294 deepesh

26
Performance and Emission studies on unaltered mahua-oil blends with varying injection pressure in a diesel engine PRESENTED BY - Deepesh Sonar DEPARTMENT OF MECHANICAL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR (INDIA) 1

Category:

Technology


0 download

TRANSCRIPT

1

Performance and Emission studies on unaltered

mahua-oil blends with varying injection pressure in

a diesel engine

PRESENTED BY-

Deepesh Sonar  

DEPARTMENT OF MECHANICAL ENGINEERINGMALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY

JAIPUR (INDIA)

Malaviya National Institute of Technology 2

INTRODUCTIONNeed of alternative fuels:

• Rising crude oil prices• increasing environmental concerns• long-term energy security reasons

Fuels of bio-origin can provide a feasible solution to the crisis.

Diesel engines play a major role in transportation, industries, power generation and agricultural sector; they have high efficiency they consume less fuel and, they are reliable.

Malaviya National Institute of Technology 3

VEGETABLE OIL AS DIESEL ENGINE FUEL

Vegetable oils as fuel –• are renewable• emit low levels of pollutants• provide engine performances similar to that with diesel

fuels in diesel engines.

In rural and remote areas of developing countries, where grid power is not available, vegetable oils can play a vital role in decentralized power generation for irrigation and electrification purposes.

Malaviya National Institute of Technology 4

BUT VISCOSITY IS A MAJOR PROBLEM  High viscosity of vegetable oil is a major hindrance. 

Various means to chemically process it by lowering its viscosity are-  

-heating -microemulsification

-pyrolysis -transesterification ;

BUT, these are complicated and cost prohibitive, especially in rural settings, due to logistics and other problems. 

• Blending of vegetable oils with diesel, however, reduces the viscosity drastically. 

• Raw vegetable oil, even upto 100%  blend with diesel, can be used as fuel in diesel engines with some minor modifications.                                                               [1-8]

Malaviya National Institute of Technology 5

ENGINE MODIFICATION

• Fuel injection pressure and timing (among various other parameters like compression ratio, injection rate and air swirl level) are fundamental in determining   the overall efficiency of the engine.

• Injection pressure of the injected fuel has a significance effect on the performance and formation of pollutants inside the engine. 

• Higher injection pressure contributes to decreased fuel droplet size, increased mixing with air, improved combustion and emission reduction.           [9-13]

MATERIALS AND METHODS• Series of performance and emission  tests were  conducted with Diesel & Mahua oil blends on single cylinder, water cooled, 5 HP diesel engine.

• Tests  were  conducted  at  rated  fuel  IOP  of  200  kgf/cm2.  Tests  were  also performed at IOP of 190, 210, 220 and 230 kgf/cm2.

• Blends of Mahua oil(v/v) were tested over the entire range of engine        operation.  Results were compared  with baseline data of diesel fuel.

 

• Optimum blend and IOP for engine with Mahua-blends were evaluated. 

NOx and smoke emissions were measured using INDUS exhaust gas analyzer, PEA 205 and AVL Dispeed 492 smoke meter, respectively.

Injection pressure was varied by testing the injector assembly in a nozzle tester.

Malaviya National Institute of Technology 7LINE DIAGRAM OF EXPERIMENTAL SET-UP

Malaviya National Institute of Technology 8

FABRICATED AIR-BOX AND FUEL METERING ARRANGEMENT

Malaviya National Institute of Technology 9

ELECTRICAL LOAD BANK WITH CONTROL PANEL  FABRICATED AND INSTALLED  FOR THE CI ENGINE

Malaviya National Institute of Technology 10

PROPERTIES OF CRUDE MAHUA OIL AND DIESEL

Fuel Specific gravity

Calorific Value(MJ/kg)

Carbon residue (%)

Ash content (%)

Pour point (oC)

Flash point (oC)

Water content (%)

Kinematic viscosity(cSt at 40oC)

Crude Mahua Oil

0.9040 38.863 0.4215 0.021 15 238 Trace 37.18

Diesel 0.842 45.343 0.0337 0.006 < -5 47 Trace 2.44

[2]

11

PERFORMANCE CHARACTERISTICS

Brake Specific Fuel Combustion (BSFC)

• BSFC for CMO/blends are higher than diesel at 200 kgf/cm2 (rated).

• B20 shows marginally better BSFC than other blends. 

• C.V. of mahua oil is less, so BSFC for higher blends were higher than diesel. For B100 it is higher by 11–25% at rated engine parameters. 

• Minimum BSFC was obtained at 230 kgf/cm2 IOP for all fuel blends. 

• But, further increase in IOP deteriorated the BSFC.

PERFORMANCE CHARACTERISTICS (cont’d)

Brake Thermal Efficiency (BTE)• BTE in general, reduced with the increasing concentration of mahua   in the blends.  In all cases, it increased with increase in load.

• Maximum thermal efficiency for B20 was comparable with diesel. 

• Highest BTE, 28.9% occurred at 230 kgf/cm2 at full load due to                     better  atomization and mixing with air thus enhancing combus-tion.

• Too high IOP led to delayed injection and lower BTE.

Malaviya National Institute of Technology 13

PERFORMANCE CHARACTERISTICS (cont’d)

Exhaust Gas Temperature (EGT)• EGT increased with load for all the fuels tested.

• EGT increased with increasing concentration of mahua oil.

• EGTs were higher for modified engine operated with higher IOP.  

• Improved air motion and better mixing improved combustion  and   increased the EGT.

Malaviya National Institute of Technology 14

EFFECT OF IOP ON BSFC

Malaviya National Institute of Technology 15

EFFECT OF IOP ON BTE

Malaviya National Institute of Technology 16

EFFECT OF IOP ON EGT

Malaviya National Institute of Technology 17

EMISSION CHARACTERISTICS

Nitogen Oxides (NOX)• Increasing proportion of mahua oil in the blends increased NOx emissions   slightly (within 4 %) vis-a-vis diesel.

• NOx concentration varied almost linearly with load. 

• As the load increases, the overall fuel–air ratio increases, so better              burning with higher temperatures leads to NOx formation.

• NOx level was directly related to the EGT, but inversely related to smoke. 

• NOx level increases with increasing IOP due to faster combustion and        higher temperatures attained.

Malaviya National Institute of Technology 18

EMISSION CHARACTERISTICS (cont’d)

Smoke• Smoke increased sharply with increase in load for all fuels tested.

• Large difference in smoke levels between B100 and HSD at full load.

• Mahua and its blends produced less smoke than pure diesel. 

• The smoke level of CMO gets decreased when the IOP increases. The lowest smoke opacity  is obtained for M100 with  240 kgf/cm2.  

19

EFFECT OF IOP ON NOx

Malaviya National Institute of Technology

Malaviya National Institute of Technology 20

EFFECT OF IOP ON SMOKE

PERFORMANCE AND EMISSION CHARACTERISTICS OF CMO-BLENDS AT VARYING IOP AT FULL LOAD CONDITION

IOPKgf/cm2 Fuel

BSFC kg/kW-h

BTE%

EGToC

NOxppm

Smoke%

190

M10 0.321 28.7 342 1532 28.6M20 0.323 28.1 342 1556 29.8M30 0.329 27.6 341 1586 29.5M40 0.329 26.9 345 1679 26.3

M100 0.334 22.0 355 1763 25.8

200(rated)

M10 0.332 28.8 345 1560 27.9M20 0.323 29.7 351 1591 27.7M30 0.335 28.7 348 1599 27.3M40 0.329 27.2 355 1623 25.4

M100 0.361 22.1 361 1781 20.3200 DIESEL 0.321 29.8 345 1690 39.4

210

M10 0.32 28.8 339 1598 25.7M20 0.322 28.2 349 1615 24.0M30 0.327 27.8 351 1654 22.5M40 0.329 27.3 358 1688 18.7

PERFORMANCE AND EMISSION CHARACTERISTICS OF CMO-BLENDS AT VARYING IOP AT FULL LOAD CONDITION (cont’d)

IOPKgf/cm2 Fuel

BSFC kg/kW-h

BTE%

EGToC

NOxppm

Smoke%

220

M10 0.320 28.8 344 1645 23.1

M20 0.325 28.6 347 1696 20.6

M30 0.328 28.7 354 1700 15.9

M40 0.332 27.3 362 1766 12.6

M100 0.339 23.5 375 1815 17.5

230

M10 0.318 28.8 348 1623 22.3

M20 0.329 28.8 351 1667 18.3

M30 0.330 28.9 359 1750 16.2

M40 0.329 27.5 366 1782 14.3

M100 0.334 23.8 378 1857 12.2

240

M10 .320 28.8 349 1645 25.6

M20 .317 28.8 349 1694 17.3

M30 .323 28.6 358 1764 14.3

M40 .330 27.5 369 1810 10.1

M100 .339 23.6 385 1867 5.9

CONCLUSION• CMO and blends can be used as alternative fuel.  By optimizing IOP,  performance  and emissions of engine can be improved significantly. 

• B10 could be safely used at rated IOP, without significantly affecting engine             performance (BSFC, BTE, EGT) and smoke and NOx emissions. 

• Increasing IOP from rated 200 kgf/cm2 to 230 kgf/cm2  increased the BTE and          NOx with reduction in BSFC  and smoke. Beyond that, inverse trend was noticed.

• At 230 kgf/cm2 IOP, optimum BTE and BSFC were obtained. BSFC improves by 10%  and BTE by 9%. Smoke was reduced. NOx emission increased only marginally.

Use of B10, even at rated IOP, and B20 and B30 at 230 kgf /cm2 results in minimum loss of efficiency and generates higher environmental benefits.

REFERENCES [1] Ramadhas, A.S., Jayaraj, S, Muraleedharan. C. (2004) Data bank-Use of vegetable oils as I.C.

engine fuels—A review, Renewable Energy 29, pp. 727–742. [2] Agarwal D, Kumar L, Agarwal A. K. (2008) Performance evaluation of a vegetable oil fuelled

compression ignition engine, Renewable Energy 33, pp. 1147–1156. [3] Reddy J. N., Ramesh A.(2006) Parametric studies for improving the performance of a Jatropha

oil-fuelled compression ignition engine, Renewable Energy 31, pp. 1994–2016 [4] Godiganur S., Murthy C.H. S., Reddy R. P. (2009) 6BTA 5.9 G2-1 Cummins engine performance

and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends, Renewable Energy 34, pp. 2172–2177

[5] Saravanan N, Nagarajan G, Puhan S. (2010) Experimental investigation on a diesel engine fuelled with Madhuca Indica ester diesel blend, Biomass and Bio-Energy 34, pp. 838– 843

[6] Sayin, Gumus, Canakci (2012) Effect of fuel injection pressure on the injection, combustion and performance characteristics of a DI diesel engine fueled with canola oil methyl esters-diesel fuel blends, Biomass and Bio-energy 46, pp. 435-446

[7] Kannan G.R, Anand.(2012) Effect of injection pressure and injection timing on DI diesel engine fuelled with biodiesel from waste cooking oil, Biomass and Bio-energy 46, pp. 343-352

[8] Labecki L, Lindner A, Winklmayr W, Uitz R., Cracknell R., Ganippa L. (2013) Effects of injection parameters and EGR on exhaust soot particle number-size distribution for diesel and RME fuels in HSDI engines, Fuel 112, pp. 224–235

[9] Jindal S., Nandwana B.P., Rathore N.S., Vashistha V. (2010) Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester, Applied Thermal Engineering 30, pp. (2010) 442–448

REFERENCES (cont’d) [10] Kannan, Anand (2012) Effect of injection pressure and injection timing on DI diesel engine fu-

elled with biodiesel from waste cooking oil, Biomass and Bio-energy 46, pp. 343-352 [11] Kannan, Anand (2011) Experimental evaluation of DI diesel engine operating with diestrol at

varying injection pressure and injection timing, Fuel Processing Technology 92, pp. 2252–2263 [12] Pandian, Sivapirakasam , Udayakumar (2011) Investigation on the effect of injection system pa-

rameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology, Applied Energy 88, pp. 2663–2676

[13] Jaichandar, Annamalai(2013)Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine, Energy 55, pp. 330-339

[14] Raheman H., Ghadge S.V. (2007) Performance of compression ignition engine with mahua (Madhuca indica) biodiesel, Fuel 86, pp. 2568–2573.

[15] Puhan S., Vedaramana N., Sankaranarayanana G., Boppana V. Rama B. (2005) Technical note-Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine, Renewable Energy 30, pp. 1269–1278

[16] Saravanan S., Nagarajan G., Sampath S. (2013) Combined effect of injection timing, EGR and injection pressure in NOx control of a stationary diesel engine fuelled with crude rice bran oil methyl ester, Fuel 104, pp. 409–416.

[17] Çelikten, Koca, Arslan (2010) Comparison of performance and emissions of diesel ,rapeseed, soybean oil methyl esters injected at different pressures, Renewable Energy 35, pp. 814–820

[18] Labecki L., Ganippa L.C. (2012) Effects of injection parameters and EGR on combustion and emission characteristics of rapeseed oil and its blends in diesel engines, Fuel 98, pp. 15–28.

Malaviya National Institute of Technology 26

THANK YOU