion

ofc

lini

cale

lect

rica

lfiel

dsis

exp

erim

enta

llys

trai

ghtf

orw

ard

with

the

use

of

two

long

par

alle

lwir

esp

lace

dac

ross

the

bat

h,

gene

rati

ngu

nifo

rme

lect

ric

field

.The

sin

gle

unif

orm

ele

ctri

cfie

ldin

the

cham

ber

can

bes

impl

yca

libr

ated

,usi

nga

fiel

d-re

cord

ing

elec

trod

e,to

the

cur-

rent

app

lied

toth

ew

ires

.The

pos

ition

oft

heb

rain

sli

cein

the

unif

orm

fiel

dis

not

impo

rtan

tto

cont

rol;

mor

eove

r,m

ultip

les

lice

sca

nbe

scr

eene

dat

onc

e.

K13512_C003.indd 62 7/30/2012 6:50:39 PM

Page 9: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

63Cellular and Network Effects of Transcranial Direct Current Stimulation

beinterrelatedaselectrodedegradationwillmakeaportionoftheelectrodeinac-tive causing current re-distribution, while increasing electrode size (in particularelectrodecontactarea)reduceselectrochemicalburden.Wecaution:asmorediverseresearchgroupsapplyincreasinglysophisticatedtechniquestoanalyzetheeffectsofDCstimulationtounderstandthemechanismsoftDCS,itissimultaneouslynec-essarytoapplyrigor in themethodsusedtodeliverystimulationforeachanimalmodel.Ataminimum,the“dose”ofstimulationneedstobereportedinamannerthatallowsreproductionconsistentwithclinicalrulesofdosereportingandcontrol(Peterchevetal.2011).

Somecommentsonconventionsusedtoindicatethepolarityofstimulationmaybeuseful.Firstly, inbrain electrical stimulationanode andcathode terminologyshouldalwaysbeusedconsistentlyforindicatingtheelectrodewherepositivecur-rentisenteringthebody(anode)andtheelectrodewherepositivecurrentisexitingthebody(cathode)—thereisnobasistoconfusethesetermsinelectricalstimulationliterature(Merrilletal.2005).ForconventionaltDCSwithtwoelectrodes,thereissimplyoneanodeandonecathode,withtheanodeatapositivevoltagerelativetothecathode.Inclinicalandanimalstudies,anodal stimulationorcathodal stim-ulationwouldindicatethatacorticalregionofinterest(target)wasnearertheanodeorthecathode,respectively.Inearlieranimalliteraturethetermssurface positiveand surface negative, correspond to an anode or cathode, respectively, electrodeplacedthesurfaceofthecortex,withtheotherelectrodeoftenplacedontheneckorbody.Consideringthecorticalsurface,inward currentandoutward currentaretypicallyexpectedundertheanodeandcathoderespectively(thoughcorticalanat-omymayproducedeviations).Whendiscussingelectric field,thedirectionneedstobespecified.InourFEMstudiesweusetheconventionthataninwardcurrentwillproduceapositiveelectricfieldmeasured fromoutsidepointed in,while anout-wardcurrentwillproduceanegativeelectricfieldmeasuredfromoutsidepointedin(Dattaetal.2008)(unlessotherwisestated,itisimpliedthatthecurrentandelectricfieldsarenormal/orthogonaltothecorticalsurface,ratherthantangential/parallel).Current densitywillalwaysbeinthesamepolarity/directionastheelectricfield,forexamplecurrentdensityflowispositiveinward(intothecortex)undertheanode.Intissue/brainslices,thoughthetermsanodeandcathoderemainunambiguousinregardstotheelectrodes,theelectricfieldreferencedirectionisarbitraryandneedstobedefined.InourstudieswhereuniformDCstimulationisappliedtocorticalslices,wealwaysdefinetheelectricfieldaspositivewhentheanodeisonthepiasurfacesideof thesliceand thecathodeon themidbrainside—whileanegativeelectric field indicates the cathode on the pia side (Radman et al. 2009). In thiswayapositiveelectricfieldindicatesstimulationpolarity(direction)associatedwithclinicalanodal tDCS,whilenegativeelectricfield indicatesapolarityassociatedwithcathodal tDCS.Typically, inhippocampalslicestudiesusingparallelwires,apositiveelectricfieldindicates theanodeonthealveussideofCA1(Gluckmanet al.1996;Ghaietal.2000;Biksonetal.2004;Ranierietal.2012).Finally,thetermpolarizing,orpolarizingcurrent,isusedinclassicanimalliteratureandmod-erntDCS,andappearstorefertotheuseofprolonged(notpulsed)DCstimulationappliedwithmacro-electrodes,withthepolarizationrelatedtotheelectrodes,brain,and/orneurons.

K13512_C003.indd 63 7/30/2012 6:50:39 PM

Page 10: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

64 Transcranial Brain Stimulation

3.1.4  dose Control and meaningful animal studies

WeemphasizecautionwhendrawingconclusionsfromstudiesusinganyDCcur-rentsinanimalsthatdonotproduceselectricfieldmagnitudescomparabletothosegeneratedduringtDCS.ThesestudiesarevaluableinsuggestingmechanismsfortDCSbut,justaswithdrugs,increasingdosebeyondclinicallevels(byordersofmagnitude)caninducephysiologicalchangesnotrelevantclinically.Forexample,someanimalstudieshaveshownthatapplicationofDCcancontrolneuronalprocessorientationandgrowthdirection(Alexanderetal.2006;Lietal.2008);however,boththeintensityanddurationofelectricfieldswereordersofmagnitudegreaterthantDCS.Similarly,electroporationandjouleheatingcanbecausedbyelectric-ityingeneral,butdonotseemrelevantforclinicaltDCSelectricfields(Biksonetal.2009;Datta et al.2009;Liebetanzet al.2009).Thus, thesemechanismsandrelated animal studies are not considered further here. Additional theories havebeenventuredregardingtheroleofconcentrationchangesinducedbyDCcurrent(e.g.,iontophoresisofchargedmolecules/ions)(Gardner-Medwin1983),andthoughintriguing,toourknowledgenoquantitativeanalysisofplausibility,andmuchlessexperimentalevidence,existsfor tDCSrelevantelectricfields.Speculativedirectelectrochemicalchangesinthebrainshouldnotbeconfusedwith:(1)establishedelectrochemical reactions that occur at the electrode interface, which would notreachthebrainusingscalpelectrodes(Merrilletal.2005;Minhasetal.2010);(2)indirectchemicalandmolecularchangessecondarytoneuronalactivation(StaggandNitsche2011).Wealsocautionagainstany theories thatsuggestviolationofelectroneutrality during DC stimulation (e.g., “accumulation” of positive chargenearthecathode).Rather,asexplainedinthenextsection,ourmechanisticconsid-erationsstartwiththewell-establishedprincipleofmembranepolarizationinducedbyextracellularDCcurrentflow,withallotherchangessecondarytothispolariza-tion.Interestingly,inthiscontext,thecouplingsensitivityforhumanneuronsmaybehigherthananimals.

ThoughimportanttoourunderstandingoftDCSmechanism,mostanimalworkonDCstimulationinthe1960susedcurrentdensitieswithinvasiveelectrodeshigherthanusedintDCSatthescalp(mostofthesestudiesdidnotintendtomimictDCS).RecentanimalstudiesoftenusedtranscranialDCstimulationwithcurrentdensityat the skull higher than used in tDCS at electrodes (Fregni et al. 2007; Brunonietal.2011).Perhapsalsomotivatedbymagnifyingeffectsize(andnotnecessarilymotivatedonlybytDCS)manyrecentinvitrostudies,includingthosebyourowngroup, used electric fields higher than those generated clinically (Andreasen andNedergaard1996;Biksonetal.2004).Becauseofthecomplexity(nonlinearity)ofthenervoussystemfunctiononecannotautomaticallyassumeamonotonic (morefield=moreresponse)relationshipbetweenintensityandoutcome;however,invitrostudies that explore field strength-response curves indicate a surprisingly linearresponsecurveoverlowintensities(Biksonetal.2004;Reatoetal.2010),andmem-branecouplingconstantcertainlyappearslinearwithfieldstrength(seenext).Thoseinvitrostudiesthathaveexplicitlyexploredthelowerelectricfieldlimitofsensitivitytofields(seeSection3.4;Francisetal.2003;Jefferysetal.2003;Reatoetal.2010)reportstatisticallysignificantresponsesat<0.2V/m,withintDCSranges.

K13512_C003.indd 64 7/30/2012 6:50:39 PM

Page 11: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

65Cellular and Network Effects of Transcranial Direct Current Stimulation

OneexampleofhowtheuseofhighDCcurrentintensitiescanproduceeffectsoppositethanexpectedatDCrelevantintensitiesisnoted.Asdiscussedlater,inapolarity-specificmanner,DCfieldscanincreaseexcitabilityandevokedresponses(synapticefficacy).But if the intensityofDCcurrent is increased significantly, itmay increase excitability to the point that the neuron generates (high frequency)discharges—theresponsivenessoftheveryactiveneurontoanevokedresponsemaythendecreasebecauseitisofteninarefractorystate.Thiswasshowninbrainslice(Bikson et al. 2004) and may explain results in animal (Purpura and McMurtry1965)usinghighDCcurrentintensities.

3.1.5  outCome measures

Thesecondissuetoconsiderinthedesignoftranslationalstudiesistheappropriatenessoftheoutcomemeasureinanimalmodels,whichisnotspecifictotDCSandwillnotbediscussedindetailhere.InconsideringtheuseoftDCSinclinicaltreatment,ani-malmodelsofdiseasecanbeused,not simply tovalidateoutcomes,but tocharac-terizemechanisms andoptimize stimulationprotocols (Sunderamet al. 2010;Yoonetal.2012).Onefactorfacilitatingquantitativetranslationalresearchis thenotewor-thyemphasisbytDCSclinicalresearchertodetermineneurophysiologicalmarkersoftDCSincludingspontaneousEEG(Marshalletal.2004;Marshalletal.2006)andTMSmotorevokedresponses(NitscheandPaulus2000),includingwhilescreeningdifferentdosageandtime-course.Thesegenericclinicalmeasuresof“excitability”haveroughanimalanaloginspontaneousfiringrate,oscillations,andevokedresponses—though“evokedresponses”oroscillationsofagivenfrequencymaynothavethesameorigininanimalsandhumans.AnimalresearchintDCShasonlystartedtoaccessthebreadthofbehavioranddiseasemodelsthatareavailable.AssummarizedbyBrunonietal.(2011)

Although pre-clinical studies, including experiments with animals, are critical indevelopingnovelhumantherapies,translationalresearchalsohasseveralchallengingaspects, as animal and human studies can differ in characteristics of disease(i.e., ‘human disease’ vs. ‘experimental animal model’), definition of outcomes(especiallyforneurologicalresearchthatoftenrelyheavilyonbehavioraloutcomes….

Having outlined potential pitfalls in translational tDCS studies, the need andvalue ofwell-designed animal research remains evident.Contributions of animalstudiestoourcurrentunderstandingoftDCSandtheirimportanceastDCSbecomesmoresophisticatedarediscussedinthenextsections.

3.2  soMatiC doCtrine and need for aMplifiCation

Since2000(NitscheandPaulus2000;Ardolinoetal.2005;Fregnietal.2005,2007),therehasbeenrapidaccelerationintheuseoftDCSinbothclinicalandcognitive-neuroscienceresearch,encouragedbythesimplicityofthetechnique(twoelectrodesandabatterypoweredstimulator)and theperception that tDCSprotocolscanbesimplydesignedbyplacingtheanodeoverthecortexto“excite,”andthecathodeovercortexto“inhibit.”Startingwiththeconsiderationofsingleneuronsandacute

K13512_C003.indd 65 7/30/2012 6:50:39 PM

Page 12: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

66 Transcranial Brain Stimulation

effects,inthissectionwe(1)definethissimplisticandubiquitous“somaticdoctrine”;(2)consideritsorigininclassicanimalstudies;(3)describemoderneffortstoquan-tifysomaticpolarizationusingbrainslices;thisinturnleadstoanappreciationoftheneedforamplificationmechanisms.Discussionsfocusedspecificallyonmecha-nismof lastingchanges following tDCS(e.g.,plasticity)andconsiderationofnet-workactivityareleftforthenextsections.

3.2.1  neuronal polarization

DCstimulationwithelectrodesonthescalpleadstocurrentflowacrossthebrain,whichinturn,resultsinpolarizationofcellmembraneswhensomeofthiscurrentcrossesthemembrane(Ohms’law).Flowintoaspecificcompartmentofmembranewillresultinlocalmembranehyperpolarization,andflowoutofanothercompart-mentofmembranewill result in localmembranedepolarization (AndreasenandNedergaard1996;Biksonetal.2004).Itisfundamentaltoemphasize(especiallyas this concept is overlooked in clinical literature) that there is no such thing apurely depolarizing or purely hyperpolarizing weak DC stimulation—the phys-ics of electrical stimulation dictate that any neuron exposed to extracellular DCstimulationwillhavesomecompartmentsthataredepolarizedandsomethatarehyperpolarized (Chanet al. 1988;Biksonet al. 2004).Whichcompartments arepolarizedinwhichdirectiondependsontheneuronalmorphologyrelativetotheDCelectricfield.Simplistically,forapyramidaltypeneuron,withalargeapicaldendritepointed toward thecortical surface,a surfaceanode (positiveelectrode,generatingacorticalinwardcurrentflow)willresultinsomatic(andbasaldendrite)depolarizationandapicaldendritehyperpolarization(Radmanetal.2009).Forthissame neuron, a surface cathode (negative electrode, generating cortical outwardcurrentflow)willresultinsomatic(andbasaldendrite)hyperpolarizationandapi-caldendritedepolarization.tDCSprotocolsbasedonthe“somaticdoctrine”simplyassume that somatic polarization determines all relevant functional/clinical out-comes.Thisconsensusofagenericexcitation/inhibitionbyanodic/cathodicstimu-lationunderpinsamajorityofclinicaltDCSstudydesign(Figure3.2a)—combinedwiththeconceptthatbrain(dis)functionisaslidingscaleofexcitabilitythatcanbecontrolledinthisfashion.

3.2.2  modulation of exCitability, polarity-speCifiC effeCts

TheapplicationofDCstimulation(oftenasshortpulses)totheneuro-muscularsys-temdatestotheoriginofbatteries(indeed,aselectricalenergysourcesmustpre-dateanyelectricaldevices,humanandanimalsmadenaturaltargets).ThereviewofthehistoryofDCstimulationiswellbeyondthescopeofthischapter,butsomehighlightshelpposition theoriginof the “somaticdoctrine.” In1870Fritsch andHitzigmayhavebeenthefirsttoshowthatapplicationofapositivecurrenttothecortexhadstimulatingeffects,whileanegativecurrentinhibits(afindingthatitselfcontributedtoearlyunderstandingthatthecortexiselectricallyexcitable)(Fritsch1870; Carlson and Devinsky 2009). Terzuolo and Bullock (1956) and Creutzfeldtet  al. (1962) helped establish that ongoing discharge frequency is enhanced by

AQ3

AQ4

K13512_C003.indd 66 7/30/2012 6:50:39 PM

Page 13: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

67Cellular and Network Effects of Transcranial Direct Current Stimulation

surface-positive current and decreased by surface-negative currents (it is curioushowthedebateovertheroleofendogenouselectricfieldsisreflectedintheseearlyworksinwhichCreutzfeldtet al.suggestedtheyareepiphenomenawhileTerzuoloandBullocksuggestedaphysiologicalrole—indeedmodernworkwithweaktran-scranialstimulationhasprovidedthestrongestclinicalevidenceforaplausiblerole).Theconceptthatthresholdforelectricfieldsensitivitywouldbe“lowerformodula-tionofthefrequencyofanalreadyactiveneuronthanforexcitationofasilentone”wasthuswellestablished,withearlyobservationofchangesindischargeratewithfieldsaslowas0.8V/m(TerzuoloandBullock1956).

Note, the electricfields inducedby tDCSare considered far tooweak to trig-ger action potentials in quiescent neurons (compare >100 V/m induced by TMSto<1V/mby tDCS). It is thusnot surprising that earlyanimal studieson lower-intensityDCstimulationaddressedmodulationofongoingnormalorpathologicalneuronalfiring rate,aswellasevokedresponse. In theearly1960s,animalstud-ies by Bindman and colleagues (Bindman et al. 1962, 1964) confirmed polarity-specificchangesindischargerateandfurthershowedexcitabilitychangesthatarebothcumulativewithtimeandout-laststimulation(discussedinnextsection)—thisgroupwentontoexplorelong-durationstimulationinearlypsychiatrictreatment.Itwasalsorecognizedthatthedirectionofchangesindischargeratewereconsistentwithpresumedsomaticpolarization(anddependentontheorientationoftheapicaldendrites).Furthermore,animalstudiesinthe1950sand1960sexaminingcontrolof epilepticdischarges (Purpura et al. 1966), evoked responses (Creutzfeldt et al.1962;Bindmanetal.1964;PurpuraandMcMurtry1965),lastingeffectsandrelatedmolecularchanges(seealsonext;Gartside1968),alsoreinforcedtheconceptthatthedirectionofsomaticpolarizationdeterminedtheneteffectonexcitability/functionaloutcomes(Figure3.3).

3.2.3  Quantifying polarization witH Coupling Constants

AspecificandpredictiveunderstandingoftDCSrequiresquantitativemodel,begin-ning with quantification of somatic (and dendritic) polarization during tDCS. Inthe1980s,Chanandcolleagues(ChanandNicholson1986;Chanetal.1988)usedelectrophysiological recordings fromturtlecerebellumandanalyticalmodeling toquantify polarization under quasi-static (low-frequency sinusoid electric fields)—theseseminalstudiesidentifiedmorphologicaldeterminantsofneuronsensitivitytoappliedDCfields.WeextendedthisworktorathippocampalCA1neuronsandthentocorticalneuronswiththeapproachofquantifyingcell-specificpolarizationbyweakDCfieldsusingasinglenumber—the“couplingconstant”(alsocalledthe“couplingstrength”or“polarizationlength.”)Weassumedthatforweakelectricfields(stimu-lationintensitiestooweaktosignificantlyactivatevoltagegatedmembranechannels,andwellbelowactionpotentialthreshold)thattheresultingmembranepolarizationatanygivencompartment,includingthesoma,islinearwithstimulationintensity.Foruniformelectricfields,themembranepotentialpolarizationcanbeexpressedas:Vtm=G*EwhereVtmisthepolarizationofthecompartmentofinterest(in:V),Gisthecouplingconstant(in:VperV/m,orsimply:m)andEistheelectricfield(in:V/m)alongtheprimarydendriticaxis.Forrathippocampusandcorticalneuronsthe

K13512_C003.indd 67 7/30/2012 6:50:40 PM

Page 14: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

68 Transcranial Brain Stimulation

somaticcouplingconstantisintherangeof0.1–0.3mVpolarizationperV/melectricfield(Figure3.2c;Biksonetal.2004;Deansetal.2007;Radmanetal.2009).Forferretcorticalneurons thecoupling issimilarly∼0.25mVperV/m(FrohlichandMcCormick2010).Forhumans,assumingscalingofsensitivitywithtotalneuronallength(JouclaandYvert2009)somaticdepolarizationperV/mmightbehigherthaninanimals.

�e principle of “somatic doctrine” in basic tDCS montage design

Quanti�cation of somatic (and dendrite) polarization under DC �elds

Current �ow (electric �eld)outward from brain

Current �ow (electric�eld) inward to brain

Depolarizedsoma

Somatic depolarization =“excitation” under anode

Somatic hyperpolarization =“inhibition” under cathode

(a)

(b)

Layer II/IIIPyramidal0.1 mV/V/m

100um

Layer IInterneuron0 mV/V/m

Shutter

Photodiode array

EM

DM

EX

0.05%200 ms

Layer V/VIBursting Pyramidal0.4 mV/V/m

Somatic sensitivity/coupling constant/polarization length

E-�eld

Hyper-polarizedapical dendrite

Hyper-polarizedsoma

Depolarizedapical

dendrite

figure  3.3  The principle and quantification of the somatic doctrine. (a) The somaticdoctrinesimplifiestDCSdesignbyassuminginwardcurrentflowundertheanode,leadingtosomaticdepolarization,andagenericincreaseinexcitabilityandfunction.Underthecath-ode,anoutwardcurrentleadstosomatichyperpolarizationandagenericdecreaseinexcit-abilityandfunction.(b)Moderneffortstoquantifysomaticpolarizationinanimalmodelshaveconfirmedsomeaspectsofthesomaticdoctrine,atleastunderspecificcontrolledandtestedconditions,butindicatedthatthepolarizationproducedbytDCSwouldbesmall.

AQ5

K13512_C003.indd 68 7/30/2012 6:50:40 PM

Page 15: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

69Cellular and Network Effects of Transcranial Direct Current Stimulation

Themaximaldepolarizationoccurswhen theelectricfield isparallelwith thesomatic-dendritic axis which corresponds to radial to the cortical surface, whileelectric field orthogonal to the somatic-dendritic axis do not produce significantsomaticpolarization(Chanetal.1988;Biksonetal.2004;butseeaxon terminalpolarizationnext).Thesomaticcouplingstrength is roughly related to thesizeofthecellandthedendriticasymmetryaroundthesoma(Svirskisetal.1997;Radmanetal.2009)makingpyramidalneuronsrelativelysensitive.Forcorticalpyramidalneurons,thetypicalpolarityofsomaticpolarizationisconsistentwiththe“somaticdoctrine”(e.g.,positivesomaticdepolarizationforpositiveelectricfield).Thepolar-ityofthecouplingconstantisinverted(usingourfielddirectionconvention)forCA1pyramidalneuronsduetotheirinvertedmorphology.Usingexperimentalandmod-elingtechniquesthecouplingconstantofdendriticcompartmentscanalsobeinves-tigated;generally themaximalpolarization is expectedatdendritic tufts (Biksonetal.2004),butshouldnotexceed,inanimals,∼1mVpolarizationperV/melectricfield(Chanetal.1988;Radmanetal.2007,2009).

If tDCSproduces apeak electricfieldof 0.3V/mat 1mA (with themajorityof cortex at reduced values) then the maximal somatic polarization for the mostsensitivecellsis∼0.1mV.Similarly,for2mAtDCSstimulation,themostsensitivecellsinthebrainregionwiththehighestelectricfieldwouldhavesomaticpolariza-tionof∼0.3mV.Far from“closing thebook”on tDCSmechanism,workbyourgroupandothersquantifyingthesensitivityofneurontoweakDCfields,hasraisedquestionsabouthowsuchminimalpolarizationcould result in functional/clinicalchanges especially considering that endogenous “background” synapticnoise canexceedtheselevels.Inrecentyears,motivatedbyincreasedevidencethattranscra-nialstimulationwithweakcurrentshasfunctionaleffects,aswellasongoingques-tionsabouttheroleofendogenouselectricfieldswhichcanhavecomparableelectricfields, themechanismsofamplificationhavebeenexplored inanimalstudies;weorganizetheseeffortsbynon-linearsinglecellproperties(discussednext)aswellassynapticprocessingandnetworkprocessing(addressedinthenextsections).

3.2.4  amplifiCation tHrougH rate and timing

Atthesinglecelllevelthemostobviousnon-linearresponsethatcouldprovideasub-strateforacuteamplificationistheactionpotential.AstheelectricfieldsinducedbytDCSarefartooweaktotriggeractionpotentials(AP)inneuronsatrest(i.e.,∼15mVdepolarizationfromresttoAPthereshold,onecanconsiderinsteadmodulationofongoingAPactivity.Atthesinglecelllevelwe(1)consideracuteimplicationthroughtherateofactionpotentialgeneration(rateeffects);and(2)developtheconceptofamplificationthroughchangeinthetimingofactionpotential(timingeffects).AsalreadydiscussedclassicanimalstudiesonweakDCstimulationaddressedtherateofchangeofspontaneousactionpotentialdischargerateinmanysystemschangesroughlylinearlywithmembranepolarization.Theamplification(gain)wouldrelatetosensitivityofdischargeratetomembranepolarization.TerzuoloandBullock(1956)reportedadetectablechangeindischargeratedownto0.8V/m,andthisdetectionthresholdwouldlikelydecreasewithlongerexperiments.Assuminga0.6V/mpeakelectricfieldduring2mAtDCSleadingto∼0.2mVsomaticpolarization,andthat

AQ6

AQ7

K13512_C003.indd 69 7/30/2012 6:50:40 PM

Page 16: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

70 Transcranial Brain Stimulation

acrossanimalstudieschangesinfiringratesof7HzpermVmembranepolariza-tionarereported(CarandiniandFerster2000),achangeinfiringrateof∼1.5Hzisplausible.Theaforementionedconsiderationisforisolatedneurons,forneuronsinanactivenetwork(seeSection3.4).

In2007,weproposed that changes in actionpotential timing (rather thandis-chargerate)canacttoamplifytheeffectsofweakpolarization(Radmanetal.2007).Specificallyweshowedinbrainslicerecordingandinasimpleneuronmodelthattheresultingchangeintimingwassimplytheinducedmembranepolarizationtimestheinverseoftherampslope(Figure3.4aandb);theinverseoftherampslopeisthusa“gain/amplification”termbecausethemoreshallowaramp,thelargerthetimingchangeforgivensmallpolarization(Figure3.4candd).Forexample,assumingasaforementioneda∼0.2mVsomaticpolarizationduring2mAtDCS,theninresponsetoa1mV/mselectricfield,timingwouldchangeby0.3ms.Wealsoextendedthesefindings toACfields (Radmanetal.2007).Both thecouplingsensitivityand the

*

∆T = ∆V/Ramp slope∆T

∆V

∆V ∆V

4 mV100 ms

∆Ta ∆Tb

(a)

(e)

(c) (d)

(b)

25

20

15

10

2.52.01.51.0

Sens

itivi

ty o

f firi

ng ti

me

to p

olar

izat

ion

(ms/

mV

)

0.50.0

Sensitivity = Ramp slope–1

Cha

nge

firin

g tim

e (m

s)

5

00 0.2 0.4 0.6 0.8

10 mV1 msDepolarizing applied field

No applied field Amplification of weak fieldinduced polarization though timing

changes at the single cell level

1 1.2Membrane polarization (mV)

0 0.5 1 1.5 2 2.5 3Ramp slope (mV/ms)

AP thresholdAP threshold

Ramp slope 0.6 mV/ms (gamma)Ramp slope 0.13 mV/ms (theta)Ramp slope 0.05 mV/ms

figure 3.4  IncrementalmembranepolarizationproducedbytDCSmaysignificantlyaffectthetimingofactionpotentialsinresponsetoaramp(synaptic,oscillation)input.Moreover,theamplificationofeffect(changeintimingperchangeinmembranepolarization)increasedformoregradualinput.(a)Schematicillustratestheprincipleoftimingamplification.(FromRadman,T.etal.,J. Neurosci.,27,3030,2007b.)(b)Thetimingamplificationwasvalidatedin hippocampal CA1 neurons using intracellular injected current ramp of various slopes.(candd)Thetimingchangeincreasedwithmembranepolarizationwithasensitivity(ampli-fication)thatistheinverseoftheinputrampslope.Theamplificationwouldfunctionduringprocessingof incoming synaptic input includingoscillations. (e)Demonstrationof timingchangeinresponsetoanincomingEPSP.nAincrementaldepolarizationproducedbydirectcurrentledtosignificantchangeinactionpotentialtiminginresponsetoasynapticinput.

K13512_C003.indd 70 7/30/2012 6:50:40 PM

Page 17: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

71Cellular and Network Effects of Transcranial Direct Current Stimulation

timingchangeswereconfirmedbyAnastassiouetal.(2010)usingamorecomplexmodel.Thoughtheprincipleoftimingamplificationgeneralizestoothercelltypesandtosynapticinput(Figure3.4e;Biksonetal.2004),thesimpleamplificationequa-tion(Figure3.4a)makesspecificassumptionsaboutmembranedynamics(Radmanetal.2007)thatmaynotextendtoallcelltypes(Radmanetal.2009).

Additionalmechanismsofamplificationat thesinglecell level remainanareaofactiveinvestigation,especiallywhenconsideringhowexposuretolong-durationfields(e.g.,minutesasusedintDCS)mayproducecumulativeeffectsnotobservedduringshorttermapplication(e.g.,molecularchanges;Gartside1968;Fritschetal.2010;Ranierietal.2012).Itremainsanopenandkeyquestionhowprolonged(min-utes)polarizationofboththesomaanddendritescanthentriggerspecificchemi-calandmolecularcascades,therebyleadingtotheinductionofplasticity(seenextsection).

3.2.5  seizure tHresHold and modulation

Thecouplingconstantalsoprovides insight into thesafetyof tDCS in regards totriggeringofseizuresduringstimulation.WhereasTMSproduces100V/mpulsedelectricfieldsthataresuprathreshold,tDCSresultsinastaticelectricfield<1V/mat2 mAproducing<1mVofpolarization.AnimalstudiesindicatethatonlyapplicationofDCfields>20V/m(correspondingto>60mAtDCS)wouldtriggeractionpoten-tialinthemostsensitivequiescentcorticalcells(Radmanetal.2009)whileelectricfieldsof∼100V/m(correspondingto>500mAtDCS)inthesomaticdepolarizingdirectioncantriggerepileptiformactivityinhippocampalslices(Biksonetal.2004).Thisthresholdwoulddecreaseforalreadyactiveneurons.Inbrainslices,weakDCstimulation (on the order of 1 V/m) can modulate ongoing epileptiform activity(Gluckmanetal.1996;Ghaietal.2000;DurandandBikson2001;Suet al.2008;Sunderamet al.2010),suchthat thecathodal tDCSmaycontrolongoingseizureswhileanodaltDCSmayaggravateseizureactivity.Inapolarity-specificfashion(con-sistentwithsomaticpolarization)DCstimulationcanalsomodulatethepropagationofepileptiformactivityinslices(Gluckmanetal.1996),spreadingdepressioninvivo(Liebetanzetal.2006),andperhapsclinicalepileptiformactivity(Vargaet al.2011).Thoughtheacute(duringstimulation)effectsofweakDCcurrentsonepileptiformactivityarewellestablishedinanimalmodels, itremainsanopenquestionifandhowprolongedDCstimulationmodulatesseizure propensity.Animal studiessug-gestthatprolongedcathodalDCstimulationcanbeanti-convulsant,whilereportsoftheeffectofanodaltDCSaremixed(Hayashietal.1988;Liebetanzetal.2006),andpilothumanstudiessuggestananti-epilepticeffect.

3.2.6  limitations of tHe somatiC doCtrine

Themostevidentlimitationofthesomaticdoctrineispreciselywhatcellcompart-ments it ignores: thedendritesandaxons.While thebasaldendritewillbepolar-ized similarly as the soma, the apical dendrite will be polarized in the oppositedirection (Figure 3.3; Andreasen and Nedergaard 1996; Bikson et al. 2004). Thedendritesareelectricallyexcitable.Animalstudieswithhigh-intensityappliedDC

K13512_C003.indd 71 7/30/2012 6:50:41 PM

Page 18: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

72 Transcranial Brain Stimulation

fields(∼100V/m)haveshownthatwithsufficientlystrongstimulation,activepro-cesses(spikes)canbetriggeredinthedendrites(Chanetal.1988;WongandStewart1992;AndreasenandNedergaard1996;Delgado-Lezamaetal.1999).Evenif theelectricfieldsinducedduringtDCSarenotsufficientinthemselvestotriggerden-driticspikes,theroleofdendriticpolarizationduringtDCSremainsanopenques-tionespeciallywhenconsideringprocessingofsynapticinput(nextsection).

Itiswellestablishedthataxonsaresensitivetoappliedelectricfields;themagni-tudeanddirectionofpolarizationisafunctionofneuronalandaxonalmorphology(BullockandHagiwara1957;TakeuchiandTakeuchi1962;Salvadoretal.2010).Whiletheaxoninitialsegmentwouldlikelybepolarizedinthesamedirectionasthesoma(Chanetal.1988),forlongaxonsthisisnotnecessarilythecase.Thusitisusefultoseparatelyconsidertheaxoninitialsegments(withinamembranespaceconstantofthesoma)andmoredistalaxonalprocesses,whichcanbefurtherdividedinto“axons-of-passage”andafferentaxonswithterminations(discussedinthenextsection).Notably,forlongstraightaxons-of-passage(e.g.,PeripheralNervousSystem,PNS)cathodalstimulationwillbemoreeffectivethananodalstimulationininduc-ing depolarization (opposite to the somatic doctrine; Bishop and Erlanger 1926).It has been shown that lasting changes can be induced in PNS axons in humans(sobyimplicationinCNSaxonsindependentofsomaticactions)andalso,inbrainslices,thatweakDCfieldscanproduceacutechangesinCNSaxonexcitability(pre-synaptic/antidromicvolley)(Jefferys1981;Biksonetal.2004;Kabakovetal.2012).Animportantroleforaxonterminalpolarizationisintroducedinthenextsection.

Apresumptionofthesomaticdoctrineisthatundertheanodecurrentsareradialandinwardthroughthecortex,whileunderthecathodecurrentisradialandoutward(Figure3.3).However,high-resolutionmodelingsuggeststhatinconvolutedhumancortex,currentisneitherunidirectionalnordominantlyradial.Thoughthe“somaticdoctrine” isbasedonlyonradiallydirectedelectricalcurrentflow(normal to thecorticalsurface),duringtDCSsignificanttangentialcurrentflowisalsogenerated(along thecortical surface). Indeed, recentworkbyourgroupsuggests tangentialcurrents may be more prevalent between and even under electrodes (Figure 3.1).Asdiscussednext,tangentialcurrentscannotbeignoredinconsideringtheeffectsof tDCS.Moreover,duetocorticalfoldingthedirectionorradialcurrentflowundertDCSelectrodesisnotconsistent,meaningthereareclusterofbothinward(depolar-izing)andoutward (hyperpolarizing)corticalcurrentflowundereither theanodeorthecathode!Duetothecorticalconvolutions,currentisnotunidirectionalunderelectrodes thus under the cathode there may be isolated regions of inward corti-calflow,andinthoseregionsneuronalexcitabilitymayincrease(Creutzfeldtetal.1962).Therelativeuniformityofdirectionacrossagivenpatchofcortexdependsontheelectrodemontage,withelectrodeacrosstheheadproducingthemostconsis-tentpolarizationundereachelectrode(Turkeltaubetal.2011)andcloserelectrodes,suchastheclassicM1-SO(anodeonmotorstrip,cathodeoncontralateralsupraor-bitalarea)montage,producingbidirectionalcurrentflowwithaslightdirectional-itypreferenceon average in someregionsunder theelectrodes (Figure3.1).ThisseemspuzzlinginlightofthedependenceonthesomaticdoctrineintDCSmontagedesignandstudyinterpretation.Theroleoftangentialandbidirectionalcurrentflowisaddressedinthenexttwosections.

K13512_C003.indd 72 7/30/2012 6:50:41 PM

Page 19: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

73Cellular and Network Effects of Transcranial Direct Current Stimulation

3.3   plastiCity, synaptiC proCessing, and a “terMinal doCtrine”

The clinical need for lasting changes by tDCS relates to the impracticality ofconstantstimulationwithnon-invasivetechnology(i.e.,wearingastimulationcapallthetime).ThedesireforlastingchangemeanstDCSshouldinfluenceplastic-ityduringorafterstimulationincognitive/therapeuticrelevantway(Yoonetal.2012).ThissectionaddressesthecontributionofanimalstudiestounderstandingplasticitygeneratedbyweakDCelectricfields.Thecontributionofearlytransla-tionalstudiestotDCSprotocolsisnotableasBindmanandcolleagues(Bindmanetal.1962)recognizedtheimportanceorprolongedDCstimulationtoproducelastingeffects (>5min),which informed theirearlywork in tDCSofpsychiat-ric disorders (Costain et al. 1964; Redfearn et al. 1964) and the multi-minutestimulationrequiredintheNitscheandPaulus(2000)report, thatinturnestab-lishedtheuseofprolongedstimulationacrossmoderntDCSstudies.Theneedforprolonged(minutes)stimulationtoinduceplasticity(mechanism)andprotocolsforoptimizing long-lastingchanges (clinicalutility) remains a centralquestionintDCSresearch(Monte-Silvaetal.2010).Marquez-Ruizrecentlysummarized(Marquez-Ruizetal.2012)

WhentDCSisofsufficientlength,synapticallydrivenafter-effectsareinduced.Themechanismsunderlyingtheseafter-effectsarelargelyunknown,andthereisacom-pellingneedforanimalmodelstotesttheimmediateeffectsandafter-effectsinducedbytDCSindifferentcorticalareasandevaluatetheimplicationsincomplexcerebralprocesses.

Animal studies in the 1960s also helped established that weak DC currentproduces plastic changes (a lasting physical change in the brain rather than a“reverberatingcircuit”ofactivation)(Gartside1968).Asnotedearlier,earlyani-malstudiesalsocontributed toestablishing the“somaticdoctrine” in tDCSbutmodernclinicalstudiesontDCShavesuggestedthatchangesinexcitabilityarenotnecessarilypolarity specific (Marquez-Ruiz et al. 2012), ormonotonicwithintensity such that cathodal or anodal stimulation can produce variable effectsdependingonintensity,duration,orunderlyingactivity.Inthepastdecade,animalandcomputationalstudiesarebeginningtoaddresstheseissues.Bothinhumansandanimalstudieschangesinevoked(synapticallymediated)neurophysiologicalresponsesareconsideredreliablehallmarksofplasticchangesthatcouldsupportbehavioralorclinicallastingchanges(andarethusafocusofthissection),thoughonerecentreportinrabbitsindicatedthiswasnotsimplythecase(Marquez-Ruizetal.2012).

3.3.1  paradigms for dC modulation of synaptiC effiCaCy

IntheprevioussectionitwasdiscussedthatastDCSelectricfieldsaresub-threshold(tooweaktotriggeractionpotential inquiescentneurons); theiracuteroleisthustrulyneuromodulationthrougheitherrateortimingeffects.WeakDCstimulation

K13512_C003.indd 73 7/30/2012 6:50:41 PM

Page 20: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

74 Transcranial Brain Stimulation

may generate plasticity through different paradigms, which are not necessarilyexclusive:

1.Membranepolarizationmaytriggerplasticchangesinamannerindepen-dentofanyongoingsynapticinputoractionpotentialgeneration(i.e.,simplyholdingthemembraneatanoffsetpolarizationinitiateschanges).Thoughinacorticalbrainslicemodel(withnobackgroundactivity),weakpolariza-tionwasnotsufficienttoinduceplasticchanges(Fritschetal.2010).

2. Changesinactionpotentialdischargerateortiming,secondarytoneuronalpolar-ization,wherethefiringchange(whichisdependentonmanyfactorsincludingthedirectpolarization)actuallydeterminesplasticity.“Thereissomeevidencethat adetermining factor inproducing long-lastingafter-effects is thechangeinthefiringrateofneuronesratherthanthe…currentflowthatproducesthechanges”(Bindmanetal.1964).ThoughclassicanimalstudiesindicatedweakDC stimulation is sufficient to induce plastic changes (Gartside 1968) is itimportanttonotethatpolarizationwouldaffectanetworkofneuronssuchthatincreasedfiringinafferentswouldinfactincreasesynapticinput(seenextpoint).

3.Polarizationofthemembraneincombinationwithongoingsynapticinput.Though it isestablished thatweakDCstimulationcan lead toacuteandlastingchangesinsynapticefficacy(seenext),thespecifichypothesishereis that the generation of plasticity requires synaptic co-activation duringDC stimulation. Evidence from brain slices (Fritsch et al. 2010) showspotentiationunderanodalstimulationonlyduringspecificitymatchedpat-terns(frequencies)ofsynapticinput.Inarabbitstudy,DCwascombinedwithrepeatedsomatosensorystimulation,leadingtoacutepolarity-specificchanges, and lasting changes for the cathodal case (Marquez-Ruiz et al.2012).Ifdependentoncombinedpolarizationandsynapticinput,thensyn-apsespecificchangesareplausible.IfoneassumesDCexertsapost-synapticprimingeffect(polarizationofsoma/dendrite)thanco-activationofafferentsynapticinputcouldbeconceivedasHebbianreinforcement(exceptpost-synapticactionpotentialsmayormaynotberequired).Clinicallythisplas-ticityparadigmisbroadlyanalogoustocombiningtDCSwithacognitivetaskorspecificbehaviorthatco-activatesatargetednetworkorcombiningtDCSwithTMS.Indeed,workshowingtheimportanceofco-activationincorticalslice(Rioult-Pedottietal.1998;HessandDonoghue1999),influ-enced Nitsche and Paulus (2000) in developing tDCS. However, thoughTMSisusedtoprobetheeffectsof tDCS, it turnedoutnot tobeneces-sarytoapplyitduringtDCS.Wewouldnotethat,unlikeinbrainsliceandanesthetizedanimalmodels,thehumancortexisconstantlyactivesuchthattDCSisalwaysappliedonconjunctionwithongoingsynapticinput.

4.Polarizationofthemembraneincombinationwithongoingactivitythatitselfisindependentlyleadingtopotentiation(i.e.,modulationofongoingplasticity).Forexample, intheaforementionedrabbitstudy,DCstimulationmodulatedongoingsynaptichabituation,amodelofassociativelearning(Marquez-Ruizetal.2012).ClinicallythisfourthparadigmisanalogoustocombingtDCSwithlearning/training(Bologninietal.2010).Evidencefrombrainslices(Ranieri

K13512_C003.indd 74 7/30/2012 6:50:41 PM

Page 21: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

75Cellular and Network Effects of Transcranial Direct Current Stimulation

etal.2012)showsDCmodulationofLTPinducedbytetanicstimulation,inapolarity-specificmannerapparentlyoppositetothesomaticdoctrine(whenoneconsidersthatCA1neuronmorphologyresultsin“anodal”stimulationproduc-ingsomatichyperpolarization).Usingintracellularcurrentinjection,Artolaetal.(1990)showedthatdependingonthelevelofpolarizationofthepost-synap-ticneuron,thesametetanicstimulationcaninduceLTDorLTP.

Aseparateclassificationincludeslastingchangesthatare:(1)“synaptic”:occuratsynapticprocesses(e.g.,increasedvesiclerelease,receptordensity)andareblockedby synaptic antagonists; versus (2) “non-synaptic”: occur independentof synapticprocesses(e.g.,membranepolarization).Thoughthesynapseistypicallyconsideredthelocusofplasticchanges,socalled“non-synaptic”changeshavebeennotedafterDCstimulationinperipheralaxonsawayfromanysynapse;importantly,inthiscase,cathodalstimulationinducingpotentiation(Ardolinoetal.2005)whichisconsis-tent with cathodal stimulation induced preferential depolarization in long axons.Clinically,thequestionof“synaptic”versus“non-synaptic”originoftDCSmodula-tionintheCNShasbeenexploredanddebatedbydistinguishingmodulationofTMSversusTESevokedpotentials—bothofwhich,inouropinion,havevariableorigin(dependingonmethods).Moreover,usingeitherTESorTMS,thepresenceofandroleofbackgroundsynapticactivityinprimingexcitabilityduringtDCS,regardlessof“synaptic”or“non-synaptic”locus,muddlesanyefforttodisambiguatethemech-anismalongtheselines.However,inbrainslicemodels,wherebackgroundsynapticactivity isabsent,synaptic(orthodromic)andnon-synaptic(axon,antidromic)canbepreciselyisolated—seediscussiononaxoneffectsgivenearlier.Itisimportanttonotethatasfarasoutcome,intheCNSchangesof“non-synaptic”originwouldbeexpectedtoaffectsynapticprocessing(MozzachiodiandByrne2010).

Whenconsideringthecomplexityof(multipleformsof)tDCSplasticity,theneedforanimalmodelsisevident.Animalmodelsallowforsynapticefficacytobequan-titativelyprobedwithpathwayspecify—theimportanceofwhichwediscussnext.Themechanismsofplasticitycanbeanalyzedusingspecificpharmacologynotprac-ticalinpeople(fortoxicity),nottomentiontheabilitytoresecttissuefordetailedcellularandmolecularanalysis(Islametal.1995;Yoonetal.2012).Thoughlimitedtotimescalesofhours,theuseofbrainslicefurtherfacilitatesimaging,precisedrugconcentrationcontrol,controlofthebackgroundlevelandnatureofongoingactivity(fromquiescent,totransientactivationatspecificfrequencies,tooscillations,toepi-leptiform)and,especiallyrelevantfortDCS,thecontrolofelectricfieldorientationrelativetoslice(Figure3.5).Itmaynotbeprudenttoreverttoaone-dimensional“sliding scaleof excitability”explanationwhere anodal/cathodal tDCS increases/decreases“function”leadingtolastingincreases/deceasesingenericsynapticplas-ticity,whicharethenrelatedtocognitive/behaviorchanges—ThisapproachseemssimplisticandunlikelytoultimatelyadvancetDCSsophisticationandefficacy.

3.3.2  relation witH tetaniC stimulation induCed ltp/ltd

Animalstudiesusingtetanicstimulationtoinducelong-termpotentiation/depression(LTP/LTD)havesuggestedmultipleformsofplasticity,involvingdistinctpre-and

K13512_C003.indd 75 7/30/2012 6:50:41 PM

Page 22: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

76 Transcranial Brain Stimulation

post-synapticmechanisms,ondistincttimescales.WhencomparingthethousandsofstudiesontetanicLTPcomparedwiththe<50animalstudiesonDCinducedplastic-ity,onemayspeculatethat,despiterecentprogress,thereismuchtoinvestigateabout(multiplepotentialforms)ofweakDCstimulationinducedplasticity(Bindmanandcolleague’sconclusionin1964that“atthemomentwearenotinapositiontodiscussthewayinwhichpolarizingcurrentsactsonneuronstoalterlong-termexcitability”comes to mind [Bindman et al. 1964]). LTP/LTD induced by tetanic stimulationandbyDCcurrentmay,notsurprisingly,sharesomecommonmolecularsubstrates(Gartside1968;Islametal.1995;Ranierietal.2012).Itisremarkablethatadecadebefore the lauded discovery of Long Term Potentiation by trains of suprathresh-oldpulsesbyBlissandLomo(1973),animalstudieshadshownlastingchangesinexcitabilityfollowingDCstimulationlastinguptohours(Bindmanetal.1962)andmoreoverhadbegunestablishedplasticchangesandstartedtoaddresstheunderly-ingmolecularmechanisms(Gartside1968)andtranslatingresultstohumans!Itwasrecently suggested that tDCSshares someof theclassicalmolecularmechanismsassociatedwithtetanicstimulationLTP/LTD(Marquez-Ruizetal.2012)includingadenosine-elicitedaccumulationofcAMP(Hattorietal.1990)inducingincreasedproteinkinaseCandcalciumlevels(Islametal.1994,1995).Thewealthoftech-niquesandtoolsdevelopedbythe“cottageindustry”oftetanicstimulationLTPhave

Interrogation of electric-�eld direction and pathway speci�c DCmodulation using brain slices

Electric �eld direction iscontrolled simply by slice

rotation

Rat hippocampal brain slice(with �eld and pathway activation electrodes)

Rat cortical brain slice(with �eld and pathway activation

electrodes)

Elec

tric

�el

d

+

S1

PIA S3 S4 III/IIIV/VI

+

WM

R1 S2R2

REF

+

Electric�eld

(a)

(b)

Pre-ampli�er+

CA1

Ag/AgCl uniform �eld stimulation electrode Ag-AgCl uniform �eld stimulation electrode

Iso-potential line

CA3Elec

tric

�el

d LMOR

+

+

0° 45° 90°

figure 3.5  FurtheradvantagesofthebrainslicepreparationinstudyingmechanismsofweakDCstimulation.(a)Adiscussioninthetext,thedirectionoftheappliedelectricfieldrelativetothesomato-dendriticaxiscanbepreciselycontrolled.(AdaptedfromBikson,M.etal.,J. Physiol.,557(Pt1),175,2004.)TheeffectsofDCcurrentonbrainfunctionmayvarywithorientation.(b)Synapticfunction/efficacyisnot“onething,”rathertherearemultipledistinct synaptic afferent toanybrain regionwhichcanbeevaluated in isolation inbrainslices.TheeffectsofDCcurrentonsynapticfunctionmaybehighlypathwayspecific.

K13512_C003.indd 76 7/30/2012 6:50:42 PM

Page 23: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

77Cellular and Network Effects of Transcranial Direct Current Stimulation

yettobefullyleveragedtodissectthemechanismsoftDCS—butthisseemsamatteroftime.Inthecontextoftranslationalimportance,itisalsointerestingthatprotocolsusingtetanicstimulationinanimalshaveinfluencedthedesignofTMSprotocols(LTP/LTD,theta-burst,etc.).

3.3.3   wHiCH Compartments are influenCed by dC stimulation: soma and dendrites

Asdiscussedearlier,weassumethattheactionsofDCstimulationinitiatewithmem-branepolarization,withallother(complex)changessecondarytothispolarization.WenotedthatDCpolarizationwillinfluenceallneuronsinareasofthebrainwithcurrentflow,withequalportionsmembranedepolarizationandhyperpolarization.Ourresearchisthusfocusedonwhichmembranecompartments(soma,dendrites,axonsprocess,axonterminals)whenpolarizedbyweakDCstimulationarerelevantfromboththeperspectiveoflocusofchangeandmechanism.Canthesomaticdoc-trinebeusedtopredictplasticitychanges?Orisplasticityrelatedtopolarizationofspecificdendriticoraxonalcompartments?

Ifoneconsiders the lastingeffectsof tDCStobegenerallyanalogous to long-termpotentiationthentDCSeffectshowinformationisprocessedbyneuronsthoughalteredsynapticefficacy.Thoughthesomaisimportantforintegrationofsynapticinput, thedendritesevidentlyplayacentralroleinsynapticprocessingandintheinductionofplasticity.SeveralanimalandclinicalstudieshaveimplicatedprocesseslinkedtothedendritesintDCS(e.g.,glutamatergicreceptorsliken-methyl-D-aspar-tic receptor, NMDAR) (Liebetanz et al. 2002; Nitsche et al. 2003; Ranieri et al.2012;Yoonetal.2012).Akeyquestionisthus:ashalfthedendritewillbepolarizedinthesamedirectionatthesomaandhalfofthedendritewillbepolarizedintheoppositedirection(Figure3.3),howdopolarity-specificchangesarise?Arechangesin synaptic processing/plasticity always consistent with the somatic doctrine? Assummarizednext,theanswerseemstobe:“itdepends.”

Earlyworkprobingevokedresponsesinanimalmodelsindicatedmodulationinexcitability,withthedirectionofevokedresponsechangeconsistentwiththesomaticdoctrine(Creutzfeldtetal.1962;Bindmanetal.1964)thoughBishopandO’Leary(1950)alreadynoteddeviations.RecentstudiesaimedatdevelopingandvalidatedanimalmodelsoftranscranialelectricalstimulationhaveshownmodulationofTMSevokedpotentialandvisualevokedpotentialsconsistentwiththesomaticdoctrine(Cambiaghietal.2010,2011).Inapioneeringworkusinguniformelectricfieldsinbrainslices,Jefferysshowedacutemodulationofevokedresponses inthedentategyrusofhippocampalsliceswhenelectricfieldswereparallel to theprimary tar-getcelldendriticaxis,withpolarity-specificchangesconsistentwithsomaticpolar-ization, and no modulation when the electric field was applied orthogonal to theprimarydendriticaxis(Jefferys1981).Theprecisecontrolofelectricfieldangleispossibleinbrainslicesandleveragedinfuturework.

InBiksonetal.(2004)weusedthehippocampalslicepreparation,whichwasini-tiallyconceivedasaseriesofstraightforwardexperimentstoconfirmthevalidityofthesomaticdoctrineinpredictingacutechangesinexcitability—tooursurprisewefoundseveraldeviations.Opticalimagingwithvoltagesensitivedyesprovideddirect

K13512_C003.indd 77 7/30/2012 6:50:42 PM

Page 24: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

78 Transcranial Brain Stimulation

evidencethatDCelectricfieldsalwaysproducesbimodalpolarizationacrosstargetneuronssuchthatsomaticdepolarizationisassociatedwithapicaldendritehyperpo-larization,andviceversa—yetoverlongertimescalesinteractionsacrosscompart-mentswereobserved.Inaddition,forsynapticinputstothesomaandbasaldendrite,wereportedmodulationconsistentwiththesomaticdoctrine(consideringtheinver-sionrelative).ButforstrongsynapticinputontotheapicaldendritictuftbothDCfieldpolaritiesenhancedsynapticefficacy—suchthatdendritedepolarizationwithsomatic hyperpolarization also enhanced synaptic efficacy. Also in hippocampalslices,bothKabakovetal.(2012)andRanierietal.(2012)reportedmodulationofsynapticefficacyinadirectionoppositetothatexpectedfromthesomaticdoctrine(again noting inversion of dendrite morphology in CA1 pyramids relative to cor-tex). In thesecases,onemay speculate theapicaldendritedepolarization (despitesomatic hyperpolarization) determines the direction of modulation (Bikson 2004,p. 74); thoughKabakovet al. (2012)providesevidencesuggestingdendriticpolar-izationeffectsthemagnitudebutnotdirectionofmodulation.Asnoted,incorticalslicesbyFritschetal.(2010),modulationofevokedresponsesisindeedconsistentwith thesomaticdoctrine—afindingwehaveconfirmedfor fourdistinctafferentcorticalsynapticpathways.Thesevariationsacrossanimalstudiescouldbesimplyascribedtodifferentinregion/preparation,timescale(acute,long-term),anddiffer-ent formsofplasticity (BDNFdependent/independent),but this is speculativeandprovideslittleinsightintotDCS.Rather,inattempttoreconcilethesefindingsinasingleframework,wesiteevidenceforanddefinethe“terminaldoctrine”tocompli-mentthe“somaticdoctrine.”

3.3.4   wHiCH Compartments are influenCed by dC stimulation: synaptiC terminals

Inthe2004study(Biksonetal.2004)wealsoinvestigatedtheeffectsoftangen-tial fields on synaptic efficacy—tangential fields are oriented perpendicular totheprimarysomato-dendriticaxis,soareexpectedtoproducelittlepolarization(whichwedirectlyconfirmedwithintracellularrecording).Electricfieldsappliedtangentiallywereaseffectiveatmodulatingsynapticefficacyasradiallydirectedfields.Theafferentaxonsruntangentially,sowespeculatedthattheymightbethetargetsofstimulation.Exploringdifferentpathwayswefoundthataxonpath-wayswithterminalpointedtowardtheanodewerepotentiated,whileaxonpath-wayswithterminalspointedtowardthecathodewereinhibited.Kabakovetal.(2012)reportedsimilarpathwayspecificdependencesummarizing“thefEPSPismaximallysuppressedwhentheAPtravelstowardthecathode,andeitherfacili-tatedorremainsunchangedwhentheexcitatorysignal[AP]propagatestowardtheanode.”Inaddition,Kabakovetal.(2012)observedchangesinpaired-pulsefacilitationpotentiallyconsistentwithpre-synapticvesicularglutamaterelease.Werecentlyconfirmedasimilardirectionalsensitivityincorticalslicesacrossfourdistinctpathways(Figure3.5)whereelectricfieldappliedtangentiallytothesurface(andsoproducingminimalsomaticpolarization)(Radmanetal.2009),modulated synaptic efficacy. Interestingly, an in vivo study suggested axonal

K13512_C003.indd 78 7/30/2012 6:50:42 PM

Page 25: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

79Cellular and Network Effects of Transcranial Direct Current Stimulation

regrowth (as well as dendritic growth) in tDCS mediated neuroplasticity aftercerebralischemia(Yoonetal.2012).

Aroleforpre-synapticmodulationduringDCstimulationisindeednotsurprisingandhistoricallynoted.PurpuraandMcMurtry(1965)observed

althoughthe[somatic]membranechangesproducedbytranscorticalpolarizationcur-rentsatisfactorilyexplainsalterationsinspontaneousdischargesandevokedsynapticactivitiesin[pyramidaltract]cell,itmustbeemphasizedthattheeffectsofpolariz-ingcurrentonotherelementsconstitutingthe‘pre-synaptic’,interneuronalpathwayto[pyramidaltract]cellsalsoappeartobedeterminantsoftheovertchangesobservedin[pyramidaltract]cellsactivities.

BishopandO’Leary(1950)notonlyquantifiedpre-synapticeffectsduringDCstimulation inanimals, theynoted thatpre-synaptic effectswouldcomplicate theinterpretation of post-synaptic changes as well as themselves induce long-lastingafter-effects.

Itiswellestablishedthatcellularprocessterminalsincludingaxonterminalsareespeciallysensitivetoelectricfieldsasaresultoftheirmorphology(DelCastilloandKatz1954;Bullock andHagiwara1957;Hubbard andWillis 1962;Takeuchi andTakeuchi1962;Awatramanietal.2005)andthatterminalpolarizationcanmodulatesynapticefficacy (independentof target somapolarization) (DelCastilloandKatz1954;BullockandHagiwara1957;HubbardandWillis1962;TakeuchiandTakeuchi1962;Awatramanietal.2005).Moreover,thismodulationiscumulativeintimeandenduresafterstimulationifstopped(HubbardandWillis1962);atemporalprofilenoted inclassicDCexperiments (Bindmanetal.1964)andsuggesting thepossi-bilityforplasticity.Thedirectionofmodulationinbrainslicestudiesconsistentlysuggests that terminal hyperpolarization enhanced efficacy, while depolarizationinhibitedefficacy.Paired-pulseanalysisinarabbitmodelsuggestedtDCSinfluencespre-synaptic sites (Marquez-Ruiz et al. 2012). Our proposed “terminal doctrine”postulates:afferentsynapticprocessesorientedtowardthecathode(ormorespecifi-callyparallelwiththedirectionofelectricfield)willbepotentiated(duetosynapticterminalhyperpolarization),whileprocessesorientedtowardtheanode(orspecifi-callyantiparallelwiththeelectricfield)willbeinhibited.AstDCSinducedsignifi-canttangentialfields(Figure3.1),theroleofterminalpolarization(independentofthe“somaticdoctrine”) remainsacompellingandopenquestionespeciallywhentakentogetherwiththeneedforamplificationandtheroleofsynapsesinplasticity.

Thisproposalof a “somaticdoctrine”versus “terminaldoctrine” canbe con-ceptualized as generically analogous to the pre-/post-synaptic debate in tetanicstimulationinducedLTD/LTP(Artolaetal.1990);andaswithtetanicstimulationinducedLTD/LTP,bothmechanismsarelikelytoplayarole.Itisimportanttonotethatcurrentcrossingthegreymatterisrarelypurelyradialortangential,suchthatsimultaneous somatic and terminal polarization is broadly expected.Even in thebrainsliceafferentaxonsandthetargetneuronsarenotperfectlyorthogonal,whichmayexplainsomeofthedivergentfindingsinhippocampalbrainslicesnotedear-lier.DuringtDCSbecauseofthecomplexityofcurrentflowacrossthegraymatter(Figure3.1)thesituationisstillmorecomplex,especiallyconsideringthatwhether

K13512_C003.indd 79 7/30/2012 6:50:42 PM

Page 26: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

80 Transcranial Brain Stimulation

theterminaldoctrinepredictsexcitationorinhibitiondependsonthedirectionofincomingaxons.Perhapscarefulconsideringonbraincurrentflowpatternscomb-ingwithextendingthinkingbeyondthesimplesomaticdoctrinetoincludeboththerole of (oppositely polarized) dendrite, axons, and axons terminals can reconciledivergentclinicalfindingsshowinginversionofclassicaldirectioneffects(NitscheandPaulus2000;Ardolinoetal.2005)ordirection-neutraleffects(Nitscheetal.2003).Weemphasizethatgiventhecomplexityofplasticityparadigmsandstimula-tiontargets, leadingtopotentiallymultipleformsoftDCSplasticity, translationalanimalstudiesarecritical,alongsideclinicalneurophysiology,tounderstandtDCSandultimately informrationalelectrotherapy.Moreover,meaningfulclinicalout-comerelyonspecificandincreasinglylong-lastingchanges;thebasisofwhichcanbestudiedinanimals.

3.4  network effeCts

TheconsiderationofhowweakDCelectricfields interactwithactivenetworks(e.g., oscillations) is a very compelling area of ongoing research because, justas network of coupled active neurons exhibit “emergent” network activity notapparent in isolated neurons, so does application of electrical stimulation toactivenetworksoftenproducesresponsesnotexpectedbysingleneurons.Theseresponsesarespecific to thearchitectureandactivityof thenetwork.Networksalsoprovideasubstrateforamplificationbeyondthecell/synapse level.ReportsthatDCcurrentcanalter“spontaneousrhythm”inanimalsspandecades(DubnerandGerard1939;Antal et al. 2004;Marshall et al. 2011),while recent clinicalworkontDCShasaddressedmodulationofEEGoscillations.Newanimalstudieson DC stimulation, which addressed mechanism of this coupling, are reviewedin the section—with a focus on acute effects as the role of ongoing activity inplasticityisdiscussedearlier.

3.4.1  furtHer amplifiCation at tHrougH aCtive networks

In principle, the initial action of DC stimulation remains to polarize all neuronssensing the electric field. As discussed earlier, pyramidal somas are more sensi-tivebyvirtueoftheirmorphology,butaxonalanddendriticpolarizationshouldnotbeignored.NotethattDCSgenerateselectricfieldacrosslargeareasofcortex.Innetworks,akeyconcept is that theentirepopulationofcoupledneurons ispolar-ized—thiscoherent polarizationof thepopulationprovides a substrate for signaldetectionandforamplification.Interestingly, theeffectivecouplingconstantforaneuronimmersedinanactivenetworkmaybeenhancedcomparedtothatneuroninisolated(Reatoetal.2010)—meaningthatbyvirtueofbeinginanetworkagivencompartment(soma)maybepolarizeddirectlybythefieldandindirectlybyfieldactionsonacollectiveofafferentneurons.

Asnotedearlier,theconceptthatthresholdforelectricfieldsensitivitywouldbe“lowerformodulationofthefrequencyofanalreadyactiveneuronthanforexcitationofasilentone” (TerzuoloandBullock1956) iswellestablished,butnetworkactivityaddanotherdimensiontothis.Duringmanynetworkactivities,

K13512_C003.indd 80 7/30/2012 6:50:42 PM

Page 27: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

81Cellular and Network Effects of Transcranial Direct Current Stimulation

notablyoscillations,neuronsareconstantlynear threshold(e.g.,primedforfir-ing).Ifaneuronisnearthresholdbyvirtueofnetworkdrive,thenasmallpolar-izationmaybeinfluentialinmodulatingthelikelihoodoffiring.Forexample,arelatively small depolarization may be sufficient to trigger an action potential.Moreover,becausethenetworkisinterconnected,activatedneuronscouldsynap-ticallytriggeractionpotentialsinotherneurons.Thewholeprocesscanbefeed-forwardsuchthatasmallDCelectricfieldcaninducearobustactionpotentialdischarge inapopulation.Thishasbeenshown in thebrainslice (Reatoetal.2010).Thisconceptisinterestingbecauseitcloudstheentiredistinctionbetween“suprathreshold”stimulation,suchasTMS,and“sub-threshold”stimulation,astDCSiscommonlyconsidered.Itremainsthecasesthat theelectricfieldspro-ducedby tDCSare insufficient to triggeractionpotential inquiescentneurons(Figure3.6).

3.4.2  osCillations

AmajorityofworkonweakDCelectricfieldsandnetworkactivityinsliceaddressedepileptiformactivity(ininvestigationofmethodsforseizurecontrol).Thesereportsgenerallyobservedachangeintherateofepileptiformdischargegeneration(thelike-lihoodaneventwouldinitiate)ratherthanachangeineventwaveformonceinitiated.Thisfindingisconsistentwiththeconceptthatweakfieldpolarizeneurons(Biksonetal.1999,2004)andthatweakstimulationismorelikelytoinfluencestochasticini-tialrecruitmentofneuronsintherobustregenerativeepileptiformevent.DCelectric

5550

4540

3530

25

Freq

uenc

y (Hz

)

2015

1054.543.532.5

Time (s)21.510.50

5550

4540

3530

25

Freq

uenc

y (Hz

)

2015

1054.543.532.5

Time (s)21.510.50

Adaptation

DC (–6 mV/mm) DC (6 mV/mm)

–45–40–35–30

figure 3.6  ModulationofgammaoscillationsinbrainslicebyweakDCfields.Gammaoscillations were induced in the CA3 region by perfusion with carbachol. Negative fieldswhichproducehyperpolarizationofCA1pyramidalneuronsoma,attenuatedoscillation,butinterestingly the attenuationwasmostpronouncedwhen thefieldswhere turnedon, afterwhichoscillationactivitypartlyreboundedeventhoughthefieldwasstillon.Thissuggestshomeostatic“adaptation”(arrows)totheDCfieldbyneuronalnetworksystem.Afterthefieldisturnoff,thereisanexcitatoryreboundresponseconsistentwiththisadaption.AnoppositeeffectsisobservedforpositivefieldsthatwouldbedepolarizingthesomaofCA3pyramidalneurons.Thisadaptionatthenetworklevelisnotexpectedfromsingleneurons,soreflectsanemergentresponseofanactivenetworktoDCfields.

K13512_C003.indd 81 7/30/2012 6:50:43 PM

Page 28: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

82 Transcranial Brain Stimulation

fieldsmayalsoinfluencethepropagationrate(Francisetal.2003;Vargaetal.2011).Reatoetal.(2010)consideredtheeffectsofDCfieldsongammaoscillationsinbrainsliceandnotedbothtransienteffectswhenthefieldwasturnedon,andsecondarysustainedeffectswhicharemore relevant to tDCS (Figure3.6).Sustainedeffectswerecharacterizedbyadramaticcompensatory(“homeostatic”)regulationby thenetwork,suchthatthesystemtriedtonormalizeactivitytobaselinelevelsdespitethepresenceof theDC-field.ThisnetworkadaptationwasapparentwhentheDCfieldwasturnedoffasthenetworkwasdelayedinre-adjustingtotheabsenceofthefield—inthisway,excitatory(somaticdepolarizing)fieldsproducedpost-stimulationinhibitionofoscillations,andviceversa.Networklevelmechanisms(asopposedtosingleneuronbehavior)maythusprovideasubstrateforactivitydependenthomeo-static-likeobservationsduringtDCS(Cosentinoetal.2012).

Weakstimulationof“physiological”activityworkwithACorpulsedstimulationismorecommon(Deansetal.2007;FrohlichandMcCormick2010).ThoughReatoetal.(2010)proposedtheeffectsofACstimulationatdifferentfrequenciesandDCcouldbeexplainedinasinglecontinuousframework,itisimportanttodistinguishbetween studies exploring the limits of network sensitivity to weak AC or pulsefields,andprolongedDCcurrent(tDCS).Whenanetworkisgeneratingspontaneousoscillationsofepileptiformactivity(regenerativeevents),thenitiswellestablishedthatanelectricalpulsecantriggeraregenerativenetworkevent;moreover,repetitiveweakpulsesorACstimulationcanentrainactivitybyaligningthephaseoftheseeventswiththatoftherepetitivestimulation.Bydefinition,(exceptforatthestart)duringprolongedDCstimulationtherebasisforentrainment(thereisnophasetotheDC)suchthattDCScanaffectaveragedischargerateorwaveform,butnotphase.Thus, though entrainment is central in AC/pulsed stimulation studies in animals(aswellasclinically)(Marshalletal.2006),itsrelevancetotDCSislimited.

3.5  interneurons and non-neuronal effeCts

Theroleofinterneuronsandnon-neuronalcells,suchasgliaandendothelialcells,intDCSremainsbothawideopenandcriticalquestion.Wedistinguishbetween:(1)  direct stimulation effects, reflecting direction polarization and modulation ofthesecelltypesbyDCfields;(2)indirectstimulationeffects,reflectchangeinfunc-tion secondary to direct excitatory neuronal activation that then influences theseothercelltypes;and(3)modulatoryeffects,wherethesensitivityofneuronstodirecteffects(e.g.,theirexcitability)isinfluencedbyothercelltypes.Infact,thefunctionofinterneuronsandnon-neuronalcelltypesaresointricatelywoundtogetherwithexcitatoryneuronsthatthesecondandthirdaspectsarepresumed(thoughcomplex),andweherefocusmostlyonthefirstpossibilityofdirecteffects.

3.5.1  interneurons

Because of their relatively symmetric dendritic morphology, interneuron somasareexpectedtopolarizelessthanpyramidalneurons(Radmanetal.2009).Basedonthe“somaticdoctrine” their importancemight thenbeconsidereddiminished.

K13512_C003.indd 82 7/30/2012 6:50:43 PM

Page 29: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

83Cellular and Network Effects of Transcranial Direct Current Stimulation

However,  we cannot exclude polarizing effects of fields on dendrites and axons.Moreover,interneuronsrepresentawiderangeofmorphologiesandsize,includingasymmetricmorphologies(FreundandBuzsaki1996).Interneuronsexertapower-fulregionaleffect,includingplayingroleinplasticityandoscillations.Aneffectofpaired-pulsefacilitation inhippocampalslicemayalsosuggestmodulationof theactivityofinterneurons(Kabakovetal.2012).TheroleofinterneuronsinthedirecteffectoftDCSremainsthenanopenquestion.

3.5.2  glia

GliacellsrepresentthemajorityofcellintheCNS—theconceptthattheyarejust“passive”supportcellsisoutdated(HaydonandCarmignoto2006)andtheircomplexroleinneuronalfunctionssuchasplasticityarebeingelucidated(DiCastroetal.2011;Panatier et al.2011).Somegliahavedistributedprocesseswhichwould influencetheirsensitivitytoappliedelectricfields(RuohonenandKarhu2012),butevenmoreinterestingisthenotionthattheglialsyncytium(anelectricallycoupledpopulationofglialcells),mightacttoamplifyfieldpolarization.OnepossiblemechanismforDCmodulationthroughgliacellsrelatestotheconceptofpotassium“spatialbuffer-ing.”Gliacellsarethoughttoregulateextracellularpotassiumconcentrationthroughapolarizationimbalanceacrosstheirmembrane,whichispreciselythetypeofpolar-ization inducedbyDCfields.Howtoexplorepossibleeffectsofelectricfieldsonthismechanismremainsunclear.Gardner-MedwininducedextracellularpotassiumtransportbypassingDCcurrentandnotedconcentrationchangesinsalineneartheelectrodes,which ismechanisticallydistinct than tissuechanges(Gardner-Medwin1983).Studiesinbrainsliceshownochangesinextracellularpotassiumconcentra-tionwithDCfields(Lianetal.2003),thoughthebrainslicepreparationhasdistortedextracellularconcentrationcontrolmechanisms(Anetal.2008).Neuronsandgliacanbeculturedseparately,butmorphologyandbiophysicsarealteredinculture.Ingeneral,thereareno“magicbullet”drugsforthegliafunction,andregardlessanychangesingliafunctionwouldinfluenceneuronsandsodirectresponsestoDCfieldsmaybedifficulttodetermine.Still,giventhegrowinginterestintheroleofgliacellsinCNSfunctionandtheincreasedsophisticationofexperimentaltechniques,theirroleintDCSisaworthwhileareaofinvestigation(RuohonenandKarhu2012).

3.5.3  endotHelial Cells

Endothelial cells help form theblood-brainbarrier that tightly regulates transportbetweenthebrainextracellularspaceandblood.AnydirectactionofDCstimulationonendothelialcellscouldhaveprofoundeffectsonbrainfunction.Endothelialcellsdonothaveprocessesandtheirsphericalshapeindicatespeakpolarizationwillberelatedtocelldiameter(KotnikandMiklavcic2000)—duringtDCSmembranepolarizationisexpectedtobewellbelowthethresholdforelectroporation.ThedirecteffectsoftDCScurrentonvascularresponseareanopenandcompellingquestion.ThereareabundantevidencesthatDCcurrentaffectsvascularfunctioninskin(Ledger1992;Prausnitz1996;Berliner1997;MaltyandPetrofsky2007)andindeedskinrednessistypicalundertDCSelectrodes(Minhasetal.2010).Vascular andneuronalfunctions

K13512_C003.indd 83 7/30/2012 6:50:43 PM

Page 30: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

84 Transcranial Brain Stimulation

inthebrainarecloselyinterrelated,asevidencedbyfunctionalMagneticResonanceImaging(fMRI).Therelationisalsocomplex,anditcanbedifficulttodisentangledirect neuronal and potential direct vascular effects (a chicken-and-egg problem),includingduringtDCS.Wachteretal.(2011)foundapolarity-specificchangeinbloodperfusionduringtDCSinrat,inadirectionconsistentwiththesomaticdoctrine,andspeculatedthedirectionspecificitywasconsistentwithaprimaryneuronalaction.Thebrainsliceiscompellingsincethebloodsupplyisnotpresentsuchthatfindingsin slice includingacute (Biksonet al.2004)and lasting synaptic efficacy (Fritschet al.2010)changescanexcludeanendothelialcontribution.Conversely,endothelialculture includingmodelsof theblood-brain-barrier canbe electrically stimulated.Weshowedthathigh-intensityelectricalstimulationcouldincreasetransportacrosssuchamodel throughaphenomenawecalled“electro-permeation”betweencells,to distinguish it from electroporation of single cells (Lopez-Quintero et al. 2010).InvestigationofDCstimulationinthismodelisongoing(Figure3.7).

3.6  suMMary and a 3-tier approaCh

Clinical tDCS protocols continue to be largely designed and interpreted follow-ing the “somatic doctrine,” namely that anode/cathode stimulation results in ageneralizedincrease/decreaseinneuronalexcitabilityduetoradialcurrentflowandsomaticpolarization.Animalstudiesshowedthatcurrentflowradial(normal)tothe

“Targeting” of non-neuronal cells

Interneuron

Glia

Primary (excitatory)efferent neuron

Blood-brainbarrier

Extracellularspace

Stimulation activationregion (field)

figure 3.7  CouldtDCSdirectlymodulatethefunctionalofinterneuronsornon-neuronalcells?Thedirectresponseofinterneurons,glia,andendothelialcells(thatformtheblood-brainbarrier)remainsanopenquestion—thatisdifficulttoaddresseveninanimalmodels.It isexpected that thesecell types,by influencingexcitatoryneuronalcellscan indirectlymodulatetheeffectsoftDCSonexcitatoryneurons,andalsothatthroughdirectactionsonexcitatoryneurons,thesecellstypeswillbeindirectlyaffected.Adirecteffectoninterneu-ronsandnon-neuronalcellsispossiblebutatthistimespeculative.(AdaptedfromBikson,M.etal.,Conf. Proc. IEEE Eng. Med. Biol. Soc.,1,1616,2006.)

K13512_C003.indd 84 7/30/2012 6:50:44 PM

Page 31: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

85Cellular and Network Effects of Transcranial Direct Current Stimulation

cortical surfacecanmodulate spontaneousneuronalactivity inapolarity-specificmanner,with inwardcurrent(corresponding tosomaticdepolarization) increasingfiringrate,andoutwardcurrent(correspondingtosomatichyperpolarization)reduc-ingfiringrate(Creutzfeldtetal.1962;Bindmanetal.1964;PurpuraandMcMurtry1965;Gartside1968);becauseofthedependenceontheneuronaltarget,werefertothisasthe“somaticdoctrine.”Indeed,moderntDCSwasmotivatedbyneurophysi-ologic studies showing thatanodal/cathodal tDCS increase/decrease, respectively,responsestoTMSevokedcorticalandmusclepotentials,whichisconsistentwiththeaforementioned“somaticdoctrine”(NitscheandPaulus2000).Extensiveclini-calandcognitive-neurosciencestudieshavebeenlargelyrationalizedbasedonthesomaticdoctrine.However,despitepositiveoutcomesfrommanyofthesestudies,emergingevidencesuggeststhatneuromodulationbytDCSmaybemorecomplex;stemminglargelyfromtherecognitionthatbrainfunctionisevidentlynotamono-lithic“slidingscaleofexcitability.”

Modern animal research is beginning to explicate howmodulationby tDCScannotbeexplainedasamonolithic“sliding-scale”ofexcitability (anode=up,cathode=down).Brainfunction/diseaseandsoitsinfluencebyDCstimulationiscomplex.Neitherpolarizationofdendritesofsynapticterminalscanbeignored,whichmay result indifferentialmodulationof specific synaptic inputs.This inturn,mayleadtodistinctformsoftDCS-inducedplasticity.Moreover,whichneu-ronalprocessesareaffectedandhow,willdependonthetDCSmontageusedandthestateoftheunderlyingnetwork.TherationaladvancementoftDCSrequiresdepartingfromthesliding-scaleapproach(appliedindiscriminatelyacrosscogni-tiveapplicationsandindications)andaddressingthesemechanisticandtargetingissues.Withincreasedrecognitionofcomplexity,theneedfortranslationalanimalstudies,thatareproperlydesigned,becomesincreasinglyclear.Atthesametimes,theseissuesmaketheinvestigationdaunting.Ourapproach,reflectedgenerallyintheorganizationofthisreviewhasbeentoconsiderchangeson“3-tiers”:neuronalcompartment polarization, synaptic processing, and network effects. While thebrainfunctionisevidentlyunderstoodtospantheseintegratedtiers,thischapterintroduceshowa3-tierapproachcanalloworganizationofconceptsandframingofhypothesis.

referenCes

Alexander,J.K.,B.Fuss,andR.J.Colello.2006.Electricfield-inducedastrocytealignmentdirectsneuriteoutgrowth.Neuron Glia Biol2(2):93–103.

An, J.H.,Y.Su,T.Radman,andM.Bikson.2008.Effectsofglucoseandglutaminecon-centration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Res1218:77–86.

Anastassiou,C.A.,S.M.Montgomery,M.Barahona,G.Buzsaki,andC.Koch.2010.Theeffectof spatially inhomogeneousextracellularelectricfieldsonneurons.J Neurosci30(5):1925–1936.

Andreasen,M.andS.Nedergaard.1996.Dendriticelectrogenesis in rathippocampalCA1pyramidal neurons: Functional aspects of Na+ and Ca2+ currents in apical dendrites.Hippocampus6(1):79–95.

K13512_C003.indd 85 7/30/2012 6:50:44 PM

Page 32: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

86 Transcranial Brain Stimulation

Antal, A., E. T. Varga, T. Z. Kincses, M. A. Nitsche, and W. Paulus. 2004. Oscillatorybrain activity and transcranial direct current stimulation in humans. Neuroreport15(8):1307–1310.

Ardolino,G.,B.Bossi,S.Barbieri, andA.Priori. 2005.Non-synapticmechanismsunder-lietheafter-effectsofcathodaltranscutaneousdirectcurrentstimulationofthehumanbrain.J Physiol (Lond)568(2):653–663.

Artola,A.,S.Brocher,andW.Singer.1990.Differentvoltage-dependentthresholdsforinduc-inglong-termdepressionandlong-termpotentiationinslicesofratvisualcortex.Nature347(6288):69–72.

Awatramani,G.B.,G.D.Price,andL.O.Trussell.2005.Modulationoftransmitterreleasebypresynapticrestingpotentialandbackgroundcalciumlevels.Neuron48(1):109–121.

Berliner,M.N.1997.Skinmicrocirculationduringtapwateriontophoresisinhumans:Cathodestimulatesmorethananode.Microvasc Res54(1):74–80.

Bikson,M.,P.Bulow,J.W.Stiller,A.Datta,F.Battaglia,S.V.Karnup,andT.T.Postolache.2008. Transcranial direct current stimulation for major depression: A general sys-tem for quantifying transcranial electrotherapy dosage. Curr Treat Options Neurol10 (5):377–385.

Bikson,M.,A.Datta,andM.Elwassif.2009.Establishingsafetylimitsfortranscranialdirectcurrentstimulation.Clin Neurophysiol120(6):1033–1034.

Bikson,M.,A.Datta,A.Rahman,andJ.Scaturro.2010.ElectrodemontagesfortDCSandweaktranscranialelectricalstimulation:Roleof“return”electrode’spositionandsize.Clin Neurophysiol121(12):1976–1978.

Bikson,M.,R.S.Ghai,S.C.Baraban,andD.M.Durand.1999.Modulationofburstfrequency,duration,andamplitudeinthezero-Ca2+modelofepileptiformactivity.J Neurophysiol82(5):2262–2270.

Bikson,M.,M.Inoue,H.Akiyama,J.K.Deans,J.E.Fox,H.Miyakawa,andJ.G.Jefferys.2004.EffectsofuniformextracellularDCelectricfieldsonexcitabilityinrathippocam-palslicesinvitro.J Physiol557(Pt1):175–190.

Bikson,M.,T.Radman,andA.Datta.2006.Rationalmodulationofneuronalprocessingwithappliedelectricfields.Conf Proc IEEE Eng Med Biol Soc1:1616–1629.

Bindman,L.J.,O.C.Lippold,andJ.W.Redfearn.1962.Long-lastingchangesintheleveloftheelectricalactivityofthecerebralcortexproducedbypolarizingcurrents.Nature196:584–585.

Bindman,L.J.,O.C.Lippold,andJ.W.Redfearn.1964.Theactionofbriefpolarizingcur-rentsonthecerebralcortexoftherat(1)duringcurrentflowand(2)intheproductionoflong-lastingafter-effects.J Physiol172:369–382.

Bishop,G.H.andJ.Erlanger.1926.Theeffectsofpolarizationupontheactivityofvertebratenerve.Am J Physiol78:630–657.

Bishop, G. H. and J. L. O’Leary. 1950. The effects of polarizing currents on cell poten-tials and their significance in the interpretation of central nervous system activity.Electroencephalogr Clin Neurophysiol2(4):401–416.

Bliss, T.V. and T. Lomo. 1973. Long-lasting potentiation of synaptic transmission in thedentate area of the anaesthetized rabbit following stimulation of the perforant path.J Physiol232(2):331–356.

Bolognini,N.,F.Fregni,C.Casati,E.Olgiati,andG.Vallar.2010.Brainpolarizationofpari-etal cortex augments training-induced improvement of visual exploratory and atten-tionalskills.Brain Res1349:76–89.

Brunoni,A.R.,F.Fregni,andR.L.Pagano.2011.Translationalresearchintranscranialdirectcurrent stimulation (tDCS):A systematic reviewof studies in animals.Rev Neurosci22(4):471–481.

Bullock,T.H.andS.Hagiwara.1957.Intracellularrecordingfromthegiantsynapseofthesquid.J Gen Physiol40(4):565–577.

AQ8

K13512_C003.indd 86 7/30/2012 6:50:44 PM

Page 33: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

87Cellular and Network Effects of Transcranial Direct Current Stimulation

Cambiaghi, M., L. Teneud, S. Velikova, J. J. Gonzalez-Rosa, M. Cursi, G. Comi, andL.Leocani.2011.Flashvisualevokedpotentialsinmicecanbemodulatedbytranscra-nialdirectcurrentstimulation.Neuroscience185:161–165.

Cambiaghi,M.,S.Velikova,J.J.Gonzalez-Rosa,M.Cursi,G.Comi,andL.Leocani.2010.Braintranscranialdirectcurrentstimulationmodulatesmotorexcitabilityinmice.Eur J Neurosci31(4):704–709.

Carandini,M.andD.Ferster.2000.Membranepotentialandfiringrateincatprimaryvisualcortex.J Neurosci20(1):470–484.

Carlson,C.andO.Devinsky.2009.TheexcitablecerebralcortexFritschG,HitzigE.UberdieelektrischeErregbarkeitdesGrosshirns.Arch Anat Physiol Wissen,1870(37):300–332.Epilepsy Behav15(2):131–132.

Chan,C.Y.,J.Hounsgaard,andC.Nicholson.1988.Effectsofelectricfieldsontransmem-brane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol402:751–771.

Chan,C.Y.andC.Nicholson.1986.ModulationbyappliedelectricfieldsofPurkinjeandstel-latecellactivityintheisolatedturtlecerebellum.J Physiol371:89–114.

Cosentino,G.,B.Fierro,P.Paladino,S.Talamanca,S.Vigneri,A.Palermo,G.Giglia,andF.Brighina.2012.Transcranialdirectcurrentstimulationpreconditioningmodulatestheeffectofhigh-frequencyrepetitivetranscranialmagneticstimulationinthehumanmotorcortex.Eur J Neurosci35(1):119–124.

Costain,R., J.W.Redfearn,andO.C.Lippold.1964.Acontrolled trialof the therapeuticeffectofpolarizationofthebrainindepressiveillness.Br J Psychiatry110:786–799.

Creutzfeldt,O.D.,G.H.Fromm,andH.Kapp.1962.Influenceoftranscorticald-ccurrentsoncorticalneuronalactivity.Exp Neurol5:436–452.

Datta,A.,V.Bansal,J.Diaz,J.Patel,D.Reato,andM.Bikson.2009.Gyri-preciseheadmodelof transcranialdirectcurrentstimulation: Improvedspatial focalityusingaringelec-trodeversusconventionalrectangularpad.Brain Stimul2(4):201–207.

Datta,A.,M.Bikson,andF.Fregni.2010.Transcranialdirectcurrentstimulationinpatientswithskulldefectsandskullplates:High-resolutioncomputationalFEMstudyoffactorsalteringcorticalcurrentflow.Neuroimage52(4):1268–1278.

Datta,A.,M.Elwassif,F.Battaglia,andM.Bikson.2008.Transcranialcurrentstimulationfocality using disc and ring electrode configurations: FEM analysis. J Neural Eng5(2):163–174.

Datta,A., M. Elwassif, and M. Bikson. 2009. Bio-heat transfer model of transcranial DCstimulation:comparisonofconventionalpadversusringelectrode.Conf Proc IEEE Eng Med Biol Soc2009:670–673.

Deans,J.K.,A.D.Powell,andJ.G.Jefferys.2007.SensitivityofcoherentoscillationsinrathippocampustoACelectricfields.J Physiol583(Pt2):555–565.

Del Castillo, J. and B. Katz. 1954. Changes in end-plate activity produced by presynapticpolarization.J Physiol124(3):586–604.

Delgado-Lezama, R., J. F. Perrier, and J. Hounsgaard. 1999. Local facilitation of plateaupotentials indendritesof turtlemotoneuronesbysynapticactivationofmetabotropicreceptors.J Physiol515(Pt1):203–207.

DiCastro,M.A.,J.Chuquet,N.Liaudet,K.Bhaukaurally,M.Santello,D.Bouvier,P.Tiret,andA.Volterra.2011.LocalCa2+detectionandmodulationofsynapticreleasebyastro-cytes.Nat Neurosci14(10):1276–1284.

Dubner, H. H. and R. W. Gerard. 1939. Factors controlling brain potentials in the cat.J Neurophysiol2(2):142–152.

Durand,D.M.andM.Bikson.2001.Suppressionandcontrolofepileptiformactivitybyelec-tricalstimulation:Areview.Proc IEEE89(7):1065–1082.

Francis,J.T.,B.J.Gluckman,andS.J.Schiff.2003.Sensitivityofneuronstoweakelectricfields.J Neurosci23(19):7255–7261.

K13512_C003.indd 87 7/30/2012 6:50:44 PM

Page 34: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

88 Transcranial Brain Stimulation

Fregni,F.,P.S.Boggio,M.Nitsche,F.Bermpohl,A.Antal,E.Feredoes,M.A.Marcolinet al.2005.Anodaltranscranialdirectcurrentstimulationofprefrontalcortexenhanceswork-ingmemory.Exp Brain Res166(1):23–30.

Fregni,F.,D.Liebetanz,K.K.Monte-Silva,M.B.Oliveira,A.A.Santos,M.A.Nitsche,A.Pascual-Leone,andR.C.Guedes.2007.Effectsoftranscranialdirectcurrentstimu-lation coupledwith repetitive electrical stimulationon cortical spreadingdepression.Exp Neurol204(1):462–466.

Freund, T. F. and G. Buzsaki. 1996. Interneurons of the hippocampus. Hippocampus6(4):347–470.

FritschG.T.andHitzigE.1870.Ontheelectricalexcitabilityofthecerebrum.In:VonBoninG.(1960)trans.Some Papers on the Cerebral Cortex.

Fritsch,B.,J.Reis,K.Martinowich,H.M.Schambra,Y.Ji,L.G.Cohen,andB.Lu.2010.Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potentialimplicationsformotorlearning.Neuron66(2):198–204.

Frohlich,F.andD.A.McCormick.2010.Endogenouselectricfieldsmayguideneocorticalnetworkactivity.Neuron67(1):129–143.

Gardner-Medwin,A.R.1983.Astudyofthemechanismsbywhichpotassiummovesthroughbraintissueintherat.J Physiol335:353–374.

Gartside, I. B. 1968a. Mechanisms of sustained increases of firing rate of neurones in theratcerebralcortexafterpolarization:Reverberatingcircuitsormodificationofsynapticconductance?Nature220(5165):382–383.

Gartside,I.B.1968b.Mechanismsofsustainedincreasesoffiringrateofneuronesintheratcerebralcortexafterpolarization:Roleofproteinsynthesis.Nature220(5165):383–384.

Gasca,F.,L.Richter,andA.Schweikard.2010.Simulationofaconductiveshieldplateforthefocalizationoftranscranialmagneticstimulationintherat.Conf Proc IEEE Eng Med Biol Soc2010:1593–1596.

Ghai,R.S.,M.Bikson,andD.M.Durand.2000.Effectsofappliedelectricfieldsonlow-cal-ciumepileptiformactivityintheCA1regionofrathippocampalslices.J Neurophysiol84(1):274–280.

Gluckman,B.J.,E.J.Neel,T.I.Netoff,W.L.Ditto,M.L.Spano,andS.J.Schiff.1996.Electricfieldsuppressionofepileptiformactivityinhippocampalslices.J Neurophysiol76(6):4202–4205.

Hattori,Y.,A.Moriwaki,andY.Hori.1990.Biphasiceffectsofpolarizingcurrentonade-nosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett116(3):320–324.

Hayashi,Y.,Y. Hattori, A. Moriwaki, H. Asaki, andY. Hori. 1988. Effects of prolongedweakanodaldirectcurrentonelectrocorticograminawakerabbit.Acta Med Okayama42(5):293–296.

Haydon,P.G.andG.Carmignoto.2006.Astrocytecontrolofsynaptictransmissionandneu-rovascularcoupling.Physiol Rev86(3):1009–1031.

Hess,G.andJ.P.Donoghue.1999.Facilitationoflong-termpotentiationinlayerII/IIIhori-zontalconnectionsofratmotorcortexfollowinglayerIstimulation:Routeofeffectandcholinergiccontributions.Exp Brain Res127(3):279–290.

Hubbard,J.I.andW.D.Willis.1962a.Hyperpolarizationofmammalianmotornervetermi-nals.J Physiol163:115–137.

Hubbard, J. I. and W. D. Willis. 1962b. Mobilization of transmitter by hyperpolarization.Nature193:174–175.

Islam,N.,M.Aftabuddin,A.Moriwaki,Y.Hattori,andY.Hori.1995.Increaseinthecalciumlevelfollowinganodalpolarizationintheratbrain.Brain Res684(2):206–208.

Islam, N., A. Moriwaki,Y. Hattori, andY. Hori. 1994. Anodal polarization induces pro-teinkinaseCgamma(PKCgamma)-likeimmunoreactivity in theratcerebralcortex.Neurosci Res21(2):169–172.

AQ9

K13512_C003.indd 88 7/30/2012 6:50:44 PM

Page 35: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

89Cellular and Network Effects of Transcranial Direct Current Stimulation

Islam,N.,A.Moriwaki,andY.Hori.1995.Co-localizationofc-fosproteinandproteinkinaseCgammain theratbrainfollowinganodalpolarization.Indian J Physiol Pharmacol39(3):209–215.

Jefferys,J.G.1981.Influenceofelectricfieldsontheexcitabilityofgranulecellsinguinea-pighippocampalslices.J Physiol319:143–152.

Jefferys,J.G.R.,J.Deans,M.Bikson,andJ.Fox.2003.Effectsofweakelectricfieldsontheactivityofneuronsandneuronalnetworks.Radiat Prot Dosimetry106(4):321–323.

Joucla, S. and B.Yvert. 2009.The “mirror” estimate:An intuitive predictor of membranepolarizationduringextracellularstimulation.Biophys J96(9):3495–508.

Kabakov, A. Y., P. A. Muller, A. Pascual-Leone, F. E. Jensen, and A. Rotenberg. 2012.Contribution of axonal orientation to pathway-dependent modulation of excitatorytransmissionbydirectcurrentstimulationinisolatedrathippocampus.J Neurophysiol107(7):1881–1889.

Kotnik,T.andD.Miklavcic.2000.Analyticaldescriptionoftransmembranevoltageinducedbyelectricfieldsonspheroidalcells.Biophys J79(2):670–679.

Ledger,P.W.1992.Skinbiologicalissuesinelectricallyenhancedtransdermaldelivery.Adv Drug Deliv Rev9:289–307.

Li, L.,Y. H. El-Hayek, B. Liu,Y. Chen, E. Gomez, X.Wu, K. Ning et al. 2008. Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells26(8):2193–2200.

Lian,J.,M.Bikson,C.Sciortino,W.C.Stacey,andD.M.Durand.2003.Localsuppressionofepileptiformactivitybyelectricalstimulationinrathippocampusinvitro.J Physiol (Lond)547(2):427–434.

Liebetanz,D.,F.Fregni,K.K.Monte-Silva,M.B.Oliveira,A.Amancio-dos-Santos,M.A.Nitsche,andR.C.Guedes.2006a.After-effectsoftranscranialdirectcurrentstimulation(tDCS)oncorticalspreadingdepression.Neurosci Lett398(1–2):85–90.

Liebetanz, D., F. Klinker, D. Hering, R. Koch, M.A. Nitsche, H. Potschka, W. Loscher,W. Paulus, and F. Tergau. 2006b. Anticonvulsant effects of transcranial direct-currentstimulation(tDCS)intheratcorticalrampmodeloffocalepilepsy.Epilepsia47(7):1216–1224.

Liebetanz,D.,R.Koch,S.Mayenfels,F.Konig,W.Paulus,andM.A.Nitsche.2009.Safetylimits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol120(6):1161–1167.

Liebetanz,D.,M.A.Nitsche,F.Tergau,andW.Paulus.2002.Pharmacologicalapproachtothemechanismsof transcranialDC-stimulation-inducedafter-effectsofhumanmotorcortexexcitability.Brain125(Pt10):2238–2247.

Lopez-Quintero,S.V.,A.Datta,R.Amaya,M.Elwassif,M.Bikson,andJ.M.Tarbell.2010.DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelialmonolayers.J Neural Eng7(1):16005.

Malty,A.M.andJ.Petrofsky.2007.Theeffectofelectricalstimulationonanormalskinbloodflowinactiveyoungandolderadults.Med Sci Monit13(4):CR147–CR155.

Marshall,L.,H.Helgadottir,M.Molle,andJ.Born.2006.Boostingslowoscillationsduringsleeppotentiatesmemory.Nature444(7119):610–613.

Marshall,L.,R.Kirov,J.Brade,M.Molle,andJ.Born.2011.TranscranialelectricalcurrentstoprobeEEGbrainrhythmsandmemoryconsolidationduringsleepinhumans.PLoS One6(2):e16905.

Marshall,L.,M.Molle,M.Hallschmid,andJ.Born.2004.Transcranialdirectcurrentstimula-tionduringsleepimprovesdeclarativememory.J Neurosci24(44):9985–9992.

Marquez-Ruiz, J., R. Leal-Campanario, R. Sanchez-Campusano, B. Molaee-Ardekani,F.Wendling, P. C. Miranda, G. Ruffini,A. Gruart, and J. M. Delgado-Garcia. 2012.Transcranial direct-current stimulation modulates synaptic mechanisms involved inassociativelearninginbehavingrabbits.Proc Natl Acad Sci U S A.

AQ10

K13512_C003.indd 89 7/30/2012 6:50:45 PM

Page 36: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

90 Transcranial Brain Stimulation

Merrill, D. R., M. Bikson, and J. G. R. Jefferys. 2005. Electrical stimulation of excitabletissue:designofefficaciousandsafeprotocols.J Neurosci Methods141(2):171–198.

Minhas,P.,V.Bansal,J.Patel,J.S.Ho,J.Diaz,A.Datta,andM.Bikson.2010.Electrodesforhigh-definitiontranscutaneousDCstimulationforapplicationsindrugdeliveryandelectrotherapy,includingtDCS.J Neurosci Methods190(2):188–197.

Minhas,P.,A.Datta,andM.Bikson.2011.CutaneousperceptionduringtDCS:Roleofelec-trodeshapeandspongesalinity.Clin Neurophysiol122(4):637–638.

Miranda,P.C.,L.Correia,R.Salvador,andP.J.Basser.2007.Theroleoftissueheterogene-ityinneuralstimulationbyappliedelectricfields.Conf Proc IEEE Eng Med Biol Soc2007:1715–1718.

Miranda,P.C.,M.Lomarev,andM.Hallett.2006.Modelingthecurrentdistributionduringtranscranialdirectcurrentstimulation.Clin Neurophysiol117(7):1623–1629.

Monte-Silva,K.,M.F.Kuo,D.Liebetanz,W.Paulus,andM.A.Nitsche.2010.Shapingtheoptimalrepetitionintervalforcathodaltranscranialdirectcurrentstimulation(tDCS).J Neurophysiol103(4):1735–1740.

Mozzachiodi,R.andJ.H.Byrne.2010.Morethansynapticplasticity:Roleofnonsynapticplasticityinlearningandmemory.Trends Neurosci33(1):17–26.

Nitsche,M.A.,K.Fricke,U.Henschke,A.Schlitterlau,D.Liebetanz,N.Lang,S.Henning,F.Tergau,andW.Paulus.2003.Pharmacologicalmodulationofcorticalexcitabilityshiftsinducedbytranscranialdirectcurrentstimulationinhumans.J Physiol553(Pt1):293–301.

Nitsche,M.A.andW.Paulus.2000.Excitabilitychangesinducedinthehumanmotorcortexbyweaktranscranialdirectcurrentstimulation.J Physiol527(Pt3):633–639.

Nitsche,M.A.,A.Schauenburg,N.Lang,D.Liebetanz,C.Exner,W.Paulus,andF.Tergau.2003.Facilitationofimplicitmotorlearningbyweaktranscranialdirectcurrentstimula-tionoftheprimarymotorcortexinthehuman.J Cogn Neurosci15(4):619–626.

Ozen,S.,A.Sirota,M.A.Belluscio,C.A.Anastassiou,E.Stark,C.Koch,andG.Buzsaki.2010.Transcranial electric stimulation entrains cortical neuronal populations in rats.J Neurosci30(34):11476–11485.

Panatier,A.,J.Vallee,M.Haber,K.K.Murai,J.C.Lacaille,andR.Robitaille.2011.Astrocytesareendogenousregulatorsofbasaltransmissionatcentralsynapses.Cell146(5):785–798.

Peterchev,A.V., T.A. Wagner, P. C. Miranda, M.A. Nitsche, W. Paulus, S. H. Lisanby,A. Pascual-Leone, and M. Bikson. 2011. Fundamentals of transcranial electric andmagneticstimulationdose:Definition,selection,andreportingpractices.Brain Stimul.

Prausnitz,M.R.1996.Theeffectsofelectriccurrentappliedtoskin:Areviewfortransdermaldrugdelivery.Adv Drug Deliv Rev18:395–425.

Purpura,D.P.andJ.G.McMurtry.1965a.Intracellularactivitiesandevokedpotentialchangesduringpolarizationofmotorcortex.J Neurophysiol28(1):166–185.

Purpura,D.P.andJ.G.McMurtry.1965b.Intracellularpotentialsofcorticalneuronsduringappliedtranscorticalpolarizingcurrents.Electroen Clin Neuro18(2):203.

Purpura, D. P., J. G. McMurtry, and C. F. Leonard. 1966. Intracellular spike potentials ofdendriticoriginduringhippocampalseizuresinducedbysubiculumstimulation.Brain Res1(1):109–113.

Radman,T.,A.Datta,andA.V.Peterchev.2007a.InvitromodulationofendogenousrhythmsbyACelectricfields:Syncingwithclinicalbrainstimulation.J Physiol584(Pt2):369–370.

Radman,T.,R.L.Ramos,J.C.Brumberg,andM.Bikson.2009.Roleofcorticalcelltypeandmorphologyinsubthresholdandsuprathresholduniformelectricfieldstimulationinvitro.Brain Stimul2(4):215–228.

Radman,T.,Y.Z.Su,J.H.An,L.C.Parra,andM.Bikson.2007b.Spiketimingamplifiestheeffectofelectricfieldsonneurons:Implicationsforendogenousfieldeffects.J Neurosci27:3030–3036.

K13512_C003.indd 90 7/30/2012 6:50:45 PM

Page 37: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

91Cellular and Network Effects of Transcranial Direct Current Stimulation

Ranieri, F., M. V. Podda, E. Riccardi, G. Frisullo, M. Dileone, P. Profice, F. Pilato, V.DiLazzaro,andC.Grassi.2012.ModulationofLTPatrathippocampalCA3-CA1syn-apsesbydirectcurrentstimulation.J Neurophysiol107(7):1868–1880.

Reato,D.,A.Rahman,M.Bikson,andL.C.Parra.2010.Low-intensityelectricalstimulationaffectsnetworkdynamicsbymodulatingpopulationrateandspiketiming.J Neurosci30(45):15067–15079.

Redfearn, J.W.,O.C.Lippold, andR.Costain. 1964.Apreliminary account of the clini-cal effects of polarizing the brain in certain psychiatric disorders. Br J Psychiatry110:773–785.

Rioult-Pedotti, M. S., D. Friedman, G. Hess, and J. P. Donoghue. 1998. Strengthening ofhorizontalcorticalconnectionsfollowingskilllearning.Nat Neurosci1(3):230–234.

Ruohonen,J.andJ.Karhu.2012.tDCSpossiblystimulatesglialcells.Clin Neurophysiol.Sadleir,R. J.,T.D.Vannorsdall,D. J.Schretlen,andB.Gordon.2010.Transcranialdirect

currentstimulation(tDCS)inarealisticheadmodel.Neuroimage51(4):1310–1318.Salvador,R.,A.Mekonnen,G.Ruffini,andP.C.Miranda.2010.Modelingtheelectricfield

inducedinahighresolutionrealisticheadmodelduringtranscranialcurrentstimulation.Conf Proc IEEE Eng Med Biol Soc2010:2073–2076.

Stagg,C.J.andM.A.Nitsche.2011.Physiologicalbasisoftranscranialdirectcurrentstimula-tion.Neuroscientist17(1):37–53.

Su,Y. Z., T. Radman, J.Vaynshteyn, L. C. Parra, and M. Bikson. 2008. Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm.Epilepsia49(9):1586–1593.

Sunderam,S.,B.Gluckman,D.Reato,andM.Bikson.2010.Towardrationaldesignofelectri-calstimulationstrategiesforepilepsycontrol.Epilepsy Behav17(1):6–22.

Svirskis, G., A. Gutman, and J. Hounsgaard. 1997. Detection of a membrane shunt byDC field polarization during intracellular and whole cell recording. J Neurophysiol77(2):579–586.

Takeuchi,A.andN.Takeuchi.1962.Electricalchangesinpre-andpostsynapticaxonsofthegiantsynapseofLoligo.J Gen Physiol45:1181–1193.

Terzuolo,C.A.andT.H.Bullock.1956.Measurementofimposedvoltagegradientadequatetomodulateneuronalfiring.Proc Natl Acad Sci U S A42(9):687–694.

Toleikis,J.R.,A.Sances,Jr.andS.J.Larson.1974.Effectsofdiffusetranscerebralelectricalcurrentsoncorticalunitpotentialactivity.Anesth Analg53(1):48–55.

Turkeltaub,P.E.,J.Benson,R.H.Hamilton,A.Datta,M.Bikson,andH.B.Coslett.2011.Left lateralizing transcranial direct current stimulation improves reading efficiency.Brain Stimul.

Varga, E. T., D. Terney, M. D. Atkins, M. Nikanorova, D. S. Jeppesen, P. Uldall,H.Hjalgrim,andS.Beniczky.2011.Transcranialdirectcurrentstimulationinrefrac-torycontinuousspikesandwavesduringslowsleep:Acontrolledstudy.Epilepsy Res97(1–2):142–145.

Wachter, D., A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche,A.Kutschenko,V.Rohde,andD.Liebetanz.2011.Transcranialdirectcurrentstimula-tioninducespolarity-specificchangesofcorticalbloodperfusionintherat.Exp Neurol227(2):322–327.

Wong,R.K.andM.Stewart.1992.DifferentfiringpatternsgeneratedindendritesandsomataofCA1pyramidalneuronesinguinea-pighippocampus.J Physiol457:675–687.

Yoon,K.J.,B.M.Oh,andD.Y.Kim.2012.Functionalimprovementandneuroplasticeffectsofanodaltranscranialdirectcurrentstimulation(tDCS)delivered1dayvs.1weekaftercerebralischemiainrats.Brain Res.

K13512_C003.indd 91 7/30/2012 6:50:45 PM

Page 38: 3 Cellular and Network Effects of Transcranial Direct ... › medicalbooks › tdcs animal... · Cellular and Network Effects of Transcranial Direct Current Stimulation 57 where the

author Queries

[AQ1]Pleasefixaandbforthefollowingreferencecitations:Liebetanzetal.(2006),PurpuraandMcMurtry (1965),Gartside (1968),Radmanetal. (2007),andHubbardandWillis(1962).

[AQ2]Pleasecheckandupdatethecrosscitation“seeconventionsbelow.”[AQ3]Pleasecheckiftheedittothesentencestarting“describemoderneffortsto

quantifysomaticpolarization…”isok.[AQ4]PartlabelnotprovideinFigure3.2.Pleasecheck.[AQ5]Pleasecheckiftheunitumiscorrect.[AQ6]Pleasecheckandupdate thecrosscitation“seeaxon terminalpolarization

below.”[AQ7]Pleasecheckiftheedittothesentencestarting“Atthesinglecelllevelwe..”

isok.[AQ8]Pleasecheck theeditsmade to the journal title inBiksonet al. (2006) for

correctness.[AQ9]PleasecheckandupdateFritschandHitzig(1870).[AQ10]Pleaseprovidevolumeandpagerangeforthefollowingreferences:Marquez-

Ruiz et al. 2012,Peterchev et al. 2011,Ruohonen andKarhu2012,Yoonet al.2012.

K13512_C003.indd 92 7/30/2012 6:50:45 PM